欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1540-1553.doi: 10.3724/SP.J.1006.2024.32040

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量对滴灌水稻根系形态构型和分形特征的影响

唐清芸1(), 杨晶晶1, 赵蕾1, 宋志文1, 王国栋2,*(), 李玉祥1,*()   

  1. 1石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832003
    2新疆农垦科学院 / 农业农村部西北绿洲节水农业重点实验室 / 水肥资源高效利用兵团重点实验室, 新疆石河子 832000
  • 收稿日期:2023-09-26 接受日期:2024-01-30 出版日期:2024-06-12 网络出版日期:2024-02-21
  • 通讯作者: * 王国栋, E-mail: 664812734@qq.com;李玉祥, Email: yxli@shzu.edu.cn
  • 作者简介:E-mail: 20212012005@stu.shzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31460541);国家自然科学基金项目(32360527);第三师图木舒克市科技计划项目(KJ2023CG03);石河子大学青年创新拔尖人才项目(CXBJ202003);石河子大学自主支持科研项目(ZZZC2022008);石河子大学SRP项目(SRP2023027)

Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots

TANG Qing-Yun1(), YANG Jing-Jing1, ZHAO Lei1, SONG Zhi-Wen1, WANG Guo-Dong2,*(), LI Yu-Xiang1,*()   

  1. 1Key Laboratory of Oasis Ecological Agriculture / College of Agriculture, Shihezi University / Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
    2Key Laboratory of Water-saving Agriculture in Northwest Oasis / Key Laboratory of Efficient Utilization of Water and Fertilizer Resources, Ministry of Agriculture and Rural Affairs / Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, Xinjiang, China
  • Received:2023-09-26 Accepted:2024-01-30 Published:2024-06-12 Published online:2024-02-21
  • Contact: * E-mail: 664812734@qq.com; Email: yxli@shzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31460541);National Natural Science Foundation of China(32360527);Science and Technology Plan Project of Tumushuke City, the Third Division(KJ2023CG03);Young Innovative Top Talents Project of Shihezi University(CXBJ202003);Independent Support Scientific Research Project of Shihezi University(ZZZC2022008);SRP Program of Shihezi University(SRP2023027)

摘要:

旨在探明水稻在膜下滴灌下根系形态、构型、氮利用效率变化及其与分形维数的关系。于2021—2022年, 以氮高效品种(T-43)和氮低效品种(垦-26)为材料, 设置滴灌(drip irrigation, DI)、淹灌(flooding irrigation, FI) 2种方式与4种施氮水平(0、150、300和450 kg hm-2)的盆栽试验。基于盒维数法结合根系图像分形分析程序计算根系形态的分形维数和分形丰度, 研究滴灌及施氮对水稻产量、氮素利用效率、根系形态、构型、分形维数、分形丰度的影响。结果表明, (1) 在相同施氮水平下, 与淹灌相比, 滴灌处理下T-43和垦-26细根百分比、根长密度(root length density, RLD) β值、氮肥农学利用效率(nitrogen agronomic efficiency, NAE)显著提高(分别为6.8%~14.5%和9.9%~17.2%、0.65%~5.45%和0.32%~3.43%、12.1%~22.4%和12.2%~20.5%); >0.5 mm RLD、0~40 cm土层表面积密度(surface area density, SAD)和根体积密度(RLD)、分形维数(fractal dimension, FD)、分形丰度(fractal abundance, FA)显著降低, 造成产量降低(3.8%~37.4%和7.6%~48.3%)。(2) 滴灌模式下, 施氮显著提高了水稻根系FD和FA, T-43在施氮量为300 kg hm-2时, FD和FA最高(分别为1.55和14.07); 垦-26在施氮量为450 kg hm-2时最高(分别为1.62和14.78)。(3) 相关分析表明, FD、FA与直径0.1~0.3 mm RLD、0~10 cm土层根长和根质量密度、产量、氮素稻谷生产效率呈显著正相关, 与30~40 cm土层表面积密度呈显著负相关。因此, 在滴灌条件下, 氮高效品种“T-43”配施300 kg hm-2氮肥, 能够增加细根根长密度比例, 优化表层根系形态分布, 提高根系分形维数和丰度, 进而实现滴灌水稻产量和氮肥利用效率协同提高。

关键词: 水稻, 滴灌, 施氮量, 根系形态, 分形维数

Abstract:

The aim of this study was to explore the changes of root morphology, configuration, and nitrogen use efficiency of rice under mulched drip irrigation and their relationship with fractal dimension. From 2021 to 2022, a pot experiment was conducted with two irrigation methods of drip irrigation (DI) and flooding irrigation (FI) and four nitrogen (N) application levels (0, 150, 300 and 450 kg hm-2) using high nitrogen efficient (high-NUE) cultivar (T-43) and low-NUE cultivar (Ken-26) as the experimental materials. Based on the box-counting method combined with the root image fractal analysis program, the fractal dimension and fractal abundance of root morphology were calculated, and the effects of drip irrigation and nitrogen application on rice yield, nitrogen use efficiency, root morphology, configuration, fractal dimension, and fractal abundance were studied. The results showed as follows: (1) under the same N application level, compared with FI, the fine root percentage, root length density (RLD) β-value, and N agronomic efficiency (NAE) of the two varieties under DI were significantly increased (6.8%-14.5% and 9.9%-17.2%, 0.65%-5.45% and 0.32%-3.43%, 12.1%-22.4% and 12.2%-20.5%); >0.5 mm RLD, surface area density (SAD) and root bulk density (RLD), fractal dimension (FD), fractal abundance (FA) were significantly lower in the 0-40 cm soil layer, resulting in lower yields (3.8%-37.4% and 7.6%-48.3%). (2) Under DI, nitrogen application significantly increased FD and FA of rice roots. T-43 had the highest FD and FA when the nitrogen application rate was 300 kg hm-2 (1.55 and 14.07), and Ken-26 had the highest FD and FA when the nitrogen application rate was 450 kg hm-2 (1.62 and 14.78). (3) Correlation analysis showed that FD and FA were significantly or extremely significantly positively correlated with RLD of 0.1-0.3 mm in diameter, root length, and root mass density, yield and N grain production efficiency in 0-10 cm soil layer, and significantly negatively correlated with the surface area density in 30-40 cm soil layer. Therefore, under drip irrigation, the high-NUE cultivar “T-43” with N fertilizer of 300 kg hm-2 can increase the proportion of fine root length density, optimize the distribution of surface root morphology, and increase the fractal dimension and abundance of the root system, thus achieving a synergistic increase in the yield of drip-irrigated rice and the efficiency of nitrogen fertilizer utilization.

Key words: rice, drip irrigation, nitrogen application rate, root morphology, fractal dimension

图1

水稻生长季节降雨量和温度的变化"

表1

滴灌和淹灌全生育期肥料施用量"

肥料品种
Fertilizer type
生育时期Growth stage 总计
Total
(g pot 1)
苗期
Seedling stage
三叶期
Three leaf stage
分蘖期
Tillering stage
拔节期
Jointing stage
孕穗期
Booting stage
抽穗期
Heading stage
扬花期
Flowering stage
灌浆期
Grain
filling stage
CO(NH2)2 N0 0 0 0 0 0 0 0 0 0
N150 0.65 1.96 2.62 1.30 1.30 1.30 1.30 2.60 13.04
N300 1.30 3.92 5.22 2.61 2.61 2.61 2.61 5.22 26.09
N450 1.96 5.87 7.83 3.91 3.91 3.91 3.91 7.83 39.13
KH2PO4 0.46 1.38 1.85 0.92 0.92 0.92 0.92 1.85 9.23

图2

根系采集装置"

表2

水分管理和施氮量对产量和氮素利用效率的影响"

年份
Year
品种
Cultivar
处理
Treatment
产量
Yield (g pot-1)
N积累总量
TNA (g pot-1)
氮素稻谷生产效率
NGPE (kg kg-1)
氮肥偏生产力
PFP (kg kg-1)
氮肥农学利用效率
NAE (kg kg-1)
2021 T-43 FI-N0 169.84±14.85 cd 4.81±0.41 c 89.63±4.23 a
FI-N150 234.50±37.43 bc 5.16±0.95 bc 75.23±5.25 ab 37.25±8.05 a 4.90±7.54 b
FI-N300 293.59±47.95 a 7.57±0.49 a 65.36±4.21 abc 31.64±5.16 ab 5.46±3.71 ab
FI-N450 268.53±18.56 a 5.29±0.49 bc 62.77±4.12 abc 19.31±1.32 c 4.42±1.33 b
DI-N0 129.63±23.82 d 4.23±0.36 c 73.21±3.56 ab
DI-N150 186.86±13.92 c 5.20±0.65 bc 60.76±12.35 abc 40.28±3.03 a 5.33±3.73 ab
DI-N300 270.08±67.44 a 6.45±0.25 b 58.36±4.20 bc 26.94±7.26 bc 6.97±5.75 a
DI-N450 249.97±67.44 ab 6.93±1.06 ab 54.65±1.20 bcd 19.41±4.84 c 4.09±5.59 b
K-26 FI-N0 147.26±8.04 c 5.30±1.02 bc 75.23±9.84 b
FI-N150 170.46±44.86 b 6.61±0.72 b 64.56±10.42 b 36.76±9.69 a 5.36±10.99 c
FI-N300 266.98±58.47 a 7.57±0.30 a 55.36±6.09 b 28.77±6.30 ab 6.58±5.79 b
FI-N450 249.35±39.91 b 7.26±0.60 ab 49.78±19.63 b 15.25±2.87 c 4.12±2.31 d
DI-N0 100.85±16.71 c 3.57±0.10 d 85.35±4.25 a
DI-N150 167.99±31.86 b 3.85±0.03 d 95.47±7.88 a 36.20±6.84 a 7.44±10.24 ab
DI-N300 205.11±17.63 b 5.03±0.57 cd 84.77±5.36 a 22.10±1.89 bc 8.22±3.21 a
DI-N450 225.84±5.88 ab 5.32±0.49 c 78.66±11.56 a 11.78±0.41 c 6.53±1.21 b
2022 T-43 FI-N0 233.26±6.19 c 4.68±0.39 e 73.46±5.81 a
FI-N150 267.29±8.04 b 5.61±1.38 c 65.93±17.58 ab 37.59±1.73 b 2.69±0.39 bc
FI-N300 296.37±2.78 a 8.07±0.54 a 64.66±2.92 ab 26.92±0.30 c 3.47±0.74 bc
FI-N450 288.95±16.09 a 5.42±0.74 cd 62.77±3.72 abc 21.32±1.16 d 2.36±1.50 c
DI-N0 204.49±8.97 d 4.23±0.36 f 62.77±3.72 abc
DI-N150 241.00±7.12 c 5.20±0.65 d 60.76±7.18 abc 44.03±1.91 a 5.87±3.37 ab
DI-N300 270.39±1.24 b 6.45±0.25 bc 51.53±1.50 bc 25.95±0.76 cd 6.63±1.03 a
DI-N450 256.47±2.78 bc 6.93±1.06 b 51.65±8.08 bc 18.43±0.19 e 5.76±0.68 ab
K-26 FI-N0 163.66±12.07 c 4.81±1.02 bc 55.24±9.84 b
FI-N150 237.90±26.61 b 6.40±0.72 b 49.51±10.42 c 51.63±6.57 a 5.73±6.57 c
FI-N300 259.87±26.30 a 7.02±0.26 ab 48.46±6.09 c 28.29±3.21 c 6.68±6.43 b
FI-N450 281.52±13.92 a 7.76±1.08 a 46.11±19.63 c 21.23±0.34 d 4.81±1.01 d
DI-N0 126.84±13.92 d 3.13±0.02 d 108.75±11.86 a
DI-N150 168.91±8.66 c 3.25±0.03 d 109.81±18.64 a 36.76±2.03 b 6.03±2.03 b
DI-N300 225.84±4.64 b 4.59±0.20 d 86.89±7.09 a 24.41±0.53 cd 8.05±0.53 a
DI-N450 234.81±5.26 b 5.12±0.42 bc 86.81±6.90 a 13.71±0.44 e 5.46±0.44 c
方差分析 ANOVA
水分管理Water management (W) 165.86** 347.8** 73.2** 506.3** 73.2**
氮肥Nitrogen (N) 180.58** 4.40 NS 7.39* 4.75 NS 7.39*
水分×施肥W×N 7.03** 3.72 NS 13.1** 39.3** 13.1**

表3

水分管理和施氮量对根系形态学指标的影响"

品种
Cultivar
施氮量
Nitrogen
根长密度
RLD (cm dm-3)
根表面积密度
SAD (cm2 dm-3)
平均直径
AD (cm)
根体积密度
RVD (cm3 dm-3)
T-43 FI-N0 1652.2±71.3 d 278.3±20.5 d 0.54±0.01 a 3.7±0.4 c
FI-N150 1893.9±63.2 c 330.5±7.4 c 0.54±0.02 a 4.6±0.1 b
FI-N300 2625.2±2.8 a 456.0±6.1 a 0.55±0.01 a 6.3±0.2 a
FI-N450 2413.7±73.4 b 418.9±19.9 b 0.54±0.01 a 5.8±0.4 a
DI-N0 1027.5±139.9 f 156.8±22.1 f 0.46±0.01 b 1.9±0.3 d
DI-N150 1309.5±42.4 e 197.2±10.1 e 0.46±0.01 c 2.4±0.2 d
DI-N300 1354.0±16.3 e 198.3±3.8 e 0.46±0.01 c 2.3±0.1 d
DI-N450 1238.2±228.5 e 193.6±35.3 e 0.49±0.02 c 2.4±0.5 d
K-26 FI-N0 2393.8±101.5 c 364.6±21.1 d 0.49±0.01 bc 4.4±0.3 c
FI-N150 2664.6±302.3 b 444.7±65.5 c 0.53±0.01 a 6.0±1.1 b
FI-N300 3126.1±248.5 a 495.8±35.8 b 0.54±0.03 a 6.3±0.4 b
FI-N450 3249.3±43.9 a 573.0±15.9 a 0.55±0.01 a 8.1±0.4 a
DI-N0 878.9±49.3 f 117.8±4.3 g 0.42±0.01 c 1.3±0.1 f
DI-N150 1155.7±28.9 e 174.5±3.0 f 0.52±0.05 ab 2.1±0.1 e
DI-N300 1395.4±21.1 e 198.3±5.8 f 0.44±0.01 bc 2.3±0.1 e
DI-N450 1823.3±116.5 d 265.2±13.9 e 0.46±0.01 bc 3.1±0.1 d
方差分析 ANOVA
水分管理Water management (W) 429.6** 524.0** 347.8** 536.5**
施肥Nitrogen (N) 27.1** 23.0** 4.40 NS 18.3**
水分×施肥W×N 30.4** 30.7** 3.72 NS 28.3**

图3

不同直径根系长度分布及占总根长的比例 T-43: 氮高效品种; 垦-26: 氮低效品种。DI: 滴灌; FI: 淹灌。不同字母表示同一水分管理不同施氮量间差异在0.05概率水平差异显著。"

图4

水分管理和施氮对水稻根系垂直分布的影响 T-43: 氮高效品种; 垦-26: 氮低效品种。DI: 滴灌; FI: 淹灌。不同字母表示同一水分管理不同施氮量间差异在0.05概率水平差异显著。"

表4

水分管理和施氮对水稻根系构型β值分布的影响"

品种
Cultivar
施氮量
Nitrogen
根长密度β
RLD β
根表面积密度β
SAD β
根体积密度β
RVD β
根质量密度β
RDWD β
T-43 FI-N0 0.915±0.001 c 0.914±0.001 d 0.913±0.001 b 0.900±0.010 bcd
FI-N150 0.918±0.000 bc 0.915±0.001 d 0.912±0.001 b 0.905±0.010 bc
FI-N300 0.924±0.012 b 0.925±0.013 bc 0.926±0.010 a 0.910±0.010 ab
FI-N450 0.937±0.010 a 0.934±0.001 a 0.932±0.002 a 0.921±0.010 a
DI-N0 0.917±0.001 bc 0.913±0.002 d 0.909±0.001 b 0.911±0.010 ab
DI-N150 0.937±0.002 a 0.931±0.001 ab 0.924±0.001 a 0.891±0.000 cd
DI-N300 0.941±0.010 a 0.936±0.010 a 0.932±0.010 a 0.902±0.020 bcd
DI-N450 0.920±0.010 bc 0.918±0.001 cd 0.914±0.001 b 0.890±0.010 d
K-26 FI-N0 0.900±0.002 de 0.905±0.010 c 0.910±0.010 cd 0.893±0.001 cd
FI-N150 0.906±0.001 cd 0.906±0.011 c 0.906±0.010 d 0.890±0.010 cde
FI-N300 0.911±0.010 c 0.910±0.010 c 0.909±0.011 d 0.898±0.001 c
FI-N450 0.894±0.010 e 0.891±0.011 d 0.888±0.010 e 0.882±0.010 de
DI-N0 0.932±0.011 b 0.928±0.010 b 0.924±0.010 ab 0.904±0.001 bc
DI-N150 0.929±0.012 b 0.926±0.001 b 0.922±0.002 bc 0.919±0.001 a
DI-N300 0.946±0.011 a 0.942±0.001 a 0.937±0.001 a 0.920±0.000 ab
DI-N450 0.927±0.011 b 0.925±0.010 b 0.923±0.010 bc 0.880±0.021 e
方差分析 ANOVA
水分管理模式Water management (W) 6.02* 1.50NS 0.12NS 10.2**
施肥Nitrogen (N) 19.14** 17.4** 11.5** 0.88NS
栽培×施肥W×N 8.07** 11.5** 11.1** 7.55**

表5

水分管理和施氮对水稻根系分形维数和分形丰度的影响"

施氮量
Nitrogen
分形维数FD 分形丰度FA
T-43 K-26 T-43 K-26
FI-N0 1.51±0.02 b 1.65±0.06 b 13.63±0.21 c 14.90±0.31 c
FI-N150 1.54±0.03 ab 1.70±0.04 ab 14.19±0.22 b 15.29±0.15 bc
FI-N300 1.59±0.03 a 1.72±0.03 ab 14.69±0.29 a 15.69±0.29 ab
FI-N450 1.55±0.02 ab 1.75±0.04 a 14.34±0.16 ab 15.91±0.40 a
DI-N0 1.48±0.02 b 1.43±0.04 b 13.06±0.56 b 12.73±0.45 c
DI-N150 1.50±0.01 b 1.47±0.05 b 13.30±0.25 b 12.83±0.32 c
DI-N300 1.55±0.02 a 1.57±0.02 a 14.07±0.25 a 14.07±0.34 b
DI-N450 1.52±0.01 ab 1.62±0.01 a 13.71±0.05 ab 14.78±0.08 a
方差分析 ANOVA
水分管理Water management (W) 8.97* 53.5** 11.78** 20.45**
施肥Nitrogen (N) 3.62 NS 8.21* 12.58** 2.93 NS
水分×施肥W×N 1.80 NS 2.91 NS 0.26 NS 5.98*

图5

根系分形参数及其与根系形态间的相关性分析 处理缩写和指标缩写同表2和表3。"

图6

根系分形参数与水稻产量及氮利用效率间相关性分析 指标缩写同表2。*、**、***分别表示在P < 0.05、P < 0.01和P < 0.001水平差异显著。"

[1] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征. 作物学报, 2023, 49: 1039-1051.
Zhang C H, Zhang Y, Li G H, Yang Z J, Zha Y Y, Zhou C Y, Xu K, Huo Z Y, Dai Q G, Guo B W. Characteristics of root morphology and its physiological changes in the formation of high yielding rice under lateral deep fertilization. Acta Agron Sin, 2023, 49: 1039-1051. (in Chinese with English abstract)
[2] Henke M, Sarlikioti V, Kurth W, Gerhard H, Sorlin B, Pagès L. Exploring root developmental plasticity to nitrogen with a three- dimensional architectural model. Plant Soil, 2014, 385: 49-62.
[3] Ristova D, Busch W. Natural variation of root traits: from development to nutrient uptake. Plant Physiol, 2014, 166: 518-527.
doi: 10.1104/pp.114.244749 pmid: 25104725
[4] 吴昊, 张瑛, 王琛. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响. 作物学报, 2024, 50: 478-492.
doi: 10.3724/SP.J.1006.2024.32011
Wu H, Zhang Y, Wang C. Effects of cultivation optimization on root characteristics and starch characteristics of rice at grain filling stage in the lower reaches of the Yangtze River. Acta Agron Sin, 2024, 50: 478-492. (in Chinese with English abstract)
[5] Rogers E D, Benfey P N. Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol, 2015, 32: 93-98.
[6] 闫励, 杨方社, 李怀恩. 砒砂岩区不同立地下沙棘根系分形特征. 干旱区研究, 2019, 36: 467-473.
Yan L, Yang F S, Li H E. Fractal characteristics of the root system of sea buckthorn under different elevations in an arsenic sandstone area. Arid Zone Res, 2019, 36: 467-473. (in Chinese with English abstract)
[7] 马雄忠, 王新平. 阿拉善高原2种荒漠植物根系构型及生态适应性特征. 生态学报, 2020, 40: 6001-6008.
Ma X Z, Wang X P. Root architecture and adaptive strategy of two desert plants in the Alxa Plateau. Acta Ecol Sin, 2020, 40: 6001-6008. (in Chinese with English abstract)
[8] 王义琴, 张慧娟, 白克智, 孙勇如. 分形几何在植物根系研究中的应用. 自然杂志, 1999, 21: 143-146.
Wang Y Q, Zhang H J, Bai K Z, Sun Y R. Application of fractal geometry to the study of plant roots. J Nat Chin, 1999, 21: 143-146. (in Chinese with English abstract)
[9] Dannowski M, Block A. Fractal geometry and root system structures of heterogeneous plant communities. Plant Soil, 2005, 272: 61-76.
[10] Fernandez-Martinez M, Sanchze-Granero M A. Fractal dimension for fractal structures. Topol Appl, 2014, 163: 93-111.
[11] Mandelbrot B B. The fractal geometry of nature. Am J Phys, 1983, 51: 286-286.
[12] Costa C, Dwyer L M, Dutilleul P. Morphology, and fractal dimension of root systems of maize hybrids bearing the leafy trait. Can J Bot, 2003, 81: 706-713.
[13] 汪洪, 金继运, 山内章. 以盒维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系. 作物学报, 2008, 34: 1637-1643.
doi: 10.3724/SP.J.1006.2008.01637
Wang H, Jin J Y, Yamauchi A. Fractal analysis of rice root morphological characteristics by box dimension method and its relationship with zinc absorption and accumulation were studied. Acta Agron Sin, 2008, 34: 1637-1643 (in Chinese with English abstract).
[14] 陈绍民, 李明思, 高超, 赵宇龙, 郝忠文. 桶栽棉花根系构型的分形特征分析. 灌溉排水学报, 2015, 34(4): 75-79.
Chen S M, Li S M, Gao C, Zhao Y L, Hao Z W. Analysis of fractal characteristics of root architecture of barrel-cultivated cotton. J Irrig Drain, 2015, 34(4): 75-79. (in Chinese with English abstract)
[15] 杨培岭, 任树梅, 罗远培. 分形曲线度量与根系形态的分形表征. 中国农业科学, 1999, 32: 89-92.
Yang P L, Ren S M, Luo Y P. Fractal curve metrics and fractal characterization of root morphology. Sci Agric Sin, 1999, 32: 89-92. (in Chinese with English abstract)
[16] 陆大克, 段骅, 王维维, 刘明爽, 魏艳秋, 徐国伟. 不同干湿交替灌溉与氮肥形态耦合下水稻根系生长及功能差异. 植物营养与肥料学报, 2019, 25: 1362-1372.
Lu D K, Duan H, Wang W W, Liu M S, Wei Y Q, Xu G W. Differences in root growth and function of rice under different dry-wet alternate irrigation and nitrogen fertilizer form coupling. J Plant Nutr Fert, 2019, 25: 1362-1372. (in Chinese with English abstract)
[17] 张绍文, 何巧林, 王海月, 蒋明金, 李应洪, 严奉君, 杨志远, 孙永健, 郭翔, 马均. 控制灌溉条件下施氮量对杂交籼稻F优498氮素利用效率及产量的影响. 植物营养与肥料学报, 2018, 24: 82-94.
Zhang S W, He Q L, Wang H Y, Jiang M J, Li Y H, Yan F J, Yang Z Y, Sun Y J, Guo X, Ma J. Effects of nitrogen application rate on nitrogen use efficiency and yield of hybrid indica rice F you 498 under controlled irrigation conditions. J Plant Nutr Fert, 2018, 24: 82-94. (in Chinese with English abstract)
[18] 陈林, 郭庆人. 膜下滴灌水稻栽培技术的形成与发展. 作物研究, 2012, 26: 587-588.
Chen L, Guo Q R. The formation and development of rice cultivation techniques of drip irrigation under film. Crop Res, 2012, 26: 587-588. (in Chinese with English abstract)
[19] Liu K, Li T, Chen Y, Huang J, Qiu Y, Li S, Wang H, Zhu A, Zhuo X, Yu F, Zhang H, Gu J, Liu L, Yang J. Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Res, 2020, 258: 107-946.
[20] 陈吉虎, 余新晓, 有祥亮, 刘苹, 张长达, 谢港. 不同水分条件下银叶椴根系的分形特征. 中国水土保持科学, 2006, 4(2): 71-74.
Chen J H, Yu X X, You X L, Liu P, Zhang C D, Xie G. Fractal characteristics of Tilia temenos’s root system under different water conditions. Sci Soil Water Conserv, 2006, 4(2): 71-74. (in Chinese with English abstract)
[21] Wang H, Siopongco J, Wade L, Yamauchi A. Fractal analysis on root systems of rice plants in response to drought stress. Environ Exp Bot, 2009, 65: 338-344.
[22] 王志军, 叶春秀, 董永梅, 李有忠, 田又升, 陈林, 孙国清, 谢宗铭. 滴灌和淹灌栽培模式下水稻光合生理、荧光参数及产量构成因素分析. 植物生理学报, 2016, 52: 723-735.
Wang Z J, Ye C X, Dong Y M, Li Y Z, Tian Y S, Chen L, Sun G Q, Xie Z M. Analysis of photosynthetic physiology, fluorescence parameters and yield components in rice under irrigated and flooded cultivation patterns. Plant Physiol J, 2016, 52: 723-735. (in Chinese with English abstract)
[23] 李娜, 杨志远, 代邹, 孙永健, 徐徽, 何艳, 蒋明金, 严田蓉, 郭长春, 马均. 水氮管理对不同氮效率水稻根系性状、氮素吸收利用及产量的影响. 中国水稻科学, 2017, 31: 500-512.
doi: 10.16819/j.1001-7216.2017.6145
Li N, Yang Z Y, Dai Z, Sun Y J, Xu H, He Y, Jiang M J, Yan T R, Guo C C, Ma J. Effects of water-nitrogen management on root traits, nitrogen accumulation and utilization and grain yield in rice with different nitrogen use efficiency. Chin J Rice Sci, 2017, 31: 500-512. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2017.6145
[24] 刘磊, 宋娜娜, 齐晓丽, 崔克辉. 水稻根系特征与氮吸收利用效率关系的研究进展. 作物杂志, 2022, (1): 11-19.
Liu L, Song N N, Qi X L, Cui K H. Research progress on the relationship between rice root characteristics and nitrogen uptake and utilization efficiency. Crops, 2022, (1): 11-19. (in Chinese with English abstract)
[25] 王志军, 谢宗铭, 田又升, 陈林, 董永梅, 李有忠, 吕昭智. 膜下滴灌和淹灌两种栽培模式下水稻光合生理特性的研究. 中国水稻科学, 2015, 29: 150-158.
doi: 10.3969/j.issn.1001-7216.2015.02.006
Wang Z J, Xie Z M, Tian Y S, Chen L, Dong Y M, Li Y Z, Lyu Z Z. Study on photosynthetic physiological characteristics of rice under drip irrigation and submerged irrigation. Chin J Rice Sci, 2015, 29: 150-158. (in Chinese with English abstract)
[26] 崔国贤, 沈其荣, 崔国清, 李良勇. 水稻旱作及对旱作环境的适应性研究进展. 作物研究, 2001, (3) :70-76.
Cui G X, Shen Q R, Cui G Q, Li L Y. Research progress on rice dry farming and its adaptability to dry farming environment. Crop Res, 2001, (3): 70-76. (in Chinese with English abstract)
[27] 李丽, 陈林, 张婷婷, 银永安, 朱江艳, 赵双玲. 膜下滴灌对水稻根系形态及生理性状的影响. 排灌机械工程学报, 2015, 33: 536-540.
Li L, Chen L, Zhang T T, Yin Y A, Zhu J Y, Zhao S L. Effects of drip irrigation under film on root morphology and physiological traits of rice. J Drain Irrig Machin Engin, 2015, 33: 536-540. (in Chinese with English abstract)
[28] 李婷婷, 冯钰枫, 朱安, 黄健, 汪浩, 李思宇, 刘昆, 彭如梦, 张宏路, 刘立军. 主要节水灌溉方式对水稻根系形态生理的影响. 中国水稻科学, 2019, 33: 293-302.
doi: 10.16819/j.1001-7216.2019.8116
Li T T, Feng Y F, Zhu A, Huang J, Wang J, Li S Y, Liu K, Peng R M, Zhang H L, Liu L J. Effects of main water-saving irrigation methods on morphological and physiological traits of rice roots. Chin J Rice Sci, 2019, 33: 293-302 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.8116
[29] Xu G W, Lu D K, Wang H Z, Li Y J. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manag, 2018, 203: 385-394.
[30] Ranathunge K, Schreiber L, Bi Y M. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta, 2016, 243: 231-49.
doi: 10.1007/s00425-015-2406-1 pmid: 26384983
[31] Carrijo D R, Lundy M E, Linquist B A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res, 2017, 203: 173-180.
[32] 王肖娟, 陈林, 王永强, 李丽, 朱江艳, 赵双玲, 刘小武, 李高华. 不同灌溉方式及施氮量对水稻生长和氮素利用效率的影响. 中国稻米, 2017, 23(3): 88-91.
doi: 10.3969/j.issn.1006-8082.2017.03.023
Wang X J, Chen L, Wang Y Q, Li L, Zhu J Y, Zhao S L, Liu X W, Li G H. Effects of different irrigation methods and nitrogen application rates on rice growth and nitrogen use efficiency. China Rice, 2017, 23(3): 88-91. (in Chinese with English abstract)
[33] 李明思, 刘洪光, 郑旭荣. 长期膜下滴灌农田土壤盐分时空变化. 农业工程学报, 2012, 28(22): 82-87.
Li M S, Liu H G, Zheng X R. Temporal and spatial variation of soil salinity in long-term mulched drip irrigation farmland. Trans CSAE, 2012, 28(22): 82-87. (in Chinese with English abstract)
[34] 孙永健, 孙园园, 刘树金, 杨志远, 程洪彪, 贾现文, 马均. 水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响. 作物学报, 2011, 37: 2221-2232.
doi: 10.3724/SP.J.1006.2011.02221
Sun Y J, Sun Y Y, Liu S J, Yang Z Y, Cheng H B, Jia X W, Ma J. Effects of water management and nitrogen management on nutrient uptake, translocation, and distribution in rice. Acta Agron Sin, 2011, 37: 2221-2232. (in Chinese with English abstract)
[35] 陈信信, 丁启朔, 李毅念, 薛金林, 何瑞银. 南方稻麦轮作系统下小麦根系的三维分形特征. 中国农业科学, 2017, 50: 451-460.
doi: 10.3864/j.issn.0578-1752.2017.03.004
Chen X X, Ding Q S, Li Y N, Xue J L, He R Y. The three-dimensional fractal characteristics of wheat roots under rice-wheat rotation system in southern China. Sci Agric Sin, 2017, 50: 451-460. (in Chinese with English abstract)
[36] Nielsen K L, Miller C R, Beck D, Lynch J P. Fractal geometry of root systems: field observations of contrasting genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorus regimes. Plant Soil, 1999, 206: 181-190.
[37] Cabangon R J, Tuong T P, Castillo E G, Bao L X, Lu G A, Wang G H, Cui Y L, Bouman B A, Li Y H, Chen C D. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ, 2004, 2: 195-206.
[1] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[2] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[3] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[4] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[5] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[6] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[7] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[8] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[9] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[10] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[11] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[12] 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555.
[13] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[14] 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424.
[15] 徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响[J]. 作物学报, 2024, 50(2): 425-439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .