欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 414-424.doi: 10.3724/SP.J.1006.2024.32015

• 耕作栽培·生理生化 • 上一篇    下一篇

低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系

吴宇**(), 刘磊**(), 崔克辉*(), 齐晓丽, 黄见良, 彭少兵   

  1. 作物遗传改良全国重点实验室 / 农业农村部长江中游作物生理生态与耕作重点实验室 / 华中农业大学植物科学技术学院, 湖北武汉 430070
  • 收稿日期:2023-04-24 接受日期:2023-09-13 出版日期:2024-02-12 网络出版日期:2023-10-07
  • 通讯作者: *崔克辉, E-mail: cuikehui@mail.hzau.edu.cn, Tel: 027-87288380
  • 作者简介:吴宇, E-mail: 1172608346@qq.com;刘磊, E-mail: 18790091496@163.com
    **同等贡献
  • 基金资助:
    国家自然科学基金项目(31671598)

Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage

WU Yu**(), LIU Lei**(), CUI Ke-Hui*(), QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing   

  1. National Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agricultural and Rural Affairs / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2023-04-24 Accepted:2023-09-13 Published:2024-02-12 Published online:2023-10-07
  • Contact: *E-mail: cuikehui@mail.hzau.edu.cn, Tel: 027-87288380
  • About author:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31671598)

摘要:

作物根系在氮素吸收与分配中起着重要作用。本研究选用2个根系特征具有差异的水稻品种黄华占(Huanghuazhan, HHZ, 常规稻)和扬两优6号(Yangliangyou 6, YLY6, 超级杂交稻), 在水培条件和2个氮素浓度(低氮, low nitrogen, LN; 高氮, high nitrogen, HN)处理下, 研究根系形态和解剖结构特征的变化及其与LN下氮素积累的关系。与HN处理相比, LN处理下HHZ总氮积累量显著下降了19.7%, YLY6没有显著下降; YLY6根干重、总根长、根表面积、根尖数分别显著增加了41.3%、57.1%、74.9%和20.6%, 而HHZ没有显著变化。与HN处理相比, LN处理下YLY6的根直径和根皮层面积分别显著增加了12.4%和24.2%, 而HHZ根直径和根皮层面积、中柱直径分别显著降低了12.0%、21.9%和11.4%。LN处理下, YLY6根系铵转运蛋白基因AMT2;1AMT2;3AMT3;1AMT3;2的表达量分别显著增加了195.6%、29.3%、314.9%和388.9%, 谷氨酰胺合成酶基因GS1;1表达量增加了158.2%, HHZ中这5个基因的表达量没有显著变化。LN下总氮积累量与根系性状显著正相关(根厚壁组织厚度除外), 与部分铵转运和同化相关基因的表达量显著正相关。这些结果表明超级杂交稻YLY6幼苗在LN下根系特征变化有利于增加氮积累。选育根系对减氮表现出有利变化的水稻品种应是绿色水稻生产的一个重要途径。

关键词: 水稻, 低氮, 根系特征变化, 氮积累, 铵转运蛋白, 谷氨酰胺合成酶

Abstract:

Crop root system plays an important role in nitrogen uptake. In this study, two rice varieties, conventional rice variety Huanghuazhan (HHZ) and super hybrid rice variety Yangliangyou 6 (YLY6), were grew hydroponically under high nitrogen (HN) and low nitrogen (LN) treatments to investigate the changes of root characteristics and their relationships with nitrogen accumulation at seedling stage. Compared to HN, LN significantly decreased the total N accumulation in HHZ by 19.7% and had no substantial effect in YLY6. Under LN, root dry weight, the total root length, root surface area, and root tips in YLY6 significantly increased by 41.3%, 57.1%, 74.9%, and 20.6%, respectively. However, these four morphological parameters had no significant change in HHZ. Under LN, root diameter and root cortical area in YLY6 significantly increased by 12.4% and 24.2%, respectively. However, the two parameters and root stele diameter in HHZ significantly reduced by 12.0%, 21.9%, and 11.4%, respectively. In YLY6, LN significantly up-regulated the relative expression level of root ammonium transporter genes (AMT2;1, AMT2;3, AMT3;1, and AMT3;2) by 195.6%, 29.3%, 314.9%, and 388.9%, respectively, and increased the relative expression level of glutamine synthetase gene GS1;1 by 158.2%. However, LN had no effect on the relative expression level of the five genes in HHZ. Total nitrogen accumulation was significantly and positively correlated with the root characteristics (but thickness of root cortical sclerenchyma) and expression of above-mentioned genes under LN. These results indicated that the enhanced positive responses of above-mentioned root characteristics contributed to high nitrogen accumulation in YLY6 seedlings under LN. Developing varieties with root positive responses to nitrogen reduction should be a considerable target for green rice production.

Key words: rice (Oryza sativa L.), low nitrogen application, changes of root characteristics, nitrogen accumulation, ammonium transporter, glutamine synthetase

表1

AMT、GS、GOGAT和Actin基因扩增引物序列"

基因
Gene name
上游引物
Forward sequences (5'-3')
下游引物
Reverse sequences (5'-3')
OsAMT1.1 TTTTGCTGGGCTTCTCTTGT ACCATTCCACCACACCCTTA
OsAMT1.2 CTTCATCGGGAAGCAGTTCT TGAGGAAGGCGGAGTAGATG
OsAMT1.3 CGGCTTCGACTACAGCTTCT GACCAGATCCAGTGGGACAC
OsAMT2.1 CTGGCTCCTCCTCTCCTACA CAGGATGTTGTTCGGTGAGA
OsAMT2.2 GCCTCGACGTCATCTTCTTC TTGTGGAGGATCATCATGGA
OsAMT2.3 GCCTCGACGTCATCTTCTTC GGAAGGTGGATTTCTTGTGC
OsAMT3.1 ACCAAGGACAGGGAGAGGTT AAGATGACGTCGAGGCAA
OsAMT3.2 GCACAGAAGGACAGGGAGAG GCAGATGTTGGTGTTGAGGA
OsAMT3.3 CGAGCATCACCATCATCATC ATGACACCCCACTGGAAGAG
OsAMT4 CTGGCCTCAAGAAGATGGACA AGCTGCTTCACGTACTTGATCG
NADH-GOGAT1 GTGCAGCCTGTTGCAGCATAAA CGGCATTTCACCATGCAAATC
NADH-GOGAT2 CCTGTCGAAGGATGATGAAGGTGAAACC TGCATGGCCCTACTATCTTCGCATCA
Fd-GOGAT AAACAGGCAGCGAGAAAGGTG AAACTCGGCACAAGCTTCAGG
GS1.1 GAGTCGTCGTCTCATTTGACCC GTAGCCACCATCGTTCCTCATC
GS1.2 TTTTCAAGGACCCGTTCAGGA CGGCACTGTGCCTCTTGTTAGT
GS1.3 TCAAGCCATCTTCAGAGACCCA TACCGGTTGTTCGTCGGAATC
GS2 TCACTTCGCCATGACTTGCA CCCCATGAGAAATTGTCAATGC
Actin ATGAAGATCAAGGTGGTCGC GATCTCAGCCTTGGCAATCC

表2

低氮处理对水稻生物量和氮积累的影响"

品种
Variety
氮处理
Nitrogen
treatment
根干重
Root dry weight
(g plant-1)
地上部分干重
Shoot dry weight
(g plant-1)
根氮含量
Root N content
(mg g-1)
地上部分氮含量
Shoot N content
(mg g-1)
总氮积累量
Total N accumulation
(mg plant-1)
HHZ HN 0.192±0.019 a 0.683±0.070 a 29.47±1.42 a 43.63±1.93 a 35.36±2.71 a
LN 0.230±0.026 a 0.672±0.052 a 21.63±2.25 b 34.92±1.06 b 28.40±1.59 b
YLY6 HN 0.208±0.017 b 1.017±0.030 b* 30.98±0.83 a 47.42±1.89 a 54.70±3.73 a*
LN 0.415±0.027 a* 1.388±0.158 a* 19.38±0.48 b 32.24±1.33 b 52.64±3.82 a*
ANOVA 氮Nitrogen (N) +++ ++ ++ +++ +
品种Variety (V) +++ +++ ns ns +++
氮×品种N×V ++ ++ + + ns

表3

低氮处理对根形态特征的影响"

品种
Variety
氮处理
Nitrogen
treatment
总根长
Total root length
(cm plant-1)
根表面积
Root surface area
(cm2 plant-1)
根体积
Root volume
(cm3 plant-1)
根尖数
Root tips
(No. plant-1)
HHZ HN 1822±269 a 181±20 a 1.42±0.11 b 26,678±5793 a
LN 1809±159 a 216±16 a 2.09±0.21 a 22,397±2879 a
YLY6 HN 2321±221 b 228±19 b 1.79±0.16 b 34,354±4079 b
LN 3280±256 a* 358±29 a* 3.12±0.28 a* 41,429±3964 a*
ANOVA 氮Nitrogen (N) + ++ ++ ns
品种Variety (V) +++ +++ +++ ++
氮×品种N×V ++ ++ ++ +

表4

低氮处理对根解剖特征的影响"

品种
Variety
氮处理
Nitrogen
treatment
根直径
Root diameter
(mm)
通气组织面积比例
Proportion of root cortical aerenchyma area (%)
根皮层面积
Root cortical area
(mm2)
根皮层厚壁组织厚度
Thickness of root
cortical sclerenchyma (mm)
根中柱直径
Root stele diameter (mm)
HHZ HN 989±33 a 0.62±0.53 b 0.64±0.04 a 6.50±0.26 a 228±8 a
LN 870±41 b 5.86±3.13 a 0.50±0.05 b 6.01±0.42 b 202±4 b
YLY6 HN 883±78 b 6.08±5.11 b* 0.52±0.09 b 8.26±0.38 a* 215±6 a
LN 993±25 a* 27.69±2.49 a* 0.64±0.04 a* 6.18±0.28 b 221±4 a*
ANOVA 氮Nitrogen (N) ns ++ ns ++ +
品种Variety (V) ns +++ ns ++ ns
氮×品种N×V ++ ++ + ++ ++

图1

低氮处理对根铵转运基因表达量的影响 HHZ为黄华占, YLY6为扬两优6号。HN为高氮处理, LN为低氮处理。数据为平均值±标准差(STDEV); 不同小写字母表示同一品种不同氮处理在0.05概率水平差异显著(LSD test); *表示同一氮处理下HHZ和YLY6在0.05概率水平差异显著(LSD检验)。"

图2

低氮处理对根谷氨酸合酶(GOGAT)和谷氨酰胺合成酶(GS)基因表达量的影响 HHZ为黄华占, YLY6为扬两优6号。HN为高氮处理, LN为低氮处理。数据为平均值±标准差(STDEV); 不同小写字母表示同一品种不同氮处理在0.05概率水平差异显著(LSD test); *表示同一氮处理下HHZ和YLY6在0.05概率水平差异显著(LSD检验)。"

表5

总氮积累与根特征的相关性分析"

氮处理
Nitrogen
treatment
根干重
RDW
总根长
TRL
根表面积
RS
根体积
RV
根尖数
RT
根直径
RD
通气组织
比例
RCA
根皮层面积
CCA
根皮层厚壁
组织厚度
SCT
根中柱
直径
RSD
高氮处理HN 0.61 0.68 0.70 0.71* 0.57 -0.70 0.65 -0.70 0.94*** -0.70
低氮处理LN 0.99*** 0.96*** 0.95*** 0.92** 0.94*** 0.92** 0.96*** 0.91** 0.37 0.97***

表6

总氮积累与铵转运基因表达量的相关性分析"

氮处理Nitrogen treatment AMT1;1 AMT1;2 AMT1;3 AMT2;1 AMT2;2 AMT2;3 AMT3;1 AMT3;2 AMT3;3 AMT4
高氮处理HN 0.75* 0.11 -0.48 -0.31 -0.82* 0.31 0.26 0.05 0.63 0.44
低氮处理LN 0.89** 0.27 0.71 0.68 -0.79* 0.79* 0.86** 0.85** 0.39 0.48

表7

总氮积累与铵同化相关基因表达量的相关性分析"

氮处理
Nitrogen treatment
GS1;1 GS1;2 GS1;3 GS2 NADH-GOGAT1 NADH-GOGAT2 Fd-GOGAT
高氮处理HN -0.17 0.08 -0.42 -0.93*** -0.05 -0.84** 0.54
低氮处理LN 0.77* 0.50 0.73* -0.76* 0.61 -0.55 0.92**
[1] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Buresh R, Witt C. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095-1103 (in Chinese with English abstract).
[2] Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409.
doi: 10.1073/pnas.0708013104 pmid: 17923667
[3] Zhu Z L, Chen D L. Nitrogen fertilizer use in China- contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys, 2002, 63: 117-127.
doi: 10.1023/A:1021107026067
[4] 颜晓元, 夏龙龙, 遆超普. 面向作物产量和环境双赢的氮肥施用策略. 中国科学院院刊, 2018, 33(2): 177-183.
Yan X Y, Xia L L, Ti C P. Win-win nitrogen management practices for improving crop yield and environmental sustainability. Bull Chin Acad Sci, 2018, 33(2): 177-183 (in Chinese with English abstract).
[5] Cui Z L, Zhang H Y, Chen X P, Zhang C C, Ma W Q, Huang C D, Zhang W F, Mi G H, Miao Y H, Li X L, Gao Q, Yang J C, Wang Z H, Ye Y L, Guo S W, Lu J W, Huang J L, Lyu S H, Sun Y X, Liu Y Y, Peng X L, Ren J, Li S Q, Deng X P, Shi X J, Zhang Q, Yang Z P, Tang L, Wei C Z, Jia L L, Zhang J W, He M R, Tong Y N, Tang Q Y, Zhong X H, Liu Z H, Cao N, Kou C L, Ying H, Yin Y L, Jiao X Q, Zhang Q S, Fan M S, Jiang R F, Zhang F S. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366.
doi: 10.1038/nature25785
[6] Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47.
doi: 10.1016/j.fcr.2005.05.004
[7] Peng S B, Buresh R J, Huang J L, Zhong X H, Zou Y B, Yang J C, Wang G H, Liu Y Y, Hu R F, Tang Q Y, Cui K H, Zhang F S, Dobermann A. Improving nitrogen fertilization in rice by site-specific N management: a review. Agron Sustain Dev, 2010, 30: 649-656.
doi: 10.1051/agro/2010002
[8] Shi X R, Hu K L, Batchelor W D, Liang H, Wu Y L, Wang Q H, Fu J, Cui X Q, Zhou F. Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River. Agric Water Manag, 2020, 228: 105877.
doi: 10.1016/j.agwat.2019.105877
[9] Chen M, Chen G, Di D W, Kronzucker H J, Shi W M. Higher nitrogen use efficiency (NUE) in hybrid “super rice” links to improved morphological and physiological traits in seedling roots. J Plant Physiol, 2020, 251: 153191.
doi: 10.1016/j.jplph.2020.153191
[10] Lynch J P. Root phenotypes for improved nutrient capture: an under-exploited opportunity for global agriculture. New Phytol, 2019, 223: 548-564.
doi: 10.1111/nph.2019.223.issue-2
[11] Wang J, Song K, Sun L J, Qin Q, Sun Y F, Pan J J, Xue Y. Morphological and transcriptome analysis of wheat seedlings response to low nitrogen stress. Plants, 2019, 8: 98.
doi: 10.3390/plants8040098
[12] Wu Z M, Luo J S, Han Y L, Hua Y P, Guan C Y, Zhang Z H. Low nitrogen enhances nitrogen use efficiency by triggering NO3- uptake and its long-distance translocation. J Agric Food Chem, 2019, 67: 6736-6747.
doi: 10.1021/acs.jafc.9b02491
[13] 陈晨, 龚海青, 张敬智, 郜红建. 水稻根系形态与氮素吸收累积的相关性分析. 植物营养与肥料学报, 2017, 23: 333-341.
Chen C, Gong H Q, Zhang J Z, Gao H J. Correlation between root morphology and nitrogen uptake of rice. J Plant Nutr Fert, 2017, 23: 333-341 (in Chinese with English abstract).
[14] Liu L J, Zhang H, Ju C X, Xiong Y W, Bian J L, Zhao B H, Yang J C. Changes in grain yield and root morphology and physiology of mid-season rice in the Yangtze river basin of China during the last 60 years. J Agric Sci, 2014, 6: 1-15.
[15] York L M, Galindo-Castañeda T, Schussler J R, Lynch J P. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot, 2015, 66: 2347-2358.
[16] Yang J T, Schneider H M, Brown K M, Lynch J P. Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific. J Exp Bot, 2019, 70: 5311-5325.
doi: 10.1093/jxb/erz293 pmid: 31231768
[17] 魏海燕, 张洪程, 张胜飞, 杭杰, 戴其根, 霍中洋, 许轲, 马群, 张庆, 刘艳阳. 不同氮利用效率水稻基因型的根系形态与生理指标的研究. 作物学报, 2008, 34: 429-436.
doi: 10.3724/SP.J.1006.2008.00429
Wei H Y, Zhang H C, Zhang S F, Hang J, Dai Q G, Huo Z Y, Xu K, Ma Q, Zhang Q, Liu Y Y. Root morphological and physiological characteristics in rice genotypes with different N use efficiencies. Acta Agron Sin, 2008, 34: 429-436 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.00429
[18] 陈琛, 羊彬, 朱正康, 曹文雅, 罗刚, 周娟, 王祥菊, 于小凤, 袁秋梅, 仲军, 王熠, 黄建晔, 王余龙, 董桂春. 影响水稻遗传群体株系氮素高效吸收的主要根系性状. 中国水稻科学, 2015, 29: 390-398.
doi: 10.3969/j.issn.1001G7216.2015.04.08
Chen C, Yang B, Zhu Z K, Cao W Y, Luo G, Zhou J, Wang X J, Yu X F, Yuan Q M, Zhong J, Wang Y, Huang J Y, Wang Y L, Dong G C. Root traits affecting nitrogen efficient absorption in rice genetic populations. Chin J Rice Sci, 2015, 29: 390-398 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001G7216.2015.04.08
[19] Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot, 2013, 112: 347-357.
doi: 10.1093/aob/mcs293
[20] Gao K, Chen F J, Yuan L X, Zhang F S, Mi G H. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant Cell Environ, 2015, 38: 740-750.
doi: 10.1111/pce.2015.38.issue-4
[21] Schneider H M, Yang J T, Brown K M, Lynch J P. Nodal root diameter and node number in maize (Zea mays L.) interact to influence plant growth under nitrogen stress. Plant Direct, 2021, 5: e00310.
doi: 10.1002/pld3.v5.3
[22] Zhang L, Du Y L, Li X G. Modern wheat cultivars have greater root nitrogen uptake efficiency than old cultivars. J Plant Nutr Soil Sci, 2020, 183: 192-199.
doi: 10.1002/jpln.v183.2
[23] 戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012, 45: 4770-4781.
doi: 10.3864/j.issn.0578-1752.2012.23.003
Ji L, Li T X, Zhang X Z, Yu H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. Sci Agric Sin, 2012, 45: 4770-4781 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2012.23.003
[24] Jiao X M, Wang H C, Yan J J, Kong X Y, Liu Y W, Chu J F, Chen X Y, Fang R X, Yan Y S. Promotion of BR biosynthesis by miR444 is required for ammonium-triggered inhibition of root growth. Plant Physiol, 2020, 182: 1454-1466.
doi: 10.1104/pp.19.00190 pmid: 31871071
[25] Gaur V S, Singh U S, Gupta A K, Kumar A. Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes. Mol Biol Rep, 2012, 39: 2233-2241.
doi: 10.1007/s11033-011-0972-2 pmid: 21678052
[26] Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol, 2003, 44: 1396-1402.
pmid: 14701935
[27] Sun H W, Li J, Song W J, Tao J Y, Huang S J, Chen S, Hou M M, Xu G H, Zhang Y L. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. J Exp Bot, 2015, 66: 2449-2459.
doi: 10.1093/jxb/erv030 pmid: 25784715
[28] Ranathunge K, El-Kereamy A, Gidda S, Bi Y M, Rothstein S J. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J Exp Bot, 2014, 65: 965-979.
doi: 10.1093/jxb/ert458 pmid: 24420570
[29] Ferreira LM, de Souza V M, Tavares O C H, Zonta E, Santa-Catarina C, de Souza S R, Fernandes M S, Santos L A. OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnol Rep, 2015, 9: 221-229.
doi: 10.1007/s11816-015-0359-2
[30] Liu X, Hu B, Chu C. Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics, 2022, 49: 394-404.
doi: 10.1016/j.jgg.2021.12.006
[31] Hu M Y, Zhao X Q, Liu Q, Hong X, Zhang W, Zhang Y J, Sun L J, Li H, Tong Y P. Transgenic expression of plastics glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnol J, 2018, 16: 1858-1867.
doi: 10.1111/pbi.2018.16.issue-11
[32] Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J, 2005, 42: 641-651.
doi: 10.1111/j.1365-313X.2005.02406.x pmid: 15918879
[33] Tamura W, Kojima S, Toyokawa A, Watanabe H, Tabuchi-Kobayashi M, Hayakawa T, Yamaya T. Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front Plant Sci, 2011, 2: 57.
[34] Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T. Cytosolic glutamine synthetase1; 2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol, 2013, 54: 934-943.
doi: 10.1093/pcp/pct046
[35] Lee S, Marmagne A, Park J, Fabien C, Yim Y, Kim S, Kim T, Lim P O, Masclaux-Daubresse C, Nam H G. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. Plant J, 2020, 103: 7-20.
doi: 10.1111/tpj.v103.1
[36] Shi W M, Xu W F, Li S M, Zhao X Q, Dong G Q. Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant Soil, 2010, 326: 291-302.
doi: 10.1007/s11104-009-0007-0
[37] Peng S, Khush G S, Virk P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32-38.
doi: 10.1016/j.fcr.2008.04.001
[38] Zhu G L, Peng S B, Huang J L, Cui K H, Wang F. Genetic improvements in rice yield and concomitant increases in radiation- and nitrogen-use efficiency in middle reaches of Yangtze river. Sci Rep, 2016, 6: 21049.
doi: 10.1038/srep21049 pmid: 26876641
[39] Yoshida S, Forno D A, Cook J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice, 2nd edn. Manila: The International Rice Research Institute Philippines Press, 1972. pp 57-63
[40] Zhu J W, Liang J, Xu Z H, Fan X R, Zhou Q S, Shen Q R, Xu G H. Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen. AoB Plants, 2015, 7: 131.
[41] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[42] Yuan S, Nie L, Wang F, Huang L Y, Peng S B. Agronomic performance of inbred and hybrid rice cultivars under simplified and reduced-input practices. Field Crops Res, 2017, 210: 129-135.
doi: 10.1016/j.fcr.2017.05.024
[43] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47-55.
doi: 10.1016/j.fcr.2015.02.007
[44] Wei H Y, Hu L, Zhu Y, Xu D, Zheng L M, Chen Z F, Hu, Y J, Cui P Y, Guo B W, Dai Q G, Zhang H C. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res, 2018, 218: 88-96.
doi: 10.1016/j.fcr.2018.01.012
[45] Abiko T, Obara M. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Plant Sci, 2014, 215: 76-83.
[46] Jia X, Wu G, Strock C, Li L, Dong S T, Zhang J W, Zhao B, Lynch J P, Liu P. Root anatomical phenotypes related to growth under low nitrogen availability in maize (Zea mays L.) hybrids. Plant Soil, 2022, 474: 265-276.
doi: 10.1007/s11104-022-05331-6
[47] Saengwilai P, Nord E A, Chimungu J G, Brown K M, Lynch J P. Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiol, 2014, 166: 726-735.
doi: 10.1104/pp.114.241711 pmid: 24891611
[48] Ren B B, Wang M, Chen Y P, Sun G M, Li Y, Shen Q R, Guo S W. Water absorption is affected by the nitrogen supply to rice plants. Plant Soil, 2015, 396: 397-410.
doi: 10.1007/s11104-015-2603-5
[49] Huang L, Li W C, Tam N F Y, Ye Z H. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). J Environ Sci, 2019, 75: 296-306.
doi: 10.1016/j.jes.2018.04.005
[50] Kováčik J, Klejdus B, Štork F, Hedbavny J. Nitrate deficiency reduces cadmium and nickel accumulation in chamomile plants. J Agric Food Chem, 2011, 59: 5139-5149.
doi: 10.1021/jf104793b
[51] Yang D Q, Zhao J H, Bi C, Li L Y, Wang Z L. Transcriptome and proteomics analysis of wheat root reveals increasing NH4+/ NO3-ratio induced root lignification decreasing nitrogen utilization at seedling stage. Front Plant Sci, 2022, 12: 3251.
[52] Theerawitaya C, Supaibulwatana K, Tisarum R, Samphumphuang T, Chungloo D, Singh H P, Cha-um S. Expression levels of nitrogen assimilation-related genes, physiological responses, and morphological adaptations of three indica rice (Oryza sativa L. ssp. indica) genotypes subjected to nitrogen starvation conditions. Protoplasma, 2022, 215: 1-15.
doi: 10.1007/BF01280298
[53] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征. 作物学报, 2023, 49: 1039-1051.
doi: 10.3724/SP.J.1006.2023.22023
Zhang C H, Zhang Y, Li G H, Yang Z J, Zha Y Y, Zhou C Y, Xu K, Huo Z Y, Dai Q G, Guo B W. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice. Acta Agron Sin, 2023, 49: 1039-1051 (in Chinese with English abstract).
[54] Huang L Y, Sun F, Yuan S, Peng S B, Wang F. Different mechanism underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Res, 2018, 216: 150-157.
doi: 10.1016/j.fcr.2017.11.019
[55] Yao F X, Huang J L, Cui K H, Nie L X, Xiang J, Liu X J, Wu W, Chen M X, Peng S B. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res, 2012, 126: 16-22.
doi: 10.1016/j.fcr.2011.09.018
[1] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[2] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[3] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[4] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[5] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[6] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[7] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[8] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[9] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[10] 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555.
[11] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[12] 王瑞, 张福耀, 詹鹏杰, 楚建强, 晋敏姗, 赵威军, 程庆军. 基于RNA-Seq筛选高粱低氮胁迫相关候选基因[J]. 作物学报, 2024, 50(3): 669-685.
[13] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[14] 李明月, 张文婷, 李阳, 张保龙, 杨立明, 王金彦. 小肽Ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67-75.
[15] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!