作物学报 ›› 2024, Vol. 50 ›› Issue (3): 543-555.doi: 10.3724/SP.J.1006.2024.32023
张丽洁1,2(), 周海宇1,2, MUHAMMAD Zeshan1,2, MUNSIF Ali Shad1,2, 杨明冲1,2, 李波1,2, 韩世健1, 张翠翠1,3, 胡利华1,3,*(), 王令强1,2,*()
ZHANG Li-Jie1,2(), ZHOU Hai-Yu1,2, MUHAMMAD Zeshan1,2, MUNSIF Ali Shad1,2, YANG Ming-Chong1,2, LI Bo1,2, HAN Shi-Jian1, ZHANG Cui-Cui1,3, HU Li-Hua1,3,*(), WANG Ling-Qiang1,2,*()
摘要:
FCS样锌指蛋白(FLZ)与植物的生长发育和逆境胁迫反应相关。水稻的FLZ基因家族分析和功能研究较少。本研究利用TBtools对水稻基因组Blast, 鉴定到29个OsFLZ家族基因成员, 并分析了相关基因位置、基因结构、motif和启动子顺式作用元件等特征。随后, 通过水稻CREP数据库研究了FLZ家族成员的全生育期组织表达模式, 并发现其中的OsFLZ13基因在开花前的花药中特异高水平表达。随后β-D-葡萄糖苷酸酶(GUS)染色显示, OsFLZ13在花药发育的第8阶段开始表达, 并在开花前的第14阶段表达量最高。用CRISPR/Cas9基因编辑获得的突变体植株结实率显著下降。相比野生型中花11的94%结实率, Osflz13-1和Osflz13-2的结实率分别只有44%和36%。本研究表明OsFLZ13参与花药发育以及花粉育性的调控, 为进一步研究该基因及其家族基因的功能提供参考, 同时对水稻雄性不育利用具有潜在的价值。
[1] |
Salih H, Odongo M R, Gong W, He S, Du X. Genome-wide analysis of cotton C2H2-zinc finger transcription factor family and their expression analysis during fiber development. BMC Plant Biol, 2019, 19: 400.
doi: 10.1186/s12870-019-2003-8 pmid: 31510939 |
[2] |
Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996, 271: 1081-1085.
doi: 10.1126/science.271.5252.1081 pmid: 8599083 |
[3] |
Wang J, Li Z, Liang Y, Zheng J, Gong Z, Zhou G, Xu Y, Li X. Genome-wide identification and expression reveal the involvement of the FCS-like zinc finger (FLZ) gene family in Gossypium hirsutum at low temperature. PeerJ, 2023, 11: e14690.
doi: 10.7717/peerj.14690 |
[4] |
He Y, Tang W, Swain J D, Green A L, Jack T P, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol, 2001, 126: 707-716.
pmid: 11402199 |
[5] | Jamsheer K M, Laxmi A. Expression of Arabidopsis FCS-like zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress. Front Plant Sci, 2015, 6: 746. |
[6] |
Nietzsche M, Schießl I, Börnke F. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants. Front Plant Sci, 2014, 5: 54.
doi: 10.3389/fpls.2014.00054 pmid: 24600465 |
[7] |
Jamsheer K M, Sharma M, Singh D, Mannully C T, Jindal S, Shukla B N, Laxmi A. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis. Plant J, 2018, 94: 232-245.
doi: 10.1111/tpj.2018.94.issue-2 |
[8] |
Jamsheer K M, Singh D, Sharma M, Sharma M, Jindal S, Mannully C T, Shukla B N, Laxmi A. The FCS-like zinc finger 6 and 10 are involved in regulating osmotic stress responses in Arabidopsis. Plant Signal Behav, 2019, 14:1592535.
doi: 10.1080/15592324.2019.1592535 |
[9] |
Hou X, Liang Y, He X, Shen Y, Huang Z. A novel ABA-responsive TaSRHP gene from wheat contributes to enhanced resistance to salt stress in Arabidopsis thaliana. Plant Mol Biol Rep, 2013, 31: 791-801.
doi: 10.1007/s11105-012-0549-9 |
[10] |
He Y, Gan S. A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis. Plant Mol Biol, 2004, 54: 1-9.
doi: 10.1023/B:PLAN.0000028730.10834.e3 |
[11] |
Jamsheer K M, Shukla B N, Jindal S, Gopan N, Mannully C T, Laxmi A. The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions. J Biol Chem, 2018, 293: 13134-13150.
doi: 10.1074/jbc.RA118.002073 pmid: 29945970 |
[12] |
Ma Y, Zhao J, Fu H, Yang T, Dong J, Yang W, Chen L, Zhou L, Wang J, Liu B, Zhang S, Edwards D. Genome-wide identification, expression and functional analysis reveal the involvement of FCS-like zinc finger gene family in submergence response in rice. Rice, 2021, 14: 76.
doi: 10.1186/s12284-021-00519-3 pmid: 34417910 |
[13] |
马雅美, 张少红, 赵均良, 刘斌. FCS-like锌指蛋白OsFLZ18在调控水稻抽穗期中的作用. 中国农业科学, 2022, 55: 3875-3884.
doi: 10.3864/j.issn.0578-1752.2022.20.001 |
Ma Y M, Zhang S H, Zhao J L, Liu B. FCS-like zinc finger protein OsFLZ18 in regulating rice flowering time. Sci Agric Sin, 2022, 55: 3875-3884 (in Chinese with English abstract). | |
[14] |
刘佳丽, 何明良, 刘晨曦, 廖栩, 李秀峰, 管清杰. 水稻盐碱逆境响应锌指蛋白基因OsZFP6表达特性及功能研究. 植物研究, 2020, 40: 424-432.
doi: 10.7525/j.issn.1673-5102.2020.03.014 |
Liu J L, He M L, Liu C X, Liao X, Li X F, Guan Q J. Zinc finger protein OsZFP6 expression features and functions in saline-alkali stress response. Bull Bot Res, 2020, 40: 424-432 (in Chinese with English abstract). | |
[15] | 骆鹰, 谢旻, 张超, 王伟平, 朱建华, 万向元, 汪启明, 饶力群. 水稻锌指蛋白基因OsBBX22响应热胁迫的功能分析. 基因组学与应用生物学, 2018, 37: 836-844. |
Luo Y, Xie M, Zhang C, Wang W P, Zhu J H, Wan X Y, Wang Q M, Rao L Q. Function analysis of rice zinc finger protein gene OsBBX22 in response to heat stress. Genom Appl Biol, 2018, 37: 836-844 (in Chinese with English abstract). | |
[16] |
Jamsheer K M, Laxmi A. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction. PLoS One, 2014, 9: e99074.
doi: 10.1371/journal.pone.0099074 |
[17] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[18] |
Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49.
doi: 10.1093/nar/gkv416 |
[19] | Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327. |
[20] |
Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W587.
doi: 10.1093/nar/gkm259 pmid: 17517783 |
[21] |
Yu C S, Lin C J, Hwang J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on N-peptide compositions. Prot Sci, 2004, 13: 1402-1406.
doi: 10.1110/ps.03479604 |
[22] |
Kokkirala V R, Yonggang P, Abbagani S, Zhu Z, Umate P. Subcellular localization of proteins of Oryza sativa L. in the model tobacco and tomato plants. Plant Signal Behav, 2010, 5: 1336-1341.
doi: 10.4161/psb.5.11.13318 |
[23] |
Bao A, Burritt D J, Chen H, Zhou X, Cao D, Tran L P. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol, 2019, 39: 321-336.
doi: 10.1080/07388551.2018.1554621 pmid: 30646772 |
[24] |
Lee J H, Schöffl F. GUS activity staining in gels: a powerful tool for studying protein interactions in plants. Plant Mol Biol Rep, 1995, 13: 346-354.
doi: 10.1007/BF02669190 |
[25] | Jamsheer K M, Mannully C T, Gopan N, Laxmi A. Comprehensive evolutionary and expression analysis of FCS-like zinc finger gene family yields insights into their origin, expansion and divergence. PLoS One, 2015, 10: e134328. |
[26] |
Ma Y, Dong J, Yang W, Chen L, Wu W, Li W, Zhou L, Wang J, Chen J, Yang T, Zhang S, Zhao J, Liu B. OsFLZ2 interacts with OsMADS51 to fine-tune rice flowering time. Development, 2022, 149: dev200862.
doi: 10.1242/dev.200862 |
[27] |
Chen S, Li X, Yang C, Yan W, Liu C, Tang X, Gao C. Genome-wide identification and characterization of FCS-like zinc finger (FLZ) family genes in maize (Zea mays) and functional analysis of ZmFLZ25 in plant abscisic acid response. Int J Mol Sci, 2021, 22: 3529.
doi: 10.3390/ijms22073529 |
[28] | 魏振林, 林贵凯, 崔晓同, 李婷, 仝会琴. 大豆FCS like Zinc Finger家族基因的生物信息学鉴定. 分子植物育种, 网络首发[2021-09-24], https://kns.cnki.net/kcms/detail/46.1068.S.20210923.1847.015.html. |
Wei Z L, Lin G K, Cui X T, Li T, Tong H Q. Bioinformatics analysis of soybean FCS like Zinc Finger gene family. Mol Plant Breed, Published online [2021-09-24], https://kns.cnki.net/kcms/detail/46.1068.S.20210923.1847.015.html (in Chinese with English abstract). | |
[29] | Jin Y M, Piao R, Yan Y F, Chen M, Wang L, He H, Liu X, Gao X A, Jiang W, Lin X F. Overexpression of a new zinc finger protein transcription factor OsCTZFP8 improves cold tolerance in rice. Int J Genom, 2018, 2018: 5480617. |
[1] | 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870. |
[2] | 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770. |
[3] | 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746. |
[4] | 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492. |
[5] | 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424. |
[6] | 李明月, 张文婷, 李阳, 张保龙, 杨立明, 王金彦. 小肽Ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67-75. |
[7] | 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571. |
[8] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[9] | 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411. |
[10] | 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038. |
[11] | 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050. |
[12] | 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159. |
[13] | 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295. |
[14] | 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941. |
[15] | 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746. |
|