欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 478-492.doi: 10.3724/SP.J.1006.2024.32011

• 耕作栽培·生理生化 • 上一篇    下一篇

栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响

吴昊(), 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗*()   

  1. 扬州大学江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2023-03-27 接受日期:2023-08-01 出版日期:2024-02-12 网络出版日期:2023-08-07
  • 通讯作者: *张耗, E-mail: haozhang@yzu.edu.cn
  • 作者简介:E-mail: w18205253197@163.com
  • 基金资助:
    国家自然科学基金项目(32071944);国家自然科学基金项目(32272197);国家重点研发计划项目(2022YFD2300304);江苏省六大人才高峰高层次人才项目(SWYY-151);江苏高校优势学科建设工程资助项目(PAPD)

Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River

WU Hao(), ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao*()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-03-27 Accepted:2023-08-01 Published:2024-02-12 Published online:2023-08-07
  • Contact: *E-mail: haozhang@yzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32071944);National Natural Science Foundation of China(32272197);National Key Research and Development Program of China(2022YFD2300304);Six Talent Peaks Project in Jiangsu Province(SWYY-151);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

摘要:

为研究不同栽培管理技术下长江下游水稻灌浆期根系特征与稻米淀粉特性的关系, 以甬优2640、武运粳24号、扬稻6号和金香玉1号品种为材料进行大田试验, 设置氮空白区(0N)、当地常规(对照)、增密减氮、干湿交替灌溉和增施饼肥5种栽培模式处理。结果表明, 与当地常规处理(对照)相比, 甬优2640在增密减氮、干湿交替灌溉和增施饼肥处理下的产量增幅分别为6.49%、11.06%和12.72%, 武运粳24号分别增加1.92%、11.10%和17.05%, 扬稻6号增幅分别为9.30%、18.50%和22.89%, 金香玉1号产量增幅分别为6.92%、14.72%和17.89%。同时我们也观察到随着栽培技术的集成和优化, 根系形态生理特征(根干重、根长、根直径、根系氧化力、根系伤流强度、根系和根系伤流液中玉米素+玉米素核苷含量和根系分泌物中有机酸总量)以及籽粒淀粉合成关键酶(可溶性淀粉合成酶和颗粒结合型淀粉合成酶)活性、淀粉峰值黏度、热浆黏度、崩解值、最终黏度、溶解度和膨胀度逐渐提高。相关分析表明, 灌浆期根系形态生理特征与产量和稻米淀粉特性关系密切。表明栽培技术的集成和优化可能通过调节地下部根系生长来改善稻米品质, 最终实现高产优质高效的目标。

关键词: 水稻, 栽培策略, 产量, 米质, 根系特性

Abstract:

In order to investigate the relationship between root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River under different integrative cultivation practices techniques, field experiments were carried out with Yongyou 2640, Wuyunjing 24, Yangdao 6, and Jinxiangyu 1 as the experimental materials. Five cultivation techniques were set up, including nitrogen blank area (0N), local farmers’ practice (control), densification and nitrogen reduction, alternate wetting and drying irrigation and increasing application of rapeseed cake fertilizer. The results showed that compared with the local farmers’ practice (control), the yield of Yongyou 2640 under the treatment of densification and nitrogen reduction, alternate wetting and drying irrigation and increasing application of rapeseed cake fertilizer increased by 6.49%, 11.06%, and 12.72%, respectively. The yield of Wuyunjing 24 increased by 1.92%, 11.10%, and 17.05%, respectively. The yield of Yangdao 6 increased by 9.30%, 18.50%, and 22.89%, respectively, and the yield of Jinxiangyu1 increased by 6.92%, 14.72%, and 17.89%, respectively. At the same time, we also observed that with the integration and optimization of cultivation practices, root morphological and physiological characteristics (root dry weight, root length, root diameter, root oxidation activity, root bleeding intensity, zeatin and zeatin riboside contents in root and root bleeding sap and total organic acid content in exudates), the activity of key enzymes for starch synthesis in grains (soluble starch synthase, granule-bound starch synthase), peak viscosity, hot viscosity, breakdown, final viscosity, solubility and swelling degree gradually increased. Correlation analysis showed that the morphological and physiological characteristics of roots at grain filling stage were closely related to grain yield and starch properties. It indicated that the integration and optimization of cultivation practices might improve rice quality through regulating the growth of underground roots, and finally achieve the goals of high yield, good quality and high efficiency.

Key words: rice, cultivation strategy, yield, grain quality, root characteristics

表1

栽培优化对水稻产量及其构成因素的影响"

品种
Variety
处理
Treatment
穗数
Number of panicles
(× 104 hm-2)
每穗粒数
Spikelets per
panicle
总颖花数
Total spikelets
(× 108 hm-2)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Yield
(t hm-2)
甬优2640
Yongyou 2640
0N 125.35 d 254.02 b 3.24 d 90.83 a 24.31 a 7.01 d
LFP 191.70 c 315.84 a 6.10 c 84.80 b 23.35 a 12.02 c
ICP1 206.73 b 311.42 a 6.43 b 86.01 b 23.10 a 12.80 b
ICP2 210.72 ab 308.01 a 6.50 ab 87.61 b 23.52 a 13.35 ab
ICP3 216.61 a 307.32 a 6.70 a 86.80 b 23.61 a 13.55 a
武运粳24
Wuyunjing 24
0N 164.80 e 135.50 c 2.22 c 91.91 a 28.82 a 5.93 b
LFP 257.71 d 167.20 ab 4.31 b 86.52 a 26.50 b 9.91 ab
ICP1 269.24 c 166.62 ab 4.51 ab 85.20 a 26.51 b 10.10 ab
ICP2 285.13 b 167.81 a 4.82 ab 86.83 a 26.52 b 11.01 ab
ICP3 306.61 a 164.53 b 5.04 a 87.11 a 26.52 b 11.60 a
扬稻6号
Yangdao 6
0N 138.33 e 176.30 d 2.44 d 91.63 a 30.33 a 6.78 d
LFP 184.17 d 197.83 a 3.65 c 87.27 ab 29.44 bc 9.35 c
ICP1 203.49 c 193.52 b 3.94 b 88.72 ab 29.68 bc 10.37 b
ICP2 213.99 b 191.80 bc 4.10 ab 90.71 a 29.76 b 11.08 a
ICP3 225.21 a 189.70 c 4.27 a 90.20 a 29.84 b 11.49 a
金香玉1号
Jinxiangyu 1
0N 181.67 d 181.97 e 3.31 d 85.43 a 26.45 a 7.47 d
LFP 242.50 c 205.47 a 4.98 c 79.52 b 25.56 c 10.12 c
ICP1 262.20 b 203.00 b 5.32 b 79.75 b 25.49 c 10.82 b
ICP2 278.08 a 201.98 c 5.62 a 80.70 ab 25.62 bc 11.61 a
ICP3 283.07 a 199.00 d 5.63 a 81.50 ab 25.98 b 11.93 a
方差分析 Analysis of variance
处理 Treatment (T) ** ** ** NS NS **
品种 Variety (V) ** ** ** * ** **
处理 × 品种 T × V NS NS * NS NS NS

图1

栽培优化对水稻灌浆期籽粒可溶性淀粉合成酶(SSS)和颗粒结合型淀粉合成酶(GBSS)活性的影响 DAH1: 抽穗开花第1天; DAH14: 抽穗开花第14天; DHA26: 抽穗开花第26天; DAH39: 抽穗开花第39天。Y2640: 甬优2640; W24: 武运粳24; YD6: 扬稻6号; JXY1: 金香玉1号。处理同表1。"

表2

栽培优化对稻米淀粉RVA谱特性的影响"

品种
Variety
处理
Treatment
峰值黏度
Peak viscosity
(cP)
热浆黏度
Hot viscosity
(cP)
崩解值Breakdown
(cP)
最终黏度
Final viscosity
(cP)
消减值
Setback
(cP)
峰值时间
Peak time
(min)
糊化温度
Pasting temperature
(℃)
甬优2640
Yongyou 2640
0N 2696 a 2095 a 600.67 a 2897 a 200.67 c 6.61 e 72.87 d
LFP 2126 e 1710 d 416.00 d 2399 e 273.00 a 6.79 a 75.89 a
ICP1 2202 d 1733 cd 469.00 c 2457 cd 255.33 b 6.73 b 74.87 b
ICP2 2238 c 1752 c 486.33 bc 2484 c 246.00 bc 6.71 c 74.60 b
ICP3 2293 b 1796 c 497.00 b 2536 b 243.67 bc 6.68 d 74.22 c
武运粳24号
Wuyunjing 24
0N 2970 a 2174 a 796.67 a 3106 a 135.67 d 6.57 e 71.42 e
LFP 2149 e 1695 d 453.33 c 2447 e 298.33 a 6.74 a 74.26 a
ICP1 2331 d 1706 d 625.00 bc 2580 d 249.33 b 6.69 b 73.26 b
ICP2 2418 c 1785 c 633.67 bc 2656 c 237.67 bc 6.66 c 72.88 c
ICP3 2542 b 1896 b 646.00 b 2766 b 224.33 c 6.64 d 72.67 d
扬稻6号
Yangdao 6
0N 2527 a 1884 a 457.65 a 2655 a 187.45 d 6.37 d 71.63 d
LFP 2152 d 1421 d 385.30 c 2229 d 275.00 a 6.64 a 73.52 a
ICP1 2224 c 1464 c 427.55 b 2356 c 242.00 b 6.60 b 72.88 b
ICP2 2239 c 1494 c 428.35 b 2361 c 230.00 b 6.55 b 72.25 c
ICP3 2287 b 1523 b 419.20 a 2540 b 216.20 c 6.46 c 72.18 c
金香玉1号
Jinxiangyu 1
0N 2849 a 2332 a 656.30 a 2886 a 296.70 d 6.12 d 70.25 d
LFP 2207 d 1651 d 564.30 d 2465 d 367.00 a 6.44 a 72.65 a
ICP1 2255 c 1688 c 572.25 cd 2558 c 343.70 b 6.37 b 72.32 b
ICP2 2310 c 1725 c 587.60 c 2570 c 336.40 c 6.31 b 72.26 c
ICP3 2421 b 1825 b 618.00 b 2638 b 332.35 c 6.26 c 72.18 c

图2

栽培优化对稻米淀粉XRD衍射图谱的影响 处理同表1。品种缩写同图1。"

表3

栽培优化对稻米淀粉的相对结晶度与IR值的影响"

品种
Variety
处理
Treatment
相对结晶度
Relative crystallinity (%)
IR ratio
1045/1022 cm-1 1022/995 cm-1
扬稻6号
Yangdao 6
0N 23.8 c 0.58 e 1.30 a
LFP 27.9 a 0.65 a 1.08 e
ICP1 26.3 b 0.63 b 1.15 d
ICP2 25.7 b 0.61 c 1.20 c
ICP3 25.14 b 0.59 d 1.24 b
金香玉1号
Jinxiangyu 1
0N 21.8 c 0.52 e 1.28 a
LFP 29.4 a 0.62 a 1.04 e
ICP1 25.8 b 0.59 b 1.12 d
ICP2 25.6 b 0.56 c 1.16 c
ICP3 25.6 a 0.54 d 1.22 b

图3

栽培优化对稻米淀粉FTIR图谱的影响 处理同表1。品种缩写同图1。"

图4

栽培优化对淀粉溶解度和膨胀度的影响 图柱上不同字母表示经LSD检验同一时期不同处理间在0.05概率水平差异显著。处理同表1。品种缩写同图1。"

图5

栽培优化对水稻灌浆期根冠比和根干重的影响 DAH1: 抽穗开花第1天; DAH14: 抽穗开花第14天; DHA26: 抽穗开花第26天; DAH39: 抽穗开花第39天。图柱上不同字母表示经LSD检验同一时期不同处理间在0.05概率水平差异显著。处理同表1。品种缩写同图1。"

图6

栽培优化对水稻灌浆期根长和根直径的影响 DAH1: 抽穗开花第1天; DAH14: 抽穗开花第14天; DHA26: 抽穗开花第26天; DAH39: 抽穗开花第39天。图柱上不同字母表示经LSD检验同一时期不同处理间在0.05概率水平差异显著。处理同表1。品种缩写同图1。"

图7

栽培优化对水稻灌浆期根系氧化力和根系伤流强度的影响 DAH1: 抽穗开花第1天; DAH14: 抽穗开花第14天; DHA26: 抽穗开花第26天; DAH39: 抽穗开花第39天。图柱上不同字母表示经LSD检验同一时期不同处理间在0.05概率水平差异显著。处理同表1。品种缩写同图1。"

图8

栽培优化对水稻灌浆期根系和根系伤流液中Z + ZR含量的影响 DAH1: 抽穗开花第1天; DAH14: 抽穗开花第14天; DHA26: 抽穗开花第26天; DAH39: 抽穗开花第39天。图柱上不同字母表示经LSD检验同一时期不同处理间在0.05概率水平差异显著。处理同表1。品种缩写同图1。"

图9

栽培优化对水稻灌浆期根系分泌物中有机酸总量的影响 DAH1: 抽穗开花第1天; DAH14: 抽穗开花第14天; DHA26: 抽穗开花第26天; DAH39: 抽穗开花第39天。图柱上不同字母表示经LSD检验同一时期不同处理间在0.05概率水平差异显著。处理同表1。品种缩写同图1。"

图10

根系特征和产量及稻米品质的相关性分析 SSS: 可溶性淀粉合成酶; GBSS: 颗粒结合型淀粉合成酶。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著。"

[1] Fu Y Y, Gu Q Q, Dong Q, Zhang Z H, Lin C, Hu W M, Pan R H, Guan Y J, Hu J. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism. Molecules, 2019, 24: 1395.
doi: 10.3390/molecules24071395
[2] 陈海飞, 冯洋, 蔡红梅, 徐芳森, 周卫, 刘芳, 庞再明, 李登荣. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响. 植物营养与肥料学报, 2014, 20: 1319-1328.
Chen H F, Feng Y, Cai H M, Xu F S, Zhou W, Liu F, Pang Z M, Li D R. Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields. J Plant Nutr Fert, 2014, 20: 1319-1328 (in Chinese with English abstract).
[3] Carrijo D R, Lundy M E, Linquist B A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res, 2017, 203: 173-180.
doi: 10.1016/j.fcr.2016.12.002
[4] 董明辉, 陈培峰, 顾俊荣, 乔中英, 黄萌, 朱赟德, 赵步洪. 麦秸还田和氮肥运筹对超级杂交稻茎鞘物质运转与籽粒灌浆特性的影响. 作物学报, 2013, 39: 673-681.
doi: 10.3724/SP.J.1006.2013.00673
Dong M H, Chen P F, Gu J R, Qiao Z Y, Huang M, Zhu Y D, Zhao B H. Effects of wheat straw-residue applied to field and nitrogen management on photosynthate transportation of stem and sheath and grain-filling characteristics in super hybrid rice. Acta Agron Sin, 2013, 39: 673-681 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.00673
[5] Zhu C H, Ou-yang Y Y, Diao Y, Yu J Q, Luo X, Zheng J G, Li X Y. Effects of mechanized deep placement of nitrogen fertilizer rate and type on rice yield and nitrogen use efficiency in Chuanxi Plain, China. J Integr Agric, 2021, 20: 581-592.
doi: 10.1016/S2095-3119(20)63456-6
[6] Raquel S A, Buyung A F, Sholih N H, Hayat U, Avishek D. Nitrogen fertilizer and establishment method affect growth, yield and nitrogen use efficiency of rice under alternate wetting and drying irrigation. Annu Appl Biol, 2020, 176: 314-327.
doi: 10.1111/aab.v176.3
[7] Chong H T, Jiang Z Y, Shang L Y, Shang C, Deng J, Zhang Y B, Huang L Y. Dense planting with reduced nitrogen input improves grain yield, protein quality, and resource use efficiency in hybrid rice. J Plant Growth Regul, 2022, 42: 960-972.
doi: 10.1007/s00344-022-10606-4
[8] Fu Y Q, Zhong X H, Zeng J H, Liang K M, Pan J F, Xin Y F, Liu Y Z, Hu X Y, Peng B L, Chen R B, Hu R, Huang N R. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. J Integr Agric, 2021, 20: 565-580.
doi: 10.1016/S2095-3119(20)63380-9
[9] Zhao G, Miao Y, Wang H, Su M, Fan M, Zhang F, Jiang R, Zhang Z, Liu C, Liu P, Ma D. A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency. Field Crops Res, 2013, 154: 23-30.
doi: 10.1016/j.fcr.2013.07.019
[10] Mao T, Li X, Jiang S K, Tang L, Wang J Y, Xu H, Xu Z J. Discussion on strategy of grain quality improvement for super high yielding japonica rice in Northeast China. J Integr Agric, 2017, 16: 1075-1083.
doi: 10.1016/S2095-3119(16)61563-0
[11] Dou Z, Tang S, Li G H, Liu Z H, Ding C Q, Chen L, Wang S H, Ding Y F. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Sci, 2017, 57: 2183-2192.
doi: 10.2135/cropsci2016.05.0350
[12] 严凯, 蒋玉兰, 唐纪元, 戴其根. 盐碱地条件下施氮量和栽插密度对水稻产量和品质的影响. 中国土壤与肥料, 2018, (2): 67-74.
Yan K, Jiang Y L, Tang J Y, Dai Q G. Effects of nitrogen fertilizer rate and transplanting density on yield and grain quality of rice on saline-alkaline land. Soil Fert Sci China, 2018, (2): 67-74 (in Chinese with English abstract).
[13] Zhao Y F, Ran X, Yin T Y, Guo H, Zhang X Y, Shen Y Y, Liu W Z, Ding Y F, Tang S. Nitrogen alleviated the deterioration of rice quality by affecting the accumulation of grain storage protein under elevated temperature. J Plant Growth Regul, 2022, 42: 3388-3404.
doi: 10.1007/s00344-022-10798-9
[14] Burrell M M. Starch: the need for improved quality or quantity-an overview. J Exp Bot, 2003, 54: 451-456.
pmid: 12508055
[15] Perez Herrera M, Vasanthan T, Hoover R. Characterization of maize starch nanoparticles prepared by acid hydrolysis. Cereal Chem, 2016, 93: 323-330.
doi: 10.1094/CCHEM-08-15-0175-R
[16] Xie X B, Quintana M R, Sandhu N, Subedi S R, Zou Y B, Rutkoski J E, Henry A. Establishment method affects rice root plasticity in response to drought and its relationship with grain yield stability. J Exp Bot, 2021, 72: 5208-5220.
doi: 10.1093/jxb/erab214
[17] Zhang Y J, Xu J N, Cheng Y D, Wang C, Liu G S, Yang J C. The effects of water and nitrogen on the roots and yield of upland and paddy rice. J Integr Agric, 2020, 19: 1363-1374.
doi: 10.1016/S2095-3119(19)62811-X
[18] Yang J C, Zhang H, Zhang J H. Root morphology and physiology in relation to the yield formation of rice. J Integr Agric, 2012, 11: 920-926.
doi: 10.1016/S2095-3119(12)60082-3
[19] Yan F J, Sun Y J, Xu H, Yin Y Z, Wang H Y, Wang C Y, Guo C C, Yang Z Y, Sun Y Y, Ma J. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility. Paddy Water Environ, 2018, 16: 507-518.
doi: 10.1007/s10333-018-0643-1
[20] 钟旭华, 黄农荣. 水稻结实期根系活性与稻米垩白形成的相关性初步研究. 中国水稻科学, 2005, 19: 471-474.
Zhong X H, Huang N R. Preliminary study on the relationship between rice grain chalkiness and root activity at grain-filling stage. Chin J Rice Sci, 2005, 19: 471-474 (in Chinese with English abstract).
[21] Yang J C, Chang E H, Zhang W J, Wang Z Q, Liu L J. Relationship between root chemical signals and grain quality of rice. Agric Sci China, 2007, 6: 47-57.
doi: 10.1016/S1671-2927(07)60016-9
[22] 张耗, 黄钻华, 王静超, 王志琴, 杨建昌. 江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系. 作物学报, 2011, 37: 1020-1030.
doi: 10.3724/SP.J.1006.2011.01020
Zhang H, Huang Z H, Wang J C, Wang Z Q, Yang J C. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season indica rice cultivars in Jiangsu province. Acta Agron Sin, 2011, 37: 1020-1030 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.01020
[23] Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 165: 36-48.
doi: 10.1016/j.fcr.2014.06.026
[24] Zhang H, Chen T T, Wang Z Q, Yang J C, Zhang J H. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. J Exp Bot, 2010, 61: 3719-3733.
doi: 10.1093/jxb/erq198 pmid: 20584789
[25] 徐国伟, 李帅, 赵永芳, 陈明灿, 李友军. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究. 草业学报, 2014, 23(2): 140-146.
doi: 10.11686/cyxb20140217
Xu G W, Li S, Zhao Y F, Chen M C, Li Y J. Effects of straw returning and nitrogen fertilizer application on root secretion and nitrogen utilization of rice. Acta Pratac Sin, 2014, 23(2): 140-146 (in Chinese with English abstract).
[26] 陈翠兰, 张本山, 陈福泉. 淀粉结晶度计算的新方法. 食品科学, 2011, 32(9): 68-71.
doi: 10.7506/spkx1002-6630-201109015
Chen C L, Zhang B S, Chen F Q. A novel method for calculating starch crystallinity. Food Sci, 2011, 32(9): 68-71 (in Chinese with English abstract).
[27] 周天阳. 栽培措施对超级稻产量和品质的影响. 扬州大学硕士学位论文, 江苏扬州, 2020.
Zhou T Y. Effects of Cultivation Treatments on Yield and Quality of Super Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2020 (in Chinese with English abstract).
[28] 吴培, 陈天晔, 袁嘉琦, 黄恒, 邢志鹏, 胡雅杰, 朱明, 李德剑, 刘国林, 张洪程. 施氮量和直播密度互作对水稻产量形成特征的影响. 中国水稻科学, 2019, 33: 269-281.
doi: 10.16819/j.1001-7216.2019.8112
Wu P, Chen T Y, Yuan J Q, Huang H, Xing Z P, Hu Y J, Zhu M, Li D J, Liu G L, Zhang H C. Effects of interaction between nitrogen application rate and direct-sowing density on yield formation characteristics of rice. Chin J Rice Sci, 2019, 33: 269-281 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.8112
[29] 徐国伟, 赵喜辉, 江孟孟, 陆大克, 陈明灿. 轻度干湿交替灌溉协调水稻根冠生长、提高产量及氮肥利用效率. 植物营养与肥料学报, 2021, 27: 1388-1396.
Xu G W, Zhao X H, Jiang M M, Lu D K, Chen M C. Alternate wetting and moderate drying irrigation harmonize rice root and shoot growth, improves grain yield and nitrogen use efficiency. J Plant Nutr Fert, 2021, 27: 1388-1396 (in Chinese with English abstract).
[30] 谢桂先, 荣湘民, 刘强, 彭建伟, 朱红梅, 于方明. 肥料不同配比对水稻产量与蛋白质含量的影响. 湖南农业大学学报(自然科学版), 2004, 30: 405-410.
Xie G X, Rong X M, Liu Q, Peng J W, Zhu H M, Yu F M. Effects of different combined fertilization on yield and protein contents of rice grain. J Hunan Agric Univ (Nat Sci Edn), 2004, 30: 405-410 (in Chinese with English abstract).
[31] Zhang H, Hou D P, Peng X L, Ma B J, Shao S M, Jing W J, Gu J F, Liu L J, Wang Z Q, Liu Y Y, Yang J C. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice. J Integr Agric, 2019, 18: 2716-2731.
doi: 10.1016/S2095-3119(19)62836-4
[32] Zhou T Y, Li Z K, Li E P, Wang W L, Yuan L M, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels. J Integr Agric, 2022, 21: 1576-1592
doi: 10.1016/S2095-3119(21)63678-X
[33] 韩丽君. 增施秸秆快腐剂和硝化抑制剂对水稻氮肥利用效率的影响. 扬州大学硕士学位论文, 江苏扬州, 2022.
Han L J. Effects of Increased Application of Straw Preservative and Nitrification Inhibitor on Nitrogen Use Efficiency of Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2022 (in Chinese with English abstract).
[34] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42: 1026-1036.
doi: 10.3724/SP.J.1006.2016.01026
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016, 42: 1026-1036 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01026
[35] 秦华东, 江立庚, 肖巧珍, 徐世宏. 水分管理对免耕抛秧水稻根系生长及产量的影响. 中国水稻科学, 2013, 27: 209-212.
Qin H D, Jiang L G, Xiao Q Z, Xu S H. Effect of moisture management on rice root growth and rice grain yield at different growth stages under no tillage. Chin J Rice Sci, 2013, 27: 209-212 (in Chinese with English abstract).
doi: 10.3969/j.issn.10017216.2013.02.015
[36] 郁燕, 彭显龙, 刘元英, 张慧, 陈丽楠. 前氮后移对寒地水稻根系吸收能力的影响. 土壤, 2011, 43: 548-553.
Yu Y, Peng X L, Liu Y Y, Zhang H, Chen L N. Effects of N application at later stage on absorbability of rice root in cold area. Soils, 2011, 43: 548-553 (in Chinese with English abstract).
[37] 李敏, 罗德强, 江学海, 蒋明金, 姬广梅, 李立江, 周维佳. 控水增密模式对杂交籼稻减氮后产量形成的调控效应. 作物学报, 2020, 46: 1430-1447.
doi: 10.3724/SP.J.1006.2020.02017
Li M, Luo D Q, Jiang X H, Jiang M J, Ji G M, Li L J, Zhou W J. Regulations of controlled irrigations and increased densities on yield formation of hybrid indica rice under nitrogen-reduction conditions. Acta Agron Sin, 2020, 46: 1430-1447 (in Chinese with English abstract).
[38] Zhang H M, Xu M G, Shi X J, Li Z Z, Huang Q H, Wang X J. Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China. Nutr Cycl Agroecosys, 2010, 88: 341-349.
doi: 10.1007/s10705-010-9359-3
[39] 杨胜玲, 黄兴成, 刘彦伶, 李渝, 张艳, 张雅蓉, 张文安. 长期有机肥无机肥配施对水稻氮素吸收、转运及产量的影响. 中国稻米, 2021, 27(6): 63-68.
doi: 10.3969/j.issn.1006-8082.2021.06.013
Yang S L, Huang X C, Liu Y L, Li Y, Zhang Y, Zhang Y R, Zhang W A. Effects of long-term combined application of organic and inorganic fertilizers on nitrogen uptake and utilization in rice. China Rice, 2021, 27(6): 63-68 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2021.06.013
[40] 李文涛, 于春晓, 张丽莉, 张伟明, 杨立杰, 杨恒哲, 武开阔, 李东坡, 武志杰. 有机无机配施对水稻产量及氮肥残效的影响. 中国土壤与肥料, 2022, 297(1): 63-72.
Li W T, Yu C X, Zhang L L, Zhang W M, Yang L J, Yang H Z, Wu K K, Li D P, Wu Z J. Effect of organic and inorganic fertilizer on rice yield and nitrogen residual effect. Soil Fert Sci China, 2022, 297(1): 63-72 (in Chinese with English abstract).
[41] Zhang W Y, Xu Y J, Wang Z Q, Liu L J, Zhang H, Gu J F, Zhang J H, Yang J C. Alternate wetting and drying irrigation combined with the proportion of polymer-coated urea and conventional urea rates increases grain yield, water and nitrogen use efficiencies in rice. Field Crops Res, 2021, 268: 108165.
doi: 10.1016/j.fcr.2021.108165
[42] Guan X J, Chen J, Chen X M, Xie J, Deng G Q, Hu L Z, Li Y, Qian Y F, Qiu C F, Peng C R. Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application. J Integr Agric, 2022, 21: 1278-1289.
doi: 10.1016/S2095-3119(20)63595-X
[43] Peng D L, Cai T, Yin Y P, Yang W B, Ni Y L, Yang D Q, Wang Z L. Exogenous application of abscisic acid or gibberellin acid has different effects on starch granule size distribution in grains of wheat. J Integr Agric, 2013, 12: 1551-1559.
doi: 10.1016/S2095-3119(13)60557-2
[44] 孔祥胜. 不同栽培方式对水稻产量和氮肥利用效率的影响. 扬州大学硕士学位论文, 江苏扬州, 2017.
Kong X S. Effect of Different Cultivation Patterns on Rice Yield and Nitrogen Use Efficiency. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2017 (in Chinese with English abstract).
[45] 金正勋, 同拉嘎, 李丹, 李明月, 潘冬, 张玉磊, 王海微, 韩云飞, 张忠臣. 灌浆成熟期氮素营养对水稻增产及淀粉品质的影响. 东北农业大学学报, 2017, 48(4): 1-6.
Jin Z X, Tonglaga, Li D, Li M Y, Pan D, Zhang Y L, Wang H W, Han Y F, Zhang Z C. Effect of grain-filling nitrogen on yield increasing and starch quality in rice. J Northeast Agric Univ, 2017, 48(4): 1-6 (in Chinese with English abstract).
[46] 刘萍, 邵彩虹, 张红林, 刘光荣. 基于季节性降雨的双季稻生育后期干湿交替灌溉对稻谷产量及品质的影响. 作物杂志, 2021, (2): 153-159.
Liu P, Shao C H, Zhang H L, Liu G R. Effects of dry-wet alternate irrigation on double cropping rice yield and quality during late development stage under seasonal rain condition. Crops, 2021, (2): 153-159 (in Chinese with English abstract).
[47] 刘立军, 李鸿伟, 赵步洪, 王志琴, 杨建昌. 结实期干湿交替处理对稻米品质的影响及其生理机制. 中国水稻科学, 2012, 26: 77-84.
Liu L J, Li H W, Zhao B H, Wang Z Q, Yang J C. Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice. Chin J Rice Sci, 2012, 26: 77-84 (in Chinese with English abstract).
[48] 胡香玉, 郭九信, 田广丽, 高丽敏, 沈其荣, 郭世伟. 不同供氮模式对水稻根系形态及生理特征的影响. 中国水稻科学, 2017, 31: 72-80.
doi: 10.16819/j.1001-7216.2017.6050
Hu X Y, Guo J X, Tian G L, Gao L M, Shen Q R, Guo S W. Effects of different nitrogen supply patterns on root morphological and physiological characteristics of rice. Chin J Rice Sci, 2017, 31: 72-80 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.6050
[49] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点. 作物学报, 2022, 48: 2285-2299.
doi: 10.3724/SP.J.1006.2022.12070
Zhou Q, Yuan R, Zhu K Y, Wang Z Q, Yang J C. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates. Acta Agron Sin, 2022, 48: 2285-2299 (in Chinese with English abstract).
[50] 朱宽宇. 氮敏感性不同粳稻品种的特征与机制. 扬州大学博士学位论文, 江苏扬州, 2021.
Zhu K Y. Characteristics and Mechanism of the Japonica Rice Varieties Differing in Responses to Nitrogen Rates. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract).
[51] 胡继杰, 钟楚, 胡志华, 张均华, 曹小闯. 溶解氧浓度对水稻分蘖期根系生长及氮素利用特性的影响. 中国农业科学, 2021, 54: 1525-1536.
doi: 10.3864/j.issn.0578-1752.2021.07.016
Hu J J, Zhong C, Hu Z H, Zhang J H, Cao X C. Effects of dissolved oxygen concentration on root growth at tillering stage and nitrogen utilization characteristics of rice. Sci Agric Sin, 2021, 54: 1525-1536 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.07.016
[52] 杨建昌, 常二华, 张文杰, 王志琴, 刘立军. 根系化学讯号与稻米品质的关系. 中国农业科学, 2006, 39: 38-47.
Yang J C, Chang E H, Zhang W J, Wang Z Q, Liu L J. Relationship between root chemical signals and grain quality of rice. Sci Agric Sin, 2006, 39: 38-47 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.at-2005-6137
[53] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响. 作物学报, 2023, 49: 808-820.
doi: 10.3724/SP.J.1006.2023.22032
Fu J, Wang Y, Yang W B, Wang Y T, Li B Y, Wang F H, Wang S X, Bai T, Yin H Q. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice. Acta Agron Sin, 2023, 49: 808-820 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22032
[54] Yang X Y, Bi J G, Gilbert R G, Li G H, Liu Z H, Wang S H, Ding Y F. Amylopectin chain length distribution in grains of japonica rice as affected by nitrogen fertilizer and genotype. J Cereal Sci, 2016, 71: 230-238.
doi: 10.1016/j.jcs.2016.09.003
[55] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36-46.
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36-46 (in Chinese with English abstract).
[56] Zhao C, Chen M Y, Li X F, Dai Q G, Xu K, Guo B W, Hu Y J, Wang W L, Huo Z Y. Effects of soil types and irrigation modes on rice root morphophysiological traits and grain quality. Agronomy, 2021, 11: 120.
doi: 10.3390/agronomy11010120
[1] 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555.
[2] 贺佳奇, 白羿雄, 姚晓华, 姚有华, 安立昆, 王玉琴, 王小萍, 李新, 崔永梅, 吴昆仑. 刈割对青稞恢复特性及籽粒和秸秆产量品质特性的影响[J]. 作物学报, 2024, 50(3): 747-755.
[3] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708.
[4] 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响[J]. 作物学报, 2024, 50(3): 686-694.
[5] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[6] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[7] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[8] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[9] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[10] 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424.
[11] 徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响[J]. 作物学报, 2024, 50(2): 425-439.
[12] 邵扬, 郭延平, 周丙月, 张峰, 张兴民, 王玉萍. 蚕豆产量组分的基因型与环境互作及稳定性分析[J]. 作物学报, 2024, 50(1): 149-160.
[13] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[14] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[15] 李明月, 张文婷, 李阳, 张保龙, 杨立明, 王金彦. 小肽Ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .