欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 543-555.doi: 10.3724/SP.J.1006.2024.32023

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻花粉小肽锌指蛋白基因OsFLZ13功能研究

张丽洁1,2(), 周海宇1,2, MUHAMMAD Zeshan1,2, MUNSIF Ali Shad1,2, 杨明冲1,2, 李波1,2, 韩世健1, 张翠翠1,3, 胡利华1,3,*(), 王令强1,2,*()   

  1. 1广西大学亚热带农业生物资源保护与利用国家重点实验室, 广西南宁 530004
    2广西大学农学院, 广西南宁 530004
    3广西大学生命科学技术学院, 广西南宁 530004
  • 收稿日期:2023-06-20 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-10-09
  • 通讯作者: *胡利华, E-mail: hulihua@gxu.edu.cn; 王令强, E-mail: lqwang@gxu.edu.cn
  • 作者简介:E-mail: zhanglijie4421@163.com
  • 基金资助:
    国家自然科学基金地区科学基金项目(31860296);广西自然科学基金重点项目(2020GXNSFDA238027)

Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice

ZHANG Li-Jie1,2(), ZHOU Hai-Yu1,2, MUHAMMAD Zeshan1,2, MUNSIF Ali Shad1,2, YANG Ming-Chong1,2, LI Bo1,2, HAN Shi-Jian1, ZHANG Cui-Cui1,3, HU Li-Hua1,3,*(), WANG Ling-Qiang1,2,*()   

  1. 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
    2College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
    3College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2023-06-20 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-10-09
  • Contact: *-mail: hulihua@gxu.edu.cn; E-mail: lqwang@gxu.edu.cn
  • Supported by:
    Regional Science Foundation Project, the National Natural Science Foundation of China(31860296);Key Projects of Guangxi Natural Science Foundation(2020GXNSFDA238027)

摘要:

FCS样锌指蛋白(FLZ)与植物的生长发育和逆境胁迫反应相关。水稻的FLZ基因家族分析和功能研究较少。本研究利用TBtools对水稻基因组Blast, 鉴定到29个OsFLZ家族基因成员, 并分析了相关基因位置、基因结构、motif和启动子顺式作用元件等特征。随后, 通过水稻CREP数据库研究了FLZ家族成员的全生育期组织表达模式, 并发现其中的OsFLZ13基因在开花前的花药中特异高水平表达。随后β-D-葡萄糖苷酸酶(GUS)染色显示, OsFLZ13在花药发育的第8阶段开始表达, 并在开花前的第14阶段表达量最高。用CRISPR/Cas9基因编辑获得的突变体植株结实率显著下降。相比野生型中花11的94%结实率, Osflz13-1Osflz13-2的结实率分别只有44%和36%。本研究表明OsFLZ13参与花药发育以及花粉育性的调控, 为进一步研究该基因及其家族基因的功能提供参考, 同时对水稻雄性不育利用具有潜在的价值。

关键词: 水稻, 花粉, 结实率, FLZ基因家族

Abstract:

FCS-like zinc finger (FLZ) is a protein associated with plant growth and stress. At present, there are few reports on FLZ gene family analysis and functional studies in rice. In this study, TBtools were used to blast rice genome, and a total of 29 OsFLZ genes were identified. Their gene location, gene structure, motif and promoter sequences were analyzed. The relative expression level of FLZ genes in rice from CREP database showed that, OsFLZ13, a member of this family, was predominantly expressed in anthers before flowering. β-D-glucuronidase (GUS) staining assays exhibited that OsFLZ13 began to express at stage 9 and gradually peaked at stage 14 of stamen development before flowering. Furthermore, two independent mutant lines, namely Osflz13-1 and Osflz13-2, were obtained with CRISPR/Cas9 gene editing system. Compared with the 94% seed-setting rate of wild type Zhonghua 11, the setting rates of Osflz13-1 and Osflz13-2 were reduced to 44% and 36%, respectively. This study throws light on the evolution of FLZ in planta and indicates the roles of OsFLZ13 in anthers development and pollen fertility, which will be beneficial further studies of its functions. Additionally, it provides a reference for exploring the function of the FLZ family and highlights its potential value for the utilization in male sterility systems in rice.

Key words: rice, pollen, seed-setting rate, FLZ gene family

表1

引物及序列表"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
OsFLZ13-CRISPR CAGTGGTCTCATGCACCAAATCCACCACTTCCTCGGTTTTAGAGCTAGAAATAGC CAGTGGTCTCAAAACCGCTGCAGAACGGCGTGTCTTGCACCAGCCGGGAATCGAA
OsFLZ13-Target1 CAGTGCAGTGCCAAGACTCG CACGCCACAAAACCTCAACA
OsFLZ13-Target2 TGTCCTCTCCCTCCTTTCACC TATTTGTCTCCGTCGTCCTGC
OsFLZ13-GUS TATGACCATGATTACGAATTCCTGAAAACGGTTTAGCGAA TGGCTGCAGGTCGACGGATCCGACGTAGAACATGGACGAC
OsFLZ13-GUS-Identify CACCTTCCTTTTCTACTGTCC AATCACCCTCTCTATTCATCC
Hyg GAGCATATACGCCCGGAGTC CAAGACCTGCCTGAAACCGA

表2

水稻FLZ家族基因编码蛋白的理化性质"

基因LOC号
Gene LOC
number
基因
名称
Gene name
染色体Chr. 核酸长度Nucleotide length
(bp)
氨基酸数目
Number of amino acids (aa)
分子量
Molecular weight
(kD)
等电点
Isoelectric point
不稳定
系数Instability index
脂肪族
指数Aliphatic index
平均疏水性
Grand
average of hydropathicity
LOC_Os01g08520 OsFLZ1 1 1167 389 39.42 5.44 59.23 66.83 -0.13
LOC_Os01g41010 OsFLZ2 1 783 261 28.59 4.33 51.77 72.31 -0.31
LOC_Os01g52100 OsFLZ3 1 789 263 28.34 4.68 54.71 79.69 -0.25
LOC_Os02g07820 OsFLZ4 2 657 219 23.02 5.40 63.96 69.13 -0.13
LOC_Os02g37970 OsFLZ5 2 381 127 13.72 8.86 57.81 57.54 -0.39
LOC_Os02g46180 OsFLZ6 2 441 147 16.09 8.71 61.70 42.95 -0.79
LOC_Os02g46190 OsFLZ7 2 378 126 14.29 6.90 81.23 51.60 -0.83
LOC_Os02g46210 OsFLZ8 2 321 107 11.49 5.26 55.94 60.00 -0.36
LOC_Os02g51550 OsFLZ9 2 444 148 15.16 8.98 50.35 57.28 -0.42
LOC_Os03g08520 OsFLZ10 3 492 164 17.87 9.98 92.52 72.02 -0.34
LOC_Os03g46260 OsFLZ11 3 909 303 31.79 6.39 80.69 65.26 -0.25
LOC_Os04g49620 OsFLZ12 4 453 151 15.70 5.92 50.62 63.80 -0.49
LOC_Os04g49650 OsFLZ13 4 360 120 13.63 9.50 56.63 51.76 -0.93
LOC_Os04g49660 OsFLZ14 4 384 128 14.69 6.64 77.52 49.29 -1.02
LOC_Os04g49670 OsFLZ15 4 423 141 15.88 6.27 67.54 82.36 0.05
LOC_Os04g49680 OsFLZ16 4 315 105 11.45 8.56 94.87 50.96 -0.52
LOC_Os05g08800 OsFLZ17 5 984 328 34.01 5.68 67.42 75.35 -0.14
LOC_Os06g03520 OsFLZ18 6 435 145 15.47 6.88 79.40 57.78 -0.31
LOC_Os06g05970 OsFLZ19 6 612 204 21.97 5.94 63.27 73.60 -0.33
LOC_Os06g11980 OsFLZ20 6 429 143 15.03 9.22 66.34 40.07 -0.73
LOC_Os06g14070 OsFLZ21 6 309 103 10.75 4.65 76.24 44.22 -0.53
LOC_Os06g50080 OsFLZ22 6 411 137 14.63 6.83 81.82 54.85 -0.41
LOC_Os07g42390 OsFLZ23 7 594 198 20.59 8.67 59.04 74.62 0.03
LOC_Os08g31510 OsFLZ24 8 600 200 20.86 4.84 50.77 58.69 -0.38
LOC_Os08g34984 OsFLZ25 8 576 192 20.60 11.05 57.41 68.59 -0.47
LOC_Os09g20240 OsFLZ26 9 576 192 20.10 9.02 66.86 42.04 -0.66
LOC_Os09g26370 OsFLZ27 9 525 175 19.61 9.84 66.76 71.26 -0.73
LOC_Os10g28680 OsFLZ28 10 903 301 31.79 5.32 67.17 53.77 -0.60
LOC_Os11g43790 OsFLZ29 11 453 151 15.88 8.88 67.63 65.93 -0.15

图1

OsFLZ家族基因蛋白保守基序、结构域和基因结构分析 A: OsFLZ蛋白保守基序分析, 不同颜色方框表示不同保守基序, 黑线表示蛋白质长度。B: OsFLZ蛋白结构域分析, 不同颜色方框表示不同结构域。C: OsFLZ家族基因的外显子-内含子结构, 绿色方框表示5′和3′非翻译区(UTR); 黄色方框表示编码区(CDS); 黑线表示内含子。"

图2

水稻FLZ家族基因顺式作用元件分析"

图3

水稻FLZ家族基因的表达模式 A: OsFLZ家族基因在水稻不同组织、圆锥花序发育梯度中的表达。SD: 苗期; BH: 抽穗期前; HT: 抽穗期; S2、S3、S4和S5分别指圆锥花序发育第2、第3、第4和第5阶段; BF: 开花期前; AF: 开花授粉后。B: OsFLZ13在珍汕97 (Zhenshan 97, ZS97)和明恢63 (Minghui 63, MH63)不同组织、不同圆锥花序发育阶段的表达水平, 缩写同图3-A。C: OsFLZ家族基因在赤霉素3 (GA3)、激动素(KT)、萘乙酸(NAA)处理后在幼苗中的表达热图和OsFLZ家族基因在48 h光照、48 h黑暗处理下在胚芽和幼根中的表达热图。"

图4

pCAMBIA1381Z-OsFLZ13转基因水稻营养和生殖组织器官的β-D-葡萄糖苷酸酶(GUS)染色 A: 萌发的种子GUS活性分析, 标尺为5 mm; B: 苗期的根和叶, 孕穗期的根和叶, 抽穗期的根、节间、叶、节, GUS活性分析, 比例尺为1 cm; C: 不同花药发育阶段的小花GUS活性分析, st代表花药发育的不同阶段, st8a和st8b分别指花药发育第8阶段的较早时期和较晚时期, st9、st10、st11、st12、st13、st14分别指花药发育第9、10、11、12、13、14阶段, 标尺为2 mm; D: 去掉雄蕊的雌蕊GUS活性分析, 缩写同图4-C, 标尺为500 μm; E: 花药GUS活性分析, 缩写同图4-C, 标尺为100 μm; F: 花粉GUS活性分析, 缩写同图4-C, 标尺为100 μm。"

图5

OsFLZ13蛋白在本氏烟草中的亚细胞定位 35S::eGFP为空载体pD1301S; 35S::OSFLZ13::GFP为与OsFLZ13的CDS重组的载体。标尺为50 μm。"

图6

CRISPR/Cas9编辑材料(Osflz13-1和Osflz13-2)构建过程及Osflz13基因序列 A: OsFLZ13的2个gRNA靶点位置和碱基序列; B: 2个靶点gRNA表达盒与PHK1-Cas-U3重组示意图; C: 突变体Osflz13与野生型植株中的OsFLZ13基因序列比对分析, 蓝色字母表示靶点序列, 黄色高亮为PAM序列, 删除线代表缺失碱基, 红色小写字母为插入碱基, -表示缺失碱基, +表示插入碱基, WT代表野生型中花11。"

图7

Osflz13突变体植株的雄蕊、雌蕊和花粉育性的观察及其结实率 A: 野生型(WT)和突变体(Osflz13-1、Osflz13-2)去掉颖壳的小花, 标尺为500 μm; B: 野生型(WT)和突变体(Osflz13-1、Osflz13-2)的雌蕊, 标尺为500 μm; C: 野生型(WT)和突变体(Osflz13-1、Osflz13-2)花粉的碘-碘化钾染色, 标尺为100 μm; D: 野生型(WT)和突变体(Osflz13-1、Osflz13-2)成熟期的植株, 标尺为10 cm; E: 野生型(WT)和突变体(Osflz13-1、Osflz13-2)成熟的稻穗, 标尺为2 cm; F: 野生型(ZH11)和突变体(Osflz13-1、Osflz13-2)的结实率。值表示平均值, 误差线表示SE (Student’s t检验, n=10, P<0.01)。"

[1] Salih H, Odongo M R, Gong W, He S, Du X. Genome-wide analysis of cotton C2H2-zinc finger transcription factor family and their expression analysis during fiber development. BMC Plant Biol, 2019, 19: 400.
doi: 10.1186/s12870-019-2003-8 pmid: 31510939
[2] Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996, 271: 1081-1085.
doi: 10.1126/science.271.5252.1081 pmid: 8599083
[3] Wang J, Li Z, Liang Y, Zheng J, Gong Z, Zhou G, Xu Y, Li X. Genome-wide identification and expression reveal the involvement of the FCS-like zinc finger (FLZ) gene family in Gossypium hirsutum at low temperature. PeerJ, 2023, 11: e14690.
doi: 10.7717/peerj.14690
[4] He Y, Tang W, Swain J D, Green A L, Jack T P, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol, 2001, 126: 707-716.
pmid: 11402199
[5] Jamsheer K M, Laxmi A. Expression of Arabidopsis FCS-like zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress. Front Plant Sci, 2015, 6: 746.
[6] Nietzsche M, Schießl I, Börnke F. The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants. Front Plant Sci, 2014, 5: 54.
doi: 10.3389/fpls.2014.00054 pmid: 24600465
[7] Jamsheer K M, Sharma M, Singh D, Mannully C T, Jindal S, Shukla B N, Laxmi A. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis. Plant J, 2018, 94: 232-245.
doi: 10.1111/tpj.2018.94.issue-2
[8] Jamsheer K M, Singh D, Sharma M, Sharma M, Jindal S, Mannully C T, Shukla B N, Laxmi A. The FCS-like zinc finger 6 and 10 are involved in regulating osmotic stress responses in Arabidopsis. Plant Signal Behav, 2019, 14:1592535.
doi: 10.1080/15592324.2019.1592535
[9] Hou X, Liang Y, He X, Shen Y, Huang Z. A novel ABA-responsive TaSRHP gene from wheat contributes to enhanced resistance to salt stress in Arabidopsis thaliana. Plant Mol Biol Rep, 2013, 31: 791-801.
doi: 10.1007/s11105-012-0549-9
[10] He Y, Gan S. A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis. Plant Mol Biol, 2004, 54: 1-9.
doi: 10.1023/B:PLAN.0000028730.10834.e3
[11] Jamsheer K M, Shukla B N, Jindal S, Gopan N, Mannully C T, Laxmi A. The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions. J Biol Chem, 2018, 293: 13134-13150.
doi: 10.1074/jbc.RA118.002073 pmid: 29945970
[12] Ma Y, Zhao J, Fu H, Yang T, Dong J, Yang W, Chen L, Zhou L, Wang J, Liu B, Zhang S, Edwards D. Genome-wide identification, expression and functional analysis reveal the involvement of FCS-like zinc finger gene family in submergence response in rice. Rice, 2021, 14: 76.
doi: 10.1186/s12284-021-00519-3 pmid: 34417910
[13] 马雅美, 张少红, 赵均良, 刘斌. FCS-like锌指蛋白OsFLZ18在调控水稻抽穗期中的作用. 中国农业科学, 2022, 55: 3875-3884.
doi: 10.3864/j.issn.0578-1752.2022.20.001
Ma Y M, Zhang S H, Zhao J L, Liu B. FCS-like zinc finger protein OsFLZ18 in regulating rice flowering time. Sci Agric Sin, 2022, 55: 3875-3884 (in Chinese with English abstract).
[14] 刘佳丽, 何明良, 刘晨曦, 廖栩, 李秀峰, 管清杰. 水稻盐碱逆境响应锌指蛋白基因OsZFP6表达特性及功能研究. 植物研究, 2020, 40: 424-432.
doi: 10.7525/j.issn.1673-5102.2020.03.014
Liu J L, He M L, Liu C X, Liao X, Li X F, Guan Q J. Zinc finger protein OsZFP6 expression features and functions in saline-alkali stress response. Bull Bot Res, 2020, 40: 424-432 (in Chinese with English abstract).
[15] 骆鹰, 谢旻, 张超, 王伟平, 朱建华, 万向元, 汪启明, 饶力群. 水稻锌指蛋白基因OsBBX22响应热胁迫的功能分析. 基因组学与应用生物学, 2018, 37: 836-844.
Luo Y, Xie M, Zhang C, Wang W P, Zhu J H, Wan X Y, Wang Q M, Rao L Q. Function analysis of rice zinc finger protein gene OsBBX22 in response to heat stress. Genom Appl Biol, 2018, 37: 836-844 (in Chinese with English abstract).
[16] Jamsheer K M, Laxmi A. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction. PLoS One, 2014, 9: e99074.
doi: 10.1371/journal.pone.0099074
[17] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[18] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39-W49.
doi: 10.1093/nar/gkv416
[19] Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[20] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W587.
doi: 10.1093/nar/gkm259 pmid: 17517783
[21] Yu C S, Lin C J, Hwang J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on N-peptide compositions. Prot Sci, 2004, 13: 1402-1406.
doi: 10.1110/ps.03479604
[22] Kokkirala V R, Yonggang P, Abbagani S, Zhu Z, Umate P. Subcellular localization of proteins of Oryza sativa L. in the model tobacco and tomato plants. Plant Signal Behav, 2010, 5: 1336-1341.
doi: 10.4161/psb.5.11.13318
[23] Bao A, Burritt D J, Chen H, Zhou X, Cao D, Tran L P. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol, 2019, 39: 321-336.
doi: 10.1080/07388551.2018.1554621 pmid: 30646772
[24] Lee J H, Schöffl F. GUS activity staining in gels: a powerful tool for studying protein interactions in plants. Plant Mol Biol Rep, 1995, 13: 346-354.
doi: 10.1007/BF02669190
[25] Jamsheer K M, Mannully C T, Gopan N, Laxmi A. Comprehensive evolutionary and expression analysis of FCS-like zinc finger gene family yields insights into their origin, expansion and divergence. PLoS One, 2015, 10: e134328.
[26] Ma Y, Dong J, Yang W, Chen L, Wu W, Li W, Zhou L, Wang J, Chen J, Yang T, Zhang S, Zhao J, Liu B. OsFLZ2 interacts with OsMADS51 to fine-tune rice flowering time. Development, 2022, 149: dev200862.
doi: 10.1242/dev.200862
[27] Chen S, Li X, Yang C, Yan W, Liu C, Tang X, Gao C. Genome-wide identification and characterization of FCS-like zinc finger (FLZ) family genes in maize (Zea mays) and functional analysis of ZmFLZ25 in plant abscisic acid response. Int J Mol Sci, 2021, 22: 3529.
doi: 10.3390/ijms22073529
[28] 魏振林, 林贵凯, 崔晓同, 李婷, 仝会琴. 大豆FCS like Zinc Finger家族基因的生物信息学鉴定. 分子植物育种, 网络首发[2021-09-24], https://kns.cnki.net/kcms/detail/46.1068.S.20210923.1847.015.html.
Wei Z L, Lin G K, Cui X T, Li T, Tong H Q. Bioinformatics analysis of soybean FCS like Zinc Finger gene family. Mol Plant Breed, Published online [2021-09-24], https://kns.cnki.net/kcms/detail/46.1068.S.20210923.1847.015.html (in Chinese with English abstract).
[29] Jin Y M, Piao R, Yan Y F, Chen M, Wang L, He H, Liu X, Gao X A, Jiang W, Lin X F. Overexpression of a new zinc finger protein transcription factor OsCTZFP8 improves cold tolerance in rice. Int J Genom, 2018, 2018: 5480617.
[1] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[2] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[3] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[4] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[5] 吴宇, 刘磊, 崔克辉, 齐晓丽, 黄见良, 彭少兵. 低氮条件下超级杂交稻苗期根系特征的变化及与其高氮素积累的关系[J]. 作物学报, 2024, 50(2): 414-424.
[6] 李明月, 张文婷, 李阳, 张保龙, 杨立明, 王金彦. 小肽Ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67-75.
[7] 徐高峰, 申时才, 张付斗, 杨韶松, 金桂梅, 郑凤萍, 温丽娜, 张云, 吴冉迪. 土壤微生物对长雄野生稻及其化感潜力后代抑草作用的影响[J]. 作物学报, 2023, 49(9): 2562-2571.
[8] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[9] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[10] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[11] 宋兆建, 冯紫旖, 屈天歌, 吕品苍, 杨晓璐, 湛明月, 张献华, 何玉池, 刘育华, 蔡得田. 四倍体水稻回复二倍体品系的籼粳属性鉴定和杂种优势利用初探[J]. 作物学报, 2023, 49(8): 2039-2050.
[12] 韦新宇, 曾跃辉, 杨旺兴, 肖长春, 候新坡, 黄建鸿, 邹文广, 许旭明. 利用CRISPR-Cas9技术编辑Badh2基因创制优质香型籼稻三系不育系[J]. 作物学报, 2023, 49(8): 2144-2159.
[13] 贾璐绮, 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春, 王晓雯. 水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆[J]. 作物学报, 2023, 49(8): 2288-2295.
[14] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[15] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报, 2023, 49(7): 1735-1746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .