欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 556-575.doi: 10.3724/SP.J.1006.2024.34094

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆巢式关联作图(NAM)群体构建及花色和种皮色遗传分析

宋健1,6(), 熊亚俊1,6, 陈伊洁1,6, 徐瑞新2, 刘康林1, 郭庆元1, 洪慧龙2, 高华伟2, 谷勇哲2, 张丽娟2, 郭勇2, 阎哲2, 刘章雄2, 关荣霞2, 李英慧2, 王晓波3, 郭兵福4, 孙如建5, 闫龙7, 王好让8, 姬月梅9, 常汝镇2, 王俊1,6,*(), 邱丽娟2,*()   

  1. 1长江大学, 湖北荆州 434025
    2中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程 / 农业农村部北京大豆生物学重点实验室, 北京 100081
    3安徽农业大学农学院, 安徽合肥 230036
    4江西省农业科学院作物研究所, 江西南昌 330200
    5呼伦贝尔市农业科学研究所, 内蒙古呼伦贝尔 162650
    6农业农村部长江中游作物绿色高效生产重点实验室(部省共建) / 长江大学农学院, 湖北荆州 434025
    7河北省农林科学院粮油作物研究所, 河北石家庄 050035
    8江苏徐怀地区徐州农业科学研究所, 江苏徐州 210031
    9宁夏农林科学院作物研究所, 宁夏银川 750021
  • 收稿日期:2023-06-07 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-10-07
  • 通讯作者: *邱丽娟, E-mail: qiulijuan@caas.cn; 王俊, E-mail: wangjagri@yangtzeu.edu.cn
  • 作者简介:宋健, E-mail: songjian@yangtzeu.edu.cn

    **同等贡献

  • 基金资助:
    中国农业科学院农业科技创新计划项目(ASTIP);云南省重点科技项目(202202AE090014)

Genetic analysis of seed coat and flower color based on a soybean nested association mapping population

SONG Jian1,6(), XIONG Ya-Jun1,6, CHEN Yi-Jie1,6, XU Rui-Xin2, LIU Kang-Lin1, GUO Qing-Yuan1, HONG Hui-Long2, GAO Hua-Wei2, GU Yong-Zhe2, ZHANG Li-Juan2, GUO Yong2, YAN Zhe2, LIU Zhang-Xiong2, GUAN Rong-Xia2, LI Ying-Hui2, WANG Xiao-Bo3, GUO Bing-Fu4, SUN Ru-Jian5, YAN Long7, WANG Hao-Rang8, JI Yue-Mei9, CHANG Ru-Zhen2, WANG Jun1,6,*(), QIU Li-Juan2,*()   

  1. 1Yangtze University, Jingzhou 434025, Hubei, China
    2National Key Facility for Gene Resources and Genetic Improvement / Beijing Key Laboratory of Soybean Biology, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Agriculture, Anhui Agricultural University, Hefei 230036, Anhui, China
    4Crops Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
    5Hulun Buir Institution of Agricultural Sciences, Hulun Buir 162650, Nei Mongol, China
    6MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province) / College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    7Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, Hebei, China
    8Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou 210031, Jiangsu, China
    9Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750021, Ningxia, China
  • Received:2023-06-07 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-10-07
  • Contact: *E-mail: qiulijuan@caas.cn; E-mail: wangjagri@yangtzeu.edu.cn
  • About author:

    **Contributed equally to this work

  • Supported by:
    Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIP);Key Science and Technology Project of Yunnan(202202AE090014)

摘要:

巢式关联作图(Nested Association Mapping, NAM)群体在作物学遗传与育种研究中具有广泛的应用。本研究在前期大豆种质资源评价基础上, 利用35份不同地区来源的代表性种质与中豆41 (公共母本)杂交, 构建了一套大豆NAM群体。PCA和聚类分析发现, 不同亲本组合的RIL群体基本聚在一起, 显示出清晰的遗传结构。利用该NAM群体亲本间花色和种皮色具有显著差异的RIL群体进行全基因组关联分析, 定位到1个主要位点qFC13-1与花色显著关联, 该位点与W1位点重合; 定位到12个位点与种皮色显著相关, 其中9个位点为3种以上方法共定位, 3个位点为2种方法共定位, 包括4个已知位点和8个新位点。研究结果表明, 构建的NAM群体适于进行大豆相关性状遗传分析, 为大豆复杂性状的遗传解析和育种实践提供了良好的基础材料。

关键词: 大豆, NAM群体, 花色, 种皮色, 遗传分析

Abstract:

Nested Association Mapping (NAM) population is widely applied in genetic study and breeding practice in many crops. A NAM panel was constructed by crossing of 35 parental lines with the common maternal lines (Zhongdou 41) based on previous evaluation of soybean germplasm. Principle component analysis and clustering analysis showed that clear genetic structure was observed between subpanel of RIL populations. Genetic analysis was performed on flower color and seed coat color in NAM subpanel with significant difference between paternal and maternal parents, and we found that qFC13-1 was significantly associated with flower color, which coincided with the W1 locus. Twelve loci identified were significantly correlated with seed coat color, among which nine loci were co-located by more than three methods, and the other three loci were co-located by two methods, including four reported loci and eight novel loci. In conclusion, NAM population was suitable for genetic analysis of soybean, which provided material basis for genetic interpretation and breeding practice for complex traits in soybean.

Key words: soybean, NAM population, flower color, seed coat color, genetic analysis

表1

NAM群体亲本信息"

群体编号
Population number
亲本名称
Parental name
系统编号
Systematic code
亲本类型
Parent type
来源地
Geographic origination
种质类型
Germ type
生态类型
Ecological type
种皮色
SSC
花色
FC
百粒重
100-SW (g)
蛋白
PC (%)
脂肪
OC (%)
蛋白脂肪和
POC (%)
群体大小 鉴定株系
Population size Genotyped Individuals
N001 羊眼豆
Yangyandou
ZDD17457 父本 云南 地方品种 南方夏 暗绿 14.1 43.6 16.1 59.6 524 72
Male parent Yunnan Landrace SSu Dark green White
N002 夏黑豆 ZDD02400 父本 山西 地方品种 黄淮夏 10 43.5 19.2 62.7 171 72
Xiaheidou Male parent Shanxi Landrace HHSu Black Purple
N003 柘城小红豆 Zhechengxiaohongdou ZDD03533 父本 河南 地方品种 黄淮夏 9.8 43.9 17.5 61.4 387 72
Male parent Henan Landrace HHSu Brown Purple
N004 邳县四粒糙 Pixiansilicao ZDD03741 父本 江苏 地方品种 黄淮春 14.2 46 17.8 63.8 333 72
Male parent Jiangsu Landrace HHSp Yellow Purple
N005 东农36号 ZDD06851 父本 黑龙江 选育品种 北方春 18.3 42 20.1 62.2 135 72
Dongnong 36 Male parent Heilongjiang Cultivar NSp Yellow Purple
N006 莆豆451 ZDD14125 父本 福建 选育品种 南方夏 16.6 41.9 18.8 60.7 216 72
Pudou 451 Male parent Fujian Cultivar SSu Yellow White
N007 下台子磨石豆 ZDD18524 父本 河北 地方品种 黄淮夏 9.7 44.9 16.5 61.5 206 72
Xiataizimoshidou Male parent Hebei Landrace HHSu Brown Purple
N008 东山69 ZDD18870 父本 福建 选育品种 黄淮夏 13.3 42.1 21.4 63.5 336 72
Dongshan 69 Male parent Fujian Cultivar HHSu Yellow Purple
N009 商951099 ZDD23269 父本 河南 选育品种Cultivar 黄淮夏 15.5 42.1 20.9 63.1 44 44
Shang 951099 Male parent Henan HHSu Yellow Purple
N010 郑92116 ZDD23277 父本 河南 选育品种 黄淮夏 19.2 45.2 18.7 63.9 132 72
Zheng 92116 Male parent Henan Cultivar HHSu Yellow Purple
N011 中豆24 ZDD11581 父本 湖北 选育品种 南方夏 14.3 48.2 16.4 64.6 170 72
Zhongdou 24 Male parent Hubei Cultivar SSu Yellow White
N012 吉育202 ZDD30837 父本 吉林 选育品种 北方春 17.2 38 21.9 59.9 87 64
Jiyu 202 Male parent Jilin Cultivar NSp Yellow White
N013 牛毛黄 ZDD03603 父本 陕西 地方品种 黄淮夏 15.4 42.6 20.6 63.2 201 72
Niumaohuang Male parent Shaanxi Landrace HHSu Yellow Purple
N014 信阳羊眼豆 ZDD03570 父本 河南 地方品种 黄淮夏 虎斑 13.5 43.4 19.4 62.9 97 72
Xinyangyangyandou Male parent Henan Landrace HHSu Bicolor White
N015 淮阴春豆 ZDD03776 父本 江苏 选育品种Cultivar 黄淮春 17 46.6 16.1 62.7 356 72
Huaiyinchundou Male parent Jiangsu HHSp Yellow Purple
N016 皂角豆 ZDD15624 父本 贵州 地方品种 南方夏 18.6 42.1 21.2 63.3 198 72
Zaojiaodou Male parent Guizhou Landrace SSu Brown White
N017 科丰1号 ZDD18394 父本 北京 选育品种 黄淮夏 9.3 45.3 17.3 62.6 91 72
Kefeng 1 Male parent Beijing Cultivar HHSu Black White
N018 冀豆7 ZDD18632 父本 河北 选育品种 黄淮夏 19.5 43.2 19.3 62.5 91 72
Jidou 7 Male parent Hebei Cultivar HHSu Yellow Purple
N019 高作选1号 ZDD19381 父本 山东 选育品种 黄淮夏 11.7 42.9 20.2 63.1 100 72
Gaozuoxuan 1 Male parent Shandong Cultivar HHSu Yellow Purple
N020 豫豆18 ZDD19409 父本 河南 选育品种 黄淮夏 16.5 38.1 23.5 61.6 257 72
Yudou 18 Male parent Henan Cultivar HHSu Yellow Purple
N021 铁丰31 ZDD23829 父本 辽宁 选育品种 北方春 18 42.8 21 63.8 476 72
Tiefeng 31 Male parent Liaoning Cultivar NSp Yellow Purple
N022 中黄13 ZDD23876 父本 北京 选育品种 黄淮夏 24.1 43.2 20.4 63.6 72 72
Zhonghuang 13 Male parent Beijing Cultivar HHSu Yellow Purple
N023 垦丰16 ZDD24344 父本 黑龙江 选育品种 北方春 18 41 20.8 61.9 59 59
Kenfeng 16 Male parent Heilongjiang Cultivar NSp Yellow White
N024 中黄30 ZDD24632 父本 北京 选育品种 黄淮夏 18.1 44.9 19.9 64.8 131 72
Zhonghuang 30 Male parent Beijing Cultivar HHSu Yellow Purple
N025 荷豆18 ZDD24748 父本 山东 选育品种 黄淮夏 19.6 43.6 20.3 63.9 129 72
Hedou 18 Male parent Shandong Cultivar HHSu Yellow Purple
N026 徐豆16 ZDD24783 父本 江苏 选育品种 黄淮夏 21.8 43.4 19.1 62.5 135 72
Xudou 16 Male parent Jiangsu Cultivar HHSu Yellow Purple
N027 皖豆28 ZDD24832 父本 安徽 选育品种 黄淮夏 22.1 46.1 20.9 67 106 72
Wandou 28 Male parent Anhui Cultivar HHSu Yellow Purple
N028 天隆一号 ZDD24847 父本 湖北 选育品种 南方春 18.1 44.2 19.2 63.4 483 72
Tianlongyihao Male parent Hubei Cultivar SSp Yellow White
N029 川豆9号 ZDD24861 父本 四川 选育品种 南方夏 20 47.6 18.9 66.5 44 44
Chuandou 9 Male parent Sichuan Cultivar SSu Yellow White
N030 湘春豆26 ZDD25213 父本 湖南 选育品种 南方春 19 41.7 18.9 60.7 131 72
Xiangchundou 26 Male parent Hunan Cultivar SSp Yellow White
N031 华春2号 ZDD25258 父本 广东 选育品种 南方春 18.9 42.5 19.8 62.4 576 72
Huachun 2 Male parent Guangdong Cultivar SSp Yellow White
N032 晋品82号 ZDD23181 父本 山西 选育品种 黄淮夏 17.8 45.6 19 64.5 77 71
Jinpin 82 Male parent Shanxi Cultivar HHSu Black Purple
N033 冀豆12 ZDD23040 父本 河北 选育品种 黄淮夏 24 43.7 20.7 64.4 343 72
Jidou 12 Male parent Hebei Cultivar HHSu Yellow Purple
N034 五星1号 ZDD23915 父本 河北 选育品种 黄淮夏 19.8 30.9 25.2 56 64 64
Wuxing 1 Male parent Hebei Cultivar HHSu Yellow Purple
N035 海门等西风甲 ZDD11320 父本 江苏 地方品种 南方夏 绿 30.2 39.1 21.1 60.2 58 58
Haimendengxifengjia Male parent Jiangsu Landrace SSu Green Purple
NA 中豆41 ZDD31206 母本 湖北 选育品种 南方夏 23.2 42.7 18.2 60.9
Zhongdou 41 Female parent Hubei Cultivar SS Yellow White

表2

大豆NAM群体构建进程"

时间
Time
地点
Location
世代
Generation
2015年5-11月
May-November 2015
湖北荆州Jingzhou, Hubei (30.37°N, 112.06°E) 杂交, 收获F1
Cross, harvest F1
2016年5-11月
May-November 2016
湖北荆州Jingzhou, Hubei (30.37°N, 112.06°E) 种植F1, 收获F2
Plant F1, harvest F2
2017年5-11月
May-November 2017
湖北荆州Jingzhou, Hubei (30.37°N, 112.06°E) 种植F2, 收获F3
Plant F2, harvest F3
2017年11月-2018年3月
November 2017-March 2018
海南三亚Sanya, Hainan (18.25°N, 109.51°E) 种植F3, 收获F4
Plant F3, harvest F4
2018年5-11月
May-November 2018
湖北荆州Jingzhou, Hubei (30.37°N, 112.06°E) 种植F4, 收获F5
Plant F4, harvest F5
2018年11月-2019年3月
November 2018-March 2019
海南三亚Sanya, Hainan (18.25°N, 109.51°E) 种植F5, 收获F6
Plant F5, harvest F6
2019年5-11月
May-November 2019
湖北荆州Jingzhou, Hubei (30.37°N, 112.06°E) 种植F6, 收获F7
Plant F6, harvest F7
2019年11月-2020年3月
November 2019-March 2020
海南三亚Sanya, Hainan (18.25°N, 109.51°E) 种植F7, 收获F8
Plant F7, harvest F8
2020年5-11月
May-November 2020
湖北荆州Jingzhou, Hubei (30.37°N, 112.06°E) 种植F8, 收获F9
Plant F8, harvest F9
2020年11月-2021年3月
November 2020-March 2021
海南三亚Sanya, Hainan (18.25°N, 109.51°E) 种植F9, 收获F10
Plant F9, harvest F10
2021年5-11月
May-November 2021
河南商丘Shangqiu, Henan (34.41°N, 115.98°E) 种植F10, 收获F11
Plant F10, harvest F11
2022年5-11月
May-November 2022
安徽宿州Suzhou, Anhui (33.69°N, 117.10°E) 种植F11, 收获F12
Plant F11, harvest F12

图1

大豆NAM群体亲本地理来源、分类与群体大小 (A) NAM群体亲本生态类型。HHSp: 黄淮春; HHSu: 黄淮夏; NSp: 北方春; SSp: 南方春; SSu: 南方夏。(B)~(E) NAM群体亲本种质类型(B)、花色(C)、种皮色(D)、百粒重及品质性状(E); (F) NAM群体中不同RIL群体大小, N001~N035群体详细信息见表1。"

图2

NAM群体遗传结构分析 (A) 大豆NAM群体亲本最大似然树, 基于127,184 SNP标记, 模型选择: TVM+F+R3, Bootstrap值为1000; (B) 大豆NAM群体最大似然树, 群体父本标注在RIL株系相对集中的区域; (C) 主成分PC1与PC2散点图; (D) 主成分PC1、PC2、PC3 3D散点图。"

表3

种皮色9个属性表型数据统计分析"

性状
Trait
最小值Min. 最大值Max. 均值Mean 变异范围Range 变异系数CV 方差
Variance
标准差SD 偏度Skewness 峰度Kurtosis
红Red 56.74 224.83 157.11 168.09 0.22 1240.28 35.22 -1.25 0.40
绿Green 66.14 225.36 152.64 159.21 0.23 1192.48 34.53 -0.69 -0.99
蓝Blue 71.41 206.22 128.15 134.80 0.18 524.63 22.90 -0.14 -0.72
光度Luminosity 60.34 203.82 134.87 143.48 0.19 678.15 26.04 -0.73 -0.42
L值L-value 26.85 88.92 62.32 62.06 0.21 164.89 12.84 -0.81 -0.67
a值a-value -17.16 16.28 -5.51 33.44 -1.23 45.76 6.76 1.36 1.12
b值b-value -9.08 39.43 16.58 48.51 0.59 96.16 9.81 -0.84 0.23
色调Hue 26.88 242.16 116.67 215.28 0.35 1659.97 40.74 1.19 1.81
饱和度Chroma 2.47 42.64 19.71 40.17 0.40 60.80 7.80 -0.12 -0.36

表4

种皮色9种不同属性值相关性分析"

性状 绿 光度 L值 a值 b值 色调 饱和度
Trait Red Green Blue Luminosity L-value a-value b-value Hue Chroma
红Red 1
绿Green 0.912*** 1
蓝Blue 0.752** 0.879*** 1
光度 Luminosity 0.960*** 0.964 *** 0.905*** 1
L值 L-value 0.951*** 0.994*** 0.866*** 0.982*** 1
a值 a-value -0.255 -0.615* -0.521* -0.404 -0.528* 1
b值 b-value 0.835*** 0.742** 0.353 0.695** 0.773** -0.300 1
色调 Hue -0.595* -0.256 -0.060 -0.399 -0.348 -0.462 -0.600* 1
饱和度 Chroma 0.727** 0.683** 0.280 0.600** 0.700** -0.369 0.950*** -0.412 1

表5

花色和种皮色全基因组关联位点"

性状
Trait
位点
Locus
染色体
Chr.
起始
Start
终止
End
最显著SNP位点Most significant SNP 最显著SNP P
P-value of tagSNP
重复关联性状
Correlated trait
关联方法
Method
经典位点Classic loci
种皮色
Seed coat color
qSCC1-1 1 16769772 16960836 Chr01_16862797 4.09E-09 a, Hue Emmax, RTM, Tassel
qSCC1-2 1 53062691 53307617 Chr01_53162691 1.81E-07 Chroma, a, b, Green, Blue Emmax, RTM, 3VmrMLM G
qSCC5-1 5 36175387 36290717 Chr05_36193584 4.85E-13 a, b, L, Red, Green, Chroma, Luminosity, Hue Emmax, RTM, Tassel
qSCC6-1 6 18409621 19314852 Chr06_19275710 2.72E-13 a, b, L, Red, Green, Chroma, Luminosity, Hue Emmax, RTM, Tassel, 3VmrMLM T/F3’H
qSCC6-2 6 40810608 42012070 Chr06_41686979 3.69E-08 b, Red, Hue, Green, Chroma Emmax, RTM, 3VmrMLM
qSCC8-1 8 7088758 9481774 Chr08_8400595 1.49E-54 a, b, L, Red, Green, Blue, Chroma, Luminosity, Hue Emmax, RTM, Tassel, 3VmrMLM I/CHS
qSCC9-1 9 45305565 45822016 Chr09_48482371 8.96E-11 a, b, L, Red, Green, Blue, Chroma, Luminosity, Hue Emmax, RTM, Tassel, 3VmrMLM R/MYB
qSCC12-1 12 4401461 4591803 Chr12_4496838 6.48E-08 a, b, L, Red, Green, Blue, Luminosity Emmax, RTM, Tassel
qSCC10-1 10 43550478 44132066 Chr10_44033177 1.72E-16 a, b, Red, Green, Hue, Chroma Tassel, RTM, 3VmrMLM
qSCC11-1 11 3209682 6768477 Chr11_3309682 4.47E-30 Chroma, Red, Luminosity RTM, 3VmrMLM
qSCC11-2 11 32477382 33390337 Chr11_32487220 0.0001984 a, L, Red, Green RTM, 3VmrMLM
qSCC13-1 13 34811493 36307740 Chr13_34911493 8.93E-18 Red, Green, Blue, L, a, b, Luminosity RTM, 3VmrMLM
花色
Flower color
qFC13-1 13 17215500 17425536 Chr13_17315536 5.53E-211 Emmax, RTM, Tassel, 3VmrMLM W1/F3’5’H

图3

基于EMMAX的花色和种皮色全基因组关联分析Manhattan图和QQ图 a、b、L、Red、Green、Blue、Luminosity、Chroma、Hue为种皮色9个颜色属性, FC表示花色。"

图4

基于3VmrMLM的花色和种皮色全基因组关联分析 a、b、L、Red、Green、Blue、Luminosity、Chroma、Hue为种皮色9个颜色属性, FC表示花色。"

表6

关联定位区间候选基因"

位点
Locus
区间
Range
(kb)
基因数目
Number genes
候选基因
Candidate gene ID
基因名
Gene name
基因位置
Gene position
功能注释
Gene annotation
qSCC1-1 191.1 5 Glyma.01G075200 36147019..36148009 60S核糖体蛋白
60S ribosomal protein
qSCC5-1 115.3 20 Glyma.05G171700 36197575..36199801
Glyma.05G172400 36241411..36245575 染色体凝聚调节因子(RCC1)家族蛋白
Regulator of chromosome condensation (RCC1) family protein
Glyma.05G173300 36277504..36281700 糖基水解酶家族5
Glycosyl hydrolase family 5
Glyma.05G153200 CHS 34687008..34693243 查尔酮合成酶
Naringenin-chalcone synthase
qSCC6-2 1201.5 44 Glyma.06G242200 40186035..40189770 WRKY家族转录因子家族蛋白
WRKY family transcription factor family protein
Glyma.06G247200 41703993..41711389 转导素/WD40重复样超家族蛋白
Transducin/WD40 repeat-like superfamily protein
qSCC12-1 190.3 20 Glyma.12G060700 4406789..4408502 锌指(C3HC4型)家族蛋白
Zinc finger (C3HC4-type RING finger) family protein
Glyma.12G061600 4499104..4499532 二磷酸核酮糖羧化酶
Ribulose-bisphosphate carboxylases
qSCC10-1 581.6 49 Glyma.10G204800 LAR2 43605676..43608465 无色花青素还原酶/无色花青素还原酶
Leucoanthocyanidin reductase/Leucocyanidin reductase
qSCC11-1 2791.8 446 Glyma.11G027700 ANS 1992155..1993544 无色花青素双加氧酶有关
Leucoanthocyanidin dioxygenase related
Glyma.11G077200 CHI 5785880..5787797 查尔酮-黄酮异构酶家族蛋白
Chalcone-flavanone isomerase family protein
Glyma.11G054600 4115043..4119025 碱性螺旋-环-螺旋(bHLH) DNA结合超家族蛋白
Basic helix-loop-helix (bHLH) DNA-binding superfamily protein
Glyma.11G060200 4545030..4548660 细胞色素P450
Cytochrome P450
qSCC11-2 913 100 Glyma.11G212900 GST 30575282..30577501 谷胱甘肽S-转移酶F11相关
Glutathione S-Transferase F11-related
Glyma.11G231300 32690044..32692317 碱性螺旋-环-螺旋(bHLH) DNA结合超家族蛋白
Basic helix-loop-helix (bHLH) DNA-binding superfamily protein
Glyma.11G236300 33112560..33118486 bZIP转录因子家族蛋白bZIP
Transcription factor family protein
qSCC13-1 1396.2 201 Glyma.13G256900 36204841..36216179 K-box和MADS-box转录因子家族蛋白
K-box region and MADS-box transcription factor family protein
qSCC1-2 244.9 27 Glyma.01G198500 53226420..53229986 CAAX蛋白酶自身免疫(Abi)
CAAX protease self-immunity (Abi)
qSCC6-1 905.2 16 Glyma.06G202300 F3’H 18731104..18738025 类黄酮3’单氧酶
Flavonoid 3’-monooxygenase
qSCC8-1 2393 297 Glyma.08G109400 CHS 8391363..8394840 查尔酮合成酶
Naringenin-chalcone synthase
Glyma.08G109200 CHS 8384741..8386542 查尔酮合成酶
Naringenin-chalcone synthase
Glyma.08G109500 CHS 8397943..8399751 查尔酮合成酶
Naringenin-chalcone synthase
Glyma.08G109300 CHS 8387508..8391327 查尔酮合成酶
Naringenin-chalcone synthase
Glyma.08G110300 CHS 8475792..8477410 查尔酮合成酶
Naringenin-chalcone synthase
Glyma.08G110500 CHS 8504478..8506020 查尔酮合成酶
Naringenin-chalcone synthase
Glyma.08G110700 CHS 8513951..8515719 查尔酮合成酶
Naringenin-chalcone synthase
Glyma.08G110900 CHS 8517798..8519303 查尔酮合成酶
Naringenin-chalcone synthase
qSCC9-1 516.5 67 Glyma.09G235100 MYB 45758761..45760773 转录因子MYB113类
Transcription MYB113-related
qFC13-1 210.04 10 Glyma.13G072100 F35H 17312471..17317198 类黄酮3’,5’-羟化酶
Flavonoid 3’,5’-hydroxylase

图5

种皮色、花色及色素合成相关候选基因表达模式[69]"

[1] Gireesh C, Sundaram R M, Anantha S M, Pandey M K, Madhav M S, Rathod S, Yathish K R, Senguttuvel P, Kalyani B M, Ranjith E, Subbarao L V, Mondal T K, Swamy M, Rakshit S. Nested association mapping (NAM) populations: present status and future prospects in the genomics era. Crit Rev Plant Sci, 2021, 40: 49-67.
doi: 10.1080/07352689.2021.1880019
[2] Nordborg M, Tavaré S. Linkage disequilibrium: what history has to tell us. Trends Genet, 2002, 18: 83-90.
pmid: 11818140
[3] Visscher P M, Wray N R, Zhang Q, Sklar P, McCarthy M I, Brown M A, Yang J. 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet, 2017, 101: 5-22.
doi: S0002-9297(17)30240-9 pmid: 28686856
[4] Yu J, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178: 539-551.
doi: 10.1534/genetics.107.074245 pmid: 18202393
[5] Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J M, Cao M, Rong T, Xu Y. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA, 2010, 107: 19585-19590.
doi: 10.1073/pnas.1006105107 pmid: 20974948
[6] McMullen M D, Kresovich S, Villeda S H, Bradbury P, Li H, Sun Q, Flint-Garica S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell S E, Peterson B, Pressoir G, Romero S, Rosas M O, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz J C, Goodman M, Ware D, Holland J B, Buckler E S. Genetic properties of the maize nested association mapping population. Science, 2009, 325: 737-740.
doi: 10.1126/science.1174320 pmid: 19661427
[7] Kump K L, Bradbury P J, Wisser R J, Buckler E S, Belcher A R, Oropeza-Rosas M A, Zwonitzer J C, Kresovich S, Mcmullen M D, Ware D, Balint-Kurti P J, Holland J B. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet, 2011, 43: 163-168.
doi: 10.1038/ng.747 pmid: 21217757
[8] Poland J A, Bradbury P J, Buckler E S, Nelson R J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA, 2011, 108: 6893-6898.
doi: 10.1073/pnas.1010894108 pmid: 21482771
[9] Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43: 159-162.
doi: 10.1038/ng.746 pmid: 21217756
[10] Cook J P, McMullen M D, Holland J B, Tian F, Bradbury P, Ross-Ibarra J, Buckler E S, Flint-Garcia S A. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol, 2012, 158: 824-834.
doi: 10.1104/pp.111.185033 pmid: 22135431
[11] Peiffer J A, Flint-Garcia S A, Leon N D, McMullen M, Kaeppler S M, Buckler E S. The genetic architecture of maize stalk strength. PLoS One, 2013, 8: e67066.
doi: 10.1371/journal.pone.0067066
[12] Zhang N, Gibon Y, Wallace J G, Lepak N, Li P, Dedow L, Chen C, So Y S, Kremling K, Bradbury P J, Brutnell T, Stitt M, Buckler E S. Genome-wide association of carbon and nitrogen metabolism in the maize nested association mapping population. Plant Physiol, 2015, 168: 575-583.
doi: 10.1104/pp.15.00025 pmid: 25918116
[13] Li C, Sun B, Li Y, Cheng L, Xun W, Zhang D, Shi Y, Song Y, Buckler E S, Zhang Z, Wang T, Li Y. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics, 2016, 17: 894.
doi: 10.1186/s12864-016-3170-8
[14] Schnaithmann F, Kopahnke D, Pillen K. A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor Appl Genet, 2014, 127: 1513-1525.
doi: 10.1007/s00122-014-2315-x pmid: 24797143
[15] Bajgain P, Rouse M N, Tsilo T J, Macharia G K, Bhavani S, Jin Y, Anderson J A. Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS One, 2016, 11: e0155760.
doi: 10.1371/journal.pone.0155760
[16] Hoyos-Villegas V, Song Q, Wright E M, Beebe S E, Kelly J D. Joint linkage QTL mapping for yield and agronomic traits in a composite map of three common bean RIL populations. Crop Sci, 2016, 56: 2546-2563.
doi: 10.2135/cropsci2016.01.0063
[17] Li J, Bus A, Spamer V, Stich B. Comparison of statistical models for nested association mapping in rapeseed (Brassica napus L.) through computer simulations. BMC Plant Biol, 2016, 16: 26.
doi: 10.1186/s12870-016-0707-6
[18] Pandey M K, Roorkiwal M, Singh V K, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney R K. Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci, 2016, 7: 455.
doi: 10.3389/fpls.2016.00455 pmid: 27199998
[19] Bouchet S, Olatoye M O, Marla S R, Perumal R, Tesso T, Yu J, Tuinstra M, Morris G P. Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics, 2017, 206: 573-585.
doi: 10.1534/genetics.116.198499 pmid: 28592497
[20] Fragoso C A, Moreno M, Wang Z, Heffelfinger C, Arbelaez L J, Aguirre J A, Franco N, Romero L E, Labadie K, Zhao H, Dellaporta S L, Lorieux M. Genetic architecture of a rice nested association mapping population. Genes Genom Genet, 2017, 7: 1913-1926.
[21] Maranna S, Kumawat G, Nataraj V, Gireesh C, Gupta S, Satpute G K, Ratnaparkhe M B, Yadav D P. NAM population: a novel genetic resource for soybean improvement: development and characterization for yield and attributing traits. Plant Genet Resour, 2019, 17: 545-553.
doi: 10.1017/S1479262119000352
[22] Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B Z. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J, 2020, 18: 1457-1471.
doi: 10.1111/pbi.13311 pmid: 31808273
[23] Song Q L, Yan L, Quigley C V, Jordan B, Fickus E, Schroeder S, Song B H, Charles An Y Q, Hyten D L, Nelson R L, Rainey K M, Beavis W, Specht J, Diers B, Cregan P. Genetic characterization of the soybean nested association mapping population. Plant Genome, 2017, 10: 3835.
[24] Xavier A, Jarquin D, Howard R, Ramasubramanian V, Specht J E, Graef G L, Beavis W D, Diers B W, Song Q, Cregan P, Nelson R, Mian R, Shannon J G, Mchale L K, Wang D, Schapaugh W, Lorenz A J, Xu S, Muir W M, Rainey K M. Genome-wide analysis of grain yield stability and environmental interactions in a multiparental soybean population. Genes Genom Genet, 2018, 8: 519-529.
[25] Diers B W, Specht J, Rainey K M, Cregan P, Song Q, Ramasubramanian V, Graef G L, Nelson R, Schapaugh W, Wang D, Shannon J G, Mchale L K, Kantartzi S K, Xavier A, Mian R, Stupar R M, Michno J M, Charles An Y Q, Goettel W, Ward R, Fox C, Lipka A E, Hyten D L, Cary T, Beavis W. Genetic architecture of soybean yield and agronomic traits. Genes Genom Genet, 2018, 8: 3367-3375.
[26] Scott K, Balk C, Veney D, Mchale L K, Dorrance A E. Quantitative disease resistance loci towards and three species of in six soybean nested association mapping populations. Crop Sci, 2019, 59: 605-623.
doi: 10.2135/cropsci2018.09.0573
[27] Lopez M A, Xavier A, Rainey K M. Phenotypic variation and genetic architecture for photosynthesis and water use efficiency in soybean (Glycine max L. Merr.). Front Plant Sci, 2019, 10: 680.
doi: 10.3389/fpls.2019.00680
[28] Beche E, Gillman J D, Song Q J, Nelson R, Beissinger T, Decker J, Shannon G, Scaboo A M. Genomic prediction using training population design in interspecific soybean populations. Mol Breed, 2021, 41: 15.
doi: 10.1007/s11032-021-01203-6
[29] 李曙光, 曹永策, 贺建波, 王吴彬, 邢光南, 杨加银, 赵团结, 盖钧镒. 大豆巢式关联作图群体蛋白质含量的遗传解析. 中国农业科学, 2020, 53: 1743-1755.
doi: 10.3864/j.issn.0578-1752.2020.09.005
Li S G, Cao Y C, He J B, Wang W B, Xing G N, Yang J Y, Zhao T J, Gai J Y. Genetic dissection of protein content in a nested association mapping population of soybean. Sci Agric Sin, 2020, 53: 1743-1755 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.09.005
[30] He J, Meng S, Zhao T, Xing G, Yang S, Li Y, Guan R, Lu J, Wang Y, Xia Q, Yang B, Gai J. An innovative procedure of genome- wide association analysis fits studies on germplasm population and plant breeding. Theor Appl Genet, 2017, 130: 2327-2343.
doi: 10.1007/s00122-017-2962-9
[31] 刘晓冬, 王英男, 齐广勋, 赵勇, 仲晓芳, 董英山, 王玉民. 大豆花色研究进展. 东北农业科学, 2017, 42(6): 53-57.
Liu X D, Wang Y N, Qi G X, Zhao Y, Zhong X F, Dong Y S, Wang Y M. A review of researches on flower color of soybean. J Northeast Agric Sci, 2017, 42(6): 53-57 (in Chinese with English abstract).
[32] 邱红梅, 陈亮, 侯云龙, 王新风, 陈健, 马晓萍, 崔正果, 张玲, 胡金海, 王跃强, 邱丽娟. 大豆种子颜色遗传调控机制研究进展. 作物学报, 2021, 47: 2299-2313.
doi: 10.3724/SP.J.1006.2021.14022
Qiu H M, Chen L, Hou Y L, Wang X F, Chen J, Ma X P, Cui Z G, Zhang L, Hu J H, Wang Y Q, Qiu L J. Reserch progress on genetic regulatory mechanism of seed color in soybean (Glycine max). Acta Agron Sin, 2021, 47: 2299-2313 (in Chinese with English abstract).
[33] Song J, Liu Z, Hong H, Ma Y, Tian L, Li X, Li Y H, Guan R, Guo Y, Qiu L J. Identification and validation of loci governing seed coat color by combining association mapping and bulk segregation analysis in soybean. PLoS One, 2016, 11: e0159064.
doi: 10.1371/journal.pone.0159064
[34] Yuan B, Yuan C, Wang Y, Liu X, Qi G, Wang Y, Dong L, Zhao H, Li Y, Dong Y. Identification of genetic loci conferring seed coat color based on a high-density map in soybean. Front Plant Sci, 2022, 13: 968618.
doi: 10.3389/fpls.2022.968618
[35] Park G T, Sundaramoorthy J, Lee J D, Kim J H, Seo H S, Song J T, Martina S. Elucidation of molecular identity of the W3 locus and its implication in determination of flower colors in soybean. PLoS One, 2015, 10: e0142643.
doi: 10.1371/journal.pone.0142643
[36] Zabala G, Vodkin L O. A rearrangement resulting in small tandem repeats in the F3’5’H gene of white flower genotypes is associated with the soybean W1 locus. Crop Sci, 2007, 47: S113-S124.
[37] Takahashi R, Dubouzet J G, Matsumura H, Yasuda K, Iwashina T. A new allele of flower color gene W1 encoding flavonoid 3’5’-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja. BMC Plant Biol, 2010, 10: 155.
doi: 10.1186/1471-2229-10-155 pmid: 20663233
[38] Sundaramoorthy J, Park G T, Chang J H, Lee J D, Kim J H, Seo H S, Chung G, Hoe K J, Soo S H, Gyuhwa C, Song J T. Identification and molecular analysis of four new alleles at the W1 locus associated with flower color in soybean. PLoS One, 2016, 11: e0159865.
doi: 10.1371/journal.pone.0159865
[39] Yan F, Di S, Rodas F R, Rodriguez Torrico T, Murai Y, Iwashina T, Anai T, Takahashi R. Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2. BMC Plant Biol, 2014, 14: 58.
doi: 10.1186/1471-2229-14-58
[40] Xu M, Brar H K, Grosic S, Palmer R G, Bhattacharyya M K. Excision of an active CACTA-like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Genetics, 2010, 184: 53-63.
doi: 10.1534/genetics.109.107904
[41] Xu M, Palmer R G. Genetic analysis and molecular mapping of a pale flower allele at the W4 locus in soybean. Genome, 2005, 48: 334-340.
doi: 10.1139/g04-105
[42] Zabala G, Vodkin L O. The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell, 2005, 17: 2619-2632.
doi: 10.1105/tpc.105.033506
[43] Iwashina T, Githiri S M, Benitez E R, Takemura T, Kitajima J, Takahashi R. Analysis of flavonoids in flower petals of soybean near-isogenic lines for flower and pubescence color genes. J Hered, 2007, 98: 250-257.
doi: 10.1093/jhered/esm012 pmid: 17420179
[44] Sundaramoorthy J, Park G T, Lee J D, Kim J H, Seo H S, Song J T. A P3A-type ATPase and an R2R3-MYB transcription factor are involved in vacuolar acidification and flower coloration in soybean. Front Plant Sci, 2020, 11: 580085.
doi: 10.3389/fpls.2020.580085
[45] Senda M, Masuta C, Ohnishi S, Goto K, Kasai A, Sano T, Hong J S, MarFarlane S. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell, 2004, 16: 807-818.
doi: 10.1105/tpc.019885
[46] Cho Y B, Jones S I, Vodkin L O. Mutations in argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max. Plant Cell 2017, 29: 708-725.
doi: 10.1105/tpc.17.00162
[47] Zabala G, Vodkin L. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3' hydroxylase. Genetics, 2003, 163: 295-309.
doi: 10.1093/genetics/163.1.295
[48] Gillman J D, Tetlow A, Lee J D, Shannon J G, Bilyeu K. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol, 2011, 11: 155.
doi: 10.1186/1471-2229-11-155 pmid: 22070454
[49] Zabala G, Vodkin L O, Cui Z. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLos One, 2014, 9: e111959.
[50] Gao R, Han T, Xun H, Zeng X, Li P, Li Y, Wang Y, Shao Y, Cheng X, Feng X, Zhao J, Wang L, Gao X. MYB transcription factor GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. J Exp Bot, 2021, 72: 4401-4418.
doi: 10.1093/jxb/erab152
[51] Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50: 1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128
[52] Xie M, Chung C Y, Li M W, Wong F L, Wang X, Liu A, Wang Z, Leung K Y, Wong T H, Tong S W, Xiao Z, Fan K, Ng M S, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen H T, Cannon S B, Foyer C H, Chan T F, Lam H M. A reference-grade wild soybean genome. Nat Commun, 2019, 10: 1216.
doi: 10.1038/s41467-019-09142-9 pmid: 30872580
[53] Tokumitsu Y, Kozu T, Yamatani H, Ito T, Nakano H, Hase A, Sasada H, Takada Y, Kaga A, Ishimoto M, Kusaba M, Nakashima T, Abe J, Yamada T. Functional divergence of G and its homologous genes for green pigmentation in soybean seeds. Front Plant Sci, 2021, 12: 796981.
doi: 10.3389/fpls.2021.796981
[54] Liu C, Chen X, Wang W, Hu X, Han W, He Q, Yang H, Xiang S, Gai J. Identifying wild versus cultivated gene-alleles conferring seed coat color and days to flowering in soybean. Int J Mol Sci, 2021, 22: 1559.
doi: 10.3390/ijms22041559
[55] Lu N, Rao X, Li Y, Jun J H, Dixon R A. Dissecting the transcriptional regulation of proanthocyanin and anthocyanin biosynthesis in soybean (Glycine max). Plant Biotechnol J, 2021, 19: 1429-1442.
doi: 10.1111/pbi.v19.7
[56] 宋喜娥, 李英慧, 常汝镇, 郭平毅, 邱丽娟. 中国栽培大豆(Glycine max (L.) Merr.) 微核心种质的群体结构与遗传多样性. 中国农业科学, 2010, 43: 2209-2219.
Song X E, Li Y H, Chang R Z, Guo P Y, Qiu L J. Population structure and genetic diversity of mini core collection of cultivated soybean (Glycine max (L.)Merr.) in China. Sci Agric Sin, 2010, 43: 2209-2219 (in Chinese with English abstract).
[57] Li Y H, Qin C, Wang L, Jiao C, Hong H, Tian Y, Li Y, Xing G, Wang J, Gu Y, Gao X, Li D, Li H, Liu Z, Jing X, Feng B, Zhao T, Guan R, Guo Y, Liu J, Yan Z, Zhang L, Ge T, Li X, Wang X, Qiu H, Zhang W, Luan X, Han Y, Han D, Chang R, Guo Y, Reif J C, Jackson S A, Liu B, Tian S, Qiu L J. Genome-wide signatures of the geographic expansion and breeding of soybean. Sci China Life Sci, 2023, 66: 350-365.
doi: 10.1007/s11427-022-2158-7
[58] Darrigues A, Hall J, van der Knaap E, Francis D M, Gray S. Tomato analyzer-color test: a new tool for efficient digital phenotyping. J Am SocHortic, 2008, 133: 579-586.
[59] Rodríguez G R, Moyseenko J B, Robbins M D, Huarachi Morejón N, Francis D M, Esther V D K. Tomato analyzer: a useful software application to collect accurate and detailed morphological and colorimetric data from two-dimensional objects. J Vis Exp, 2010, 16: 1856.
[60] Sadohara R, Long Y, Izquierdo P, Urrea C A, Morris D, Cichy K. Seed coat color genetics and genotype × environment effects in yellow beans via machine-learning and genome-wide association. Plant Genome, 2021, 15: e20173.
doi: 10.1002/tpg2.v15.1
[61] Sun R, Sun B, Tian Y, Su S, Zhang Y, Zhang W, Wang J, Yu P, Guo B, Li H, Li Y, Gao H, Gu Y, Yu L, Ma Y, Su E, Li Q, Hu X, Zhang Q, Guo R, Chai S, Feng L, Wang J, Hong H, Xu J, Yao X, Wen J, Liu J, Li Y, Qiu L J. Dissection of the practical soybean breeding pipeline by developing ZDX1, a high-throughput functional array. Theor Appl Genet, 2022, 135: 1413-1427.
doi: 10.1007/s00122-022-04043-w pmid: 35187586
[62] Price M N, Dehal P S, Arkin A P. FastTree 2-approximately maximum-likelihood trees for arge alignments. PLoS One, 2010, 5: e9490.
doi: 10.1371/journal.pone.0009490
[63] Minh B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M, Haeseler A V, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020, 37: 1530-1534.
doi: 10.1093/molbev/msaa015 pmid: 32011700
[64] Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011, 88: 76-82.
doi: 10.1016/j.ajhg.2010.11.011 pmid: 21167468
[65] Browning B L, Tian X, Zhou Y, Browning S R. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet, 2021, 108: 1880-1890.
doi: 10.1016/j.ajhg.2021.08.005 pmid: 34478634
[66] Li M, Zhang Y W, Zhang Z C, Xiang Y, Liu M H, Zhou Y H, Zuo J F, Zhang H Q, Chen Y, Zhang Y M. A compressed variance component mixed model for detecting QTNs and QTN-by- environment and QTN-by-QTN interactions in genome-wide association studies. Mol Plant, 2022, 15: 630-650.
doi: 10.1016/j.molp.2022.02.012
[67] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[68] Kang H M, Zaitlen N A, Wade C M, Kirby A, Heckerman D, Daly M J, Eskin E. Efficient control of population structure in model organism association mapping. Genetics, 2008, 178: 1709-1723.
doi: 10.1534/genetics.107.080101 pmid: 18385116
[69] Yu Y, Zhang H, Long Y, Shu Y, Zhai J. Plant public RNA-seq database: a comprehensive online database for expression analysis of -45 000 plant public RNA-Seq libraries. Plant Biotechnol J, 2022, 20: 806-808.
[70] Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R. A single-base deletion in soybean flavonoid 3’-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol, 2002, 50: 187-196.
doi: 10.1023/A:1016087221334
[71] Yang K, Jeong N, Moon J K, Lee Y H, Lee S H, Kim H M, Hwang C H, Back K, Palmer R G, Jeong S C. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered, 2010, 101: 757.
doi: 10.1093/jhered/esq078 pmid: 20584753
[72] Lim Y J, Kwon S J, Qu S, Kim D G, Eom S H. Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-induced soybean mutant lines with different seed coat colors. Antioxidants, 2021, 10: 353.
doi: 10.3390/antiox10030353
[73] Kim J H, Park J S, Lee C Y, Jeong M G, Xu J L, Choi Y, Jung H W, Choi H K. Dissecting seed pigmentation-associated genomic loci and genes by employing dual approaches of reference-based and k-mer-based GWAS with 438 glycine accessions. PLoS One, 2020, 15: e0243085.
doi: 10.1371/journal.pone.0243085
[74] Cho Y B, Jones S I, Vodkin L O. Nonallelic homologous recombination events responsible for copy number variation within an RNA silencing locus. Plant Direct, 2019, 3: e00162.
doi: 10.1002/pld3.2019.3.issue-8
[1] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[2] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[3] 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622.
[4] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[5] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[6] 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109.
[7] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[8] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[9] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[10] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[11] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[12] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[13] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[14] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[15] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .