欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 747-755.doi: 10.3724/SP.J.1006.2024.31032

• 耕作栽培·生理生化 • 上一篇    下一篇

刈割对青稞恢复特性及籽粒和秸秆产量品质特性的影响

贺佳奇1(), 白羿雄1,3,4, 姚晓华1,4, 姚有华1,4, 安立昆1,4, 王玉琴2, 王小萍1, 李新1,4, 崔永梅1,4, 吴昆仑1,4,*()   

  1. 1青海大学 / 青海省农林科学院 / 青海省青稞遗传育种重点实验室 / 国家麦类改良中心青海青稞分中心, 青海西宁 810016
    2青海大学畜牧兽医科学院(青海省畜牧兽医科学院), 青海西宁 810016
    3西北农林科技大学农学院, 陕西杨凌 712100
    4青藏高原种质资源研究与利用实验室, 青海西宁 810016
  • 收稿日期:2023-05-10 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-09-27
  • 通讯作者: *吴昆仑, E-mail: wklqaaf@126.com
  • 作者简介:E-mail: hejiaqi3692@163.com
  • 基金资助:
    青海省科技成果转化项目(2020-NK-119);青海省农林科学院重点研发项目(2019-NKY-01);国家自然科学基金项目(32060483);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-05);青海省创新平台建设专项(1-5)

Effects of cutting on the recovery characteristics, grain and straw yield, and quality traits of Qingke

HE Jia-Qi1(), BAI Yi-Xiong1,3,4, YAO Xiao-Hua1,4, YAO You-Hua1,4, AN Li-Kun1,4, WANG Yu-Qin2, WANG Xiao-Ping1, LI Xin1,4, CUI Yong-Mei1,4, WU Kun-Lun1,4,*()   

  1. 1Qinghai University / Qinghai Academy of Agriculture and Forestry Sciences / Qinghai Key Laboratory of Qingke Genetic Breeding / National Improvement Center for Cereal Crops, Qingke Branch in Qinghai Province, Xining 810016, Qinghai, China
    2College of Animal Science and Veterinary Medicine, Qinghai University (Qinghai Academy of Animal Science and Veterinary Medicine), Xining 810016, Qinghai, China
    3College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    4Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, Qinghai, China
  • Received:2023-05-10 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-09-27
  • Contact: *E-mail: wklqaaf@126.com
  • Supported by:
    Science and Technology Achievement Transformation Project of Qinghai Province(2020-NK-119);Key Research and Development Project of Qinghai Academy of Agricultural and Forestry Sciences(2019-NKY-01);National Natural Science Foundation of China(32060483);China Agriculture Research System of MOF and MARA(CARS-05);Natural Science Foundation Project of Qinghai Province(1-5)

摘要:

探明刈割对青稞植株再生恢复农艺与理化特性变化规律, 解析青稞籽粒和秸秆产量品质指标对刈割处理响应规律, 为青稞“粮苗草三用”生产模式应用和青稞植株再生恢复调控机制解析提供理论依据。本研究于2021—2022年, 以青稞品种昆仑18号和藏1257为研究对象, 以正常生长(CK)为对照, 采用两因素裂区设计, 刈割后于0 h (T0)、2 h (T1)、24 h (T2)、72 h (T3)、拔节期(T4)、抽穗期(T5)、灌浆期(T6) 7个发育阶段取材, 以分析刈割后茎部再生恢复速率及残茬中抗氧化酶的变化规律; 并对刈割后青稞秸秆和籽粒产量品质特性和内源激素快速响应规律进行分析。结果表明, 刈割使再生青稞秸秆及籽粒产量升高, 并使茎秆中粗蛋白、粗灰分含量升高, 纤维类物质含量降低, 使秸秆相对饲喂价值显著升高。刈割使青稞茎部株高和单株生物量生长恢复速率升高; 使青稞每公顷穗数和千粒重增加, 致使籽粒产量显著增加, 并使籽粒中累积更多粗蛋白与淀粉。刈割后青稞残茬中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)含量迅速升高, 并使残茬中的反式玉米素核苷(TZR)、异戊烯基腺苷(iPA)含量显著升高, 吲哚-3-乙酸(IAA)和脱落酸(ABA)含量显著降低。青稞残茬中细胞分裂素和生长素可能在刈割后抗氧化酶系统快速响应、地上部快速再生恢复过程中发挥重要调控作用。

关键词: 再生恢复, 产量, 饲用品质, 抗氧化酶, 内源激素

Abstract:

The objective of this study is to investigate the changes in agronomic and physicochemical characteristics of Qingke plants during regeneration and recovery after cutting and to analyze the response patterns of grain and straw yield, as well as quality indicators of Qingke. The findings will provide a theoretical basis for the application of the “food-seed-forage trinity” production model of Qingke and the analysis of regulatory mechanisms for plant regeneration and recovery in Qingke. This experiment was conducted from 2021 to 2022, focused on the Qingke varieties Kunlun 18 and Zang 1257. Using normal growth (CK) as the control, a two-factor split-plot design was adopted. Samples were taken at seven developmental stages: 0 hour (T0), 2 hour (T1), 24 hours (T2), 72 hours (T3) after cutting, jointing stage (T4), heading stage (T5), and grain filling stage (T6), which aimed to analyze the regeneration rate of stem recovery and changes in antioxidant enzymes in the stubble after cutting and to analyze the yield, quality characteristics of Qingke straw and grain, and the rapid response patterns of endogenous hormones after cutting. The results indicated that cutting increased the regrowth of Qingke straw and grain yield. It also leaded to higher levels of crude protein and crude ash content in the stem, while reducing the fiber content. As a result, the relative feeding value of the straw was significantly improved. Cutting promoted the recovery rate of plant height and individual biomass growth in the stem of Qingke. It increased the number of spikes per hectare and 1000-grain weight, resulting in a significant increase in grain yield. Additionally, it leaded to the accumulation of higher levels of crude protein and starch in the grains. After cutting, the levels of superoxide dismutase (SOD) and catalase (CAT) in the stubble of Qingke increased rapidly. It also significantly increased the content of trans-zeatin riboside (TZR) and isopentenyladenosine (iPA) in the stubble. However, it leaded to a significant decrease in the levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) in the stubble. Cytokinins and auxins in the stubble of Qingke may play important regulatory roles in the rapid response of the antioxidant enzyme system and the rapid regeneration process of above-ground parts after cutting. This study provided the foundation for the analysis of the regulatory mechanisms in the post-cutting regeneration and recovery of Qingke plants.

Key words: regeneration recovery, yield, feed quality, antioxidant enzymes, endogenous hormones

图1

刈割对秸秆产量的影响 CK1: 昆仑18号正常生长; M1: 昆仑18号刈割处理; CK2: 藏1257正常生长; M2: 藏1257刈割处理。不同小写字母表示同一年中在0.05概率水平差异显著。"

表1

刈割处理对后茬青稞秸秆品质特性的影响"

年份
Year
处理
Treatment
粗蛋白
Crude protein (%)
粗灰分
Ash
(%)
纤维素
Cellulose
(%)
半纤维素
Hemicellulose (%)
木质素
Lignin
(%)
酸性洗涤纤维
Acid detergent fiber (%)
中性洗涤纤维
Neutral
detergent fiber (%)
相对饲喂价值
RFV
2021 CK1 4.09 e 8.62 cd 40.80 a 29.56 c 5.73 a 43.82 b 73.29 a 69.51 d
M1 5.13 b 9.69 a 38.46 bc 27.54 e 5.68 a 39.77 e 67.44 c 79.89 b
CK2 4.61 d 8.73 c 39.19 b 32.68 a 5.28 c 45.29 a 71.51 b 69.75 d
M2 5.53 a 9.82 a 37.22 de 30.82 b 5.17 c 41.08 d 63.48 e 83.38 a
2022 CK1 3.90 f 8.41 d 39.33 b 28.50 d 5.64 ab 42.55 c 69.83 b 74.27 c
M1 4.97 c 9.41 b 37.97 cd 26.26 f 5.54 b 39.59 e 65.71 d 80.96 b
CK2 4.59 d 8.56 cd 39.02 b 32.44 a 5.26 c 44.06 b 67.13 cd 75.63 c
M2 5.46 a 9.79 a 36.86 e 30.45 b 5.21 c 41.04 d 63.82 e 82.98 a

表2

刈割对籽粒产量的影响"

年份
Year
处理
Treatment
穗粒数
Number of grains per ear
千粒重
1000-grain weight (g)
每公顷穗数
Number of spikes per hm-2 (×106)
籽粒产量
Grain yield (t hm-2)
2021 CK1 53.77 ab 34.42 d 4.37 c 3.42 d
M1 51.09 cd 35.37 cd 4.43 a 3.59 a
CK2 51.67 cd 37.96 b 4.15 e 3.36 e
M2 49.26 e 39.36 a 4.22 d 3.48 c
2022 CK1 54.64 a 34.94 d 4.35 c 3.44 d
M1 52.61 bc 36.15 c 4.40 b 3.60 a
CK2 52.44 bc 38.21 ab 4.11 f 3.32 f
M2 50.46 de 39.22 a 4.17 e 3.54 b

表3

刈割对籽粒品质的影响"

年份
Year
处理
Treatment
粗蛋白
Protein content (%)
淀粉
Starch content (%)
2021 CK1 11.30 d 69.95 d
M1 11.67 b 75.15 a
CK2 11.50 f 72.80 e
M2 12.18 d 73.90 bc
2022 CK1 10.30 c 65.77 ab
M1 11.28 a 71.26 a
CK2 11.10 e 71.30 bc
M2 12.21 a 73.60 ab

图2

2021-2022年刈割对茎部再生恢复特性的影响 图a~c为2021年数据, 图d~f为2022年数据。CK1: 昆仑18号正常生长; M1: 昆仑18号刈割处理; CK2: 藏1257正常生长; M2: 藏1257刈割处理。T1: 2 h; T2: 24 h; T3: 72 h; T4: 拔节期; T5: 抽穗期; T6: 灌浆期。"

图3

2021-2022年刈割对茎部保护酶活性的影响 图a~c为2021年数据, 图d~f为2022年数据。POD: 过氧化物酶; SOD: 超氧化物歧化酶; CAT: 过氧化氢酶。*和**分别表示在0.05和0.01概率水平差异显著。处理及生育期同图2。"

图4

2021-2022年刈割对茎部内源激素的影响 图a~e为2021年数据, 图f~j为2022年数据。TZR: 反式玉米素核苷; iPA: 异戊烯基腺苷; tZT: 反式玉米素; IAA: 吲哚-3-乙酸; ABA: 脱落酸。*和**分别表示在0.05和0.01概率水平差异显著。处理及生育期同图2。"

图5

各单项指标相对值的相关性分析 Ph: 株高; Cs: 秆强; Mb: 单株生物量; TZR: 反式玉米素核苷; iPA: 异戊烯基腺苷; tZT: 反式玉米素; IAA: 吲哚-3-乙酸; ABA: 脱落酸; POD: 过氧化物酶活性; SOD: 超氧化物歧化酶活性; CAT: 过氧化氢酶活性。*和**分别表示在0.05和0.01概率水平显著相关。"

[1] 王燕, 姚晓华, 姚有华, 苏乐平, 安立昆, 吴昆仑. 青稞籽粒花青素合成相关基因HvnF3’M的克隆与表达分析. 西北农业学报, 2022, 31: 1174-1184.
Wang Y, Yao X H, Yao Y H, Su L P, An L K, Wu K L. Cloning and expression analysis of HvnF3’M gene related to anthocyanin synthesis of hulless barley. Acta Agric Boreali-occident Sin, 2022, 31: 1174-1184 (in Chinese with English abstract).
[2] 李洁. 干旱胁迫对青稞幼苗可溶性蛋白的影响. 江苏农业科学, 2015, 43(12): 124-126.
Li J. Effect of drought stress on soluble protein of barley seedlings. Jiangsu Agric Sci, 2015, 43(12): 124-126 (in Chinese with English abstract).
[3] Quiroga R E, Blanco L J, Namur P R. Defoliation intensity and simulated grazing strategy effects on three C4 rangeland bunchgrasses. Rangeland Ecol Manag, 2018, 71: 58-66.
doi: 10.1016/j.rama.2017.09.002
[4] Newell M T, Hayes R C. An initial investigation of forage production and feed quality of perennial wheat derivatives. Crop Past Sci, 2017, 68: 1141-1148.
doi: 10.1071/CP16405
[5] Younis S. Effect of seeding rates and mowing stages on growth, yield and quality of forage and seed of common vetch (Vicia sativa L.). Mesopot J Agric, 2018, 46: 219-232.
[6] Butchee J D, Edwards J T. Dual-purpose wheat grain yield as affected by growth habit and simulated grazing intensity. Crop Sci, 2013, 53: 1686-1692.
doi: 10.2135/cropsci2013.01.0033
[7] 王小萍, 白羿雄, 姚晓华, 姚有华, 李新, 安立昆, 吴昆仑. 刈割留茬高度对青稞饲草与籽粒产量及饲用品质的影响. 麦类作物学报, 2023, 43: 513-523.
Wang X P, Bai Y X, Yao X H, Yao Y H, Li X, An L K, Wu K L. Effect of mowing stubble height on forage and grain yield and forage quality characteristics of hulless barley. J Triticeae Crops, 2023, 43: 513-523 (in Chinese with English abstract).
[8] Zeleke K T. Effect of grazing time and intensity on growth and yield of spring wheat (Triticum aestivum L.). J Integr Agric, 2019, 18: 204-213.
[9] 张腾薇, 吕二锁, 刘志萍, 包文龙, 段俊杰, 云颖, 张霞, 韩磊, 孙娟娟. 留茬高度对全株大麦青贮品质的影响. 中国草地学报, 2022, 44(7): 87-92.
Zhang T W, Lyu E S, Liu Z P, Bao W L, Duan J J, Yun Y, Zhang X, Han L, Sun J J. Effects of stubble height on silage quality of whole barley. Chin J Grassland, 2022, 44(7): 87-92 (in Chinese with English abstract).
[10] 李变变, 张凤华, 赵亚光. 刈割高度对油莎豆氮代谢及产量和品质的影响. 草业学报, 2023, 32(2): 84-96.
doi: 10.11686/cyxb2022061
Li B B, Zhang F H, Zhao Y G. Effects of stubble height on nitrogen metabolism, yield and quality of Cyperus esculentus. Acta Pratac Sin, 2023, 32(2): 84-96 (in Chinese with English abstract).
[11] 陈晓东, 赵斌, 季昌好, 朱斌, 王瑞. 刈割期对多棱饲料大麦饲草及籽粒产量与品质的影响. 麦类作物学报, 2017, 37: 409-413.
Chen X D, Zhao B, Ji C H, Zhu B, Wang R. Effect of defoliation timing on the yield and quality of six-row barley forage and grain. J Triticeae Crops, 2017, 37: 409-413 (in Chinese with English abstract).
[12] 赵小红, 白羿雄, 王凯, 姚有华, 姚晓华, 吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响. 作物学报, 2020, 46: 586-595.
doi: 10.3724/SP.J.1006.2020.91038
Zhao X H, Bai Y X, Wang K, Yao Y H, Yao X H, Wu K L. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties. Acta Agric Sin, 2020, 46: 586-595 (in Chinese with English abstract).
[13] Cui G, Zhao M, Zhang S, Wang Z, Meng M, Sun F, Zhang C, Xi Y. MicroRNA and regulation of auxin and cytokinin signaling during post-mowing regeneration of winter wheat (Triticum aestivum L.). Plant Physiol Biochem, 2020, 155: 769-779.
doi: 10.1016/j.plaphy.2020.08.032
[14] Pan X, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc, 2010, 5: 986-992.
doi: 10.1038/nprot.2010.37 pmid: 20448544
[15] Tian L H, Bell L W, Shen Y Y, Whish J P M. Dual-purpose use of winter wheat in western China: cutting time and nitrogen application effects on phenology, forage production, and grain yield. Crop Past Sci, 2012, 63: 520-528.
doi: 10.1071/CP12101
[16] Lyons S E, Ketterings Q M, Cherney D J R, Cherney J H, Godwin G S, Kilcer T F. Growth stage at harvest influences forage quality and yield of brown midrib forage sorghum. J Anim Sci, 2017, 95: 136-136.
doi: 10.2527/asasann.2017.274
[17] Zhang H, Zhao Y, Zhu J K. Thriving under stress: how plants balance growth and the stress response. Dev Cell, 2020, 55: 529-543.
doi: 10.1016/j.devcel.2020.10.012 pmid: 33290694
[18] 许能祥, 顾洪如, 董臣飞, 程云辉, 张文洁, 丁成龙. 刈割对不同品种褐色中脉饲用高粱饲草品质及农艺性状的影响. 草地学报, 2014, 22: 623-630.
doi: 10.11733/j.issn.1007-0435.2014.03.028
Xu N X, Gu H R, Dong C F, Cheng Y H, Zhang W J, Ding C L. Feed quality and agronomic traits of brown midrib (BMR) forage sorghum varieties. Acta Agrest Sin, 2014, 22: 623-630 (in Chinese with English abstract).
[19] Chen X D, Zhao B, Ji C H, Zhu B, Wang R. Breeding for purpose: Sole- and dual-use barley. Agron J, 2021, 113: 1758-1765.
doi: 10.1002/agj2.v113.2
[20] 张晓佩, 高承芳, 刘远, 李文杨, 陈鑫珠, 董晓宁. 刈割高度对多花黑麦草新品种产量和品质的影响. 热带作物学报, 2014, 35: 1695-1698.
Zhang X P, Gao C F, Liu Y, Li W Y, Chen X Z, Dong X N. Mowing height effects on the yield and quality of new varieties of Lolium multiflorum. Chin J Tropic Crops, 2014, 35: 1695-1698 (in Chinese with English abstract).
[21] 杨景宁. 播期和刈割时期对粮饲兼用冬小麦生产力形成的影响机制. 兰州大学博士学位论文, 甘肃兰州, 2021.
Yang J N. Effects of Sowing Date and Cutting Regime on Productivity of Dual-Purposed Winter Wheat. PhD Dissertation of Lanzhou University, Lanzhou, Gansu, China, 2021 (in Chinese with English abstract).
[22] Jiang M Y, Zhang J H. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410.
doi: 10.1093/jxb/erf090 pmid: 12432032
[23] Srivalli S, Khanna-Chopra R. Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol Biochem, 2009, 47: 663-670.
doi: 10.1016/j.plaphy.2009.03.015
[24] An Y, Zhang S. Effects of mechanical damage and herbivore wounding on H2O2 metabolism and antioxidant enzyme activities in hybrid poplar leaves. J For Res, 2009, 20, 156-160.
doi: 10.1007/s11676-009-0027-x
[25] 郭安琪, 周瑞莲, 宋玉, 马会雷. 刈割后黑麦草生理保护作用对其补偿性生长的影响. 生态学报, 2018, 38: 3495-3503.
Guo A Q, Zhou R L, Song Y, Ma H L. Relationship between physiological protection mechanisms and the compensatory growth of Lolium perenne L. at different cutting treatment levels. Acta Ecol Sin, 2018, 38: 3495-3503 (in Chinese with English abstract).
[26] Rong C, Liu Y, Chang Z, Liu Z, Ding Y, Ding C. Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering. J Exp Bot, 2022, 73: 3552-3568.
doi: 10.1093/jxb/erac088 pmid: 35247044
[27] Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J, 2006, 45: 1028-1036.
doi: 10.1111/j.1365-313X.2006.02656.x pmid: 16507092
[28] Wu L Y, Shang G D, Wang F X, Gao J, Wan M C, Xu Z G, Wang J W. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Cell, 2022, 57: 526-542.
[1] 娄菲, 左怿平, 李萌, 代鑫萌, 王健, 韩金玲, 吴舒, 李向岭, 段会军. 有机肥替代部分化肥氮对糯玉米产量、品质及氮素利用的影响[J]. 作物学报, 2024, 50(4): 1053-1064.
[2] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[3] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[4] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[5] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[6] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[7] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[8] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708.
[9] 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响[J]. 作物学报, 2024, 50(3): 686-694.
[10] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[11] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[12] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[13] 徐冉, 杨文叶, 朱均林, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响[J]. 作物学报, 2024, 50(2): 425-439.
[14] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[15] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .