欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 613-622.doi: 10.3724/SP.J.1006.2024.34093

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长

刘薇(), 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威   

  1. 山东省农业科学院作物研究所 / 山东省特色作物工程实验室, 山东济南 250100
  • 收稿日期:2023-06-02 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-09-28
  • 通讯作者: *张彦威, E-mail: zywei-1987@163.com
  • 作者简介:E-mail: hnaulw@126.com
  • 基金资助:
    山东省自然科学基金项目(ZR2020MC101);山东省自然科学基金项目(ZR2020QC119);国家自然科学基金项目(32301905);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-04-CES12);济南市高层次人才专项(202228094)

Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth

LIU Wei(), WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei   

  1. Crop Research Institute, Shandong Academy of Agricultural Sciences / Shandong Engineering Laboratory of Featured Crops, Jinan 250100, Shandong, China
  • Received:2023-06-02 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-09-28
  • Contact: *E-mail: zywei-1987@163.com
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2020MC101);Natural Science Foundation of Shandong Province(ZR2020QC119);National Natural Science Foundation of China(32301905);China Agriculture Research System of MOF and MARA(CARS-04-CES12);High Level Talents Found of Jinan(202228094)

摘要:

异丙基苹果酸合成酶(isopropylmalate synthase, IPMS)和异丙基苹果酸脱氢酶(isopropylmalate dehydrogenase, IPMDH)是亮氨酸生物合成中的重要限速酶, 但二者在植物生长发育中的功能鲜有报道。本研究对拟南芥AtIPMDH2基因在大豆中的同源基因GmIPMDH进行了克隆和分析。该基因编码的氨基酸序列中含有Iso_dh亚家族保守结构域, 且启动子中含有大量的光反应元件及激素应答元件。实时荧光定量PCR显示大豆叶片中GmIPMDH的表达量随着植株的生长发育逐渐升高。对GmIPMDH进行了烟草的异位表达和大豆的过量表达, 表型分析发现GmIPMDH的过量表达显著提前了烟草和大豆的开花时间, 且株高和节数均显著增加。转录组分析显示, GmIPMDH过量表达大豆叶片中的若干开花相关基因及赤霉素合成相关基因的表达量发生变化, 推测GmIPMDH可能通过赤霉素合成通路参与赤霉素介导的植物开花诱导和株型调控。本研究首次阐明了GmIPMDH在开花期调控中的作用, 为今后进一步研究GmIPMDH调控大豆开花和生长发育的分子机制提供了一定的基础。

关键词: 大豆, 异丙基苹果酸脱氢酶, GmIPMDH, 开花期, 株高

Abstract:

Isopropyl malate synthase (IPMS) and isopropyl malate dehydrogenase (IPMDH) are important rate-limiting enzymes in leucine biosynthesis. However, their functions in plant growth and development have rarely been reported. In this study, we cloned and performed sequence analysis of GmIPMDH, a homologous gene of Arabidopsis AtIPMDH2 in soybean. GmIPMDH contained a conserved domain of Iso_dh, and the promoter of GmIPMDH contained a large number of light and hormonal responsive elements. The qRT-PCR showed that the relative expression level of GmIPMDH in soybean leaves gradually increased with the growth and development of plants. We then performed a function analysis of GmIPMDH by ectopic expression in tobacco and overexpression in soybean. Phenotypic analysis revealed that the overexpression of GmIPMDH significantly promoted flowering of tobacco and soybean. Meanwhile, plant height and nodes number were also increased significantly. Transcriptome analysis displayed that the expression of several flowering-related genes and gibberellin synthesis-related genes were changed in soybean GmIPMDH-overexpression plants. Therefore, we speculated that GmIPMDH may be involved in the gibberellin-mediated flowering and plant type architecture regulation. This study elucidates the role of GmIPMDH in the regulation of flowering time and provides a molecular basis for further research on the mechanism of GmIPMDH regulating soybean flowering and plant growth.

Key words: soybean, isopropylmalate dehydrogenase, GmIPMDH, flowering time, plant height

表1

引物序列"

引物名称 引物序列 目的
Primer name Primer sequence (5'-3') Purpose
GmIPMDH-pro-s AAGTCCTTCGGCTAACAT 用于GmIPMDH启动子的克隆
GmIPMDH promoter cloning
GmIPMDH-pro-a TGTCGTTCCTATCCCATT
GmIPMDH-s ATGGCGGCTTGTCTGCAACT 用于GmIPMDH CDS的克隆
GmIPMDH CDS cloning
GmIPMDH-a TCACACTGCAGCAGCACCAG
35S+GmIPMDH-s ATGACGCACAATCCCACT 用于转基因材料的检测
Transgenic plants detection
35S+GmIPMDH-a ATCAACCCCTTCAGCAAC
qGmIPMDH-s TCCATTTGCCACTGTTCT 用于实时荧光定量PCR
qRT-PCR
qGmIPMDH-a GCATCCTACCAGCTTCGTT
qGmActin4-s GTGTCAGCCATACTGTCCCCATTT
qGmActin4-a GTTTCAAGCTCTTGCTCGTAATCA

图1

GmIPMDH序列分析 A: GmIPMDH基因结构; B: GmIPMDH蛋白质保守结构预测; C: GmIPMDH二级结构分析; 蓝色代表α螺旋; 紫色代表无规则卷曲; 红色代表延伸连; 绿色代表β转角; D: GmIPMDH蛋白三级结构预测。"

表2

GmIPMDH启动子元件分析"

元件
Element
位置
Position (bp)
序列
Sequence (5'-3')
功能
Function
3-AF1 binding site -2037 TAAGAGAGGAA 光应答 Light responsive element
TCT-motif +162 TCTTAC 光应答 Part of a light responsive element
AT1-motif +1886, -1103 AATTATTTTTTATT 光应答 Part of a light responsive module
Box 4 +1242, -723, +1133,
-697, +1170, -883
ATTAAT 光应答
Part of a conserved DNA module involved in light responsiveness
G-Box -1532, +64 CACGTT/TACGTG 光应答
Cis-acting regulatory element involved in light responsiveness
MYC +772, -356, +666, -42 CATTTG MYC结合位点 MYC-binding site
ABRE +1532, +64 ACGTG 脱落酸应答
Cis-acting element involved in the abscisic acid responsiveness
ERE +250, +220, -248, +185 ATTTTAAA/ ATTTCATA 乙烯应答 Ethylene-responsive element
TCA +780 TCATCTTCAT 水杨酸响应 Salicylic acid responsiveness
STRE +1506 AGGGG 胁迫响应 Stress responsiveness
WUN-motif -997 AAATTACT 创伤响应 Wound responsiveness

图2

GmIPMDH的表达量 A: GmIPMDH基因组织特异性表达; B: 营养生长阶段大豆叶片中GmIPMDH的表达模式。"

图3

GmIPMDH过量表达烟草表型 A: GmIPMDH过量表达烟草开花图示; B: GmIPMDH过量表达烟草开花时间统计; C: 萌发120 d后GmIPMDH过量表达烟草株高统计。**表示在0.01概率水平显著差异(t检验)。"

图4

短日照条件下GmIPMDH过量表达大豆株系的开花时间图示和开花时间统计 A: GmIPMDH过量表达大豆开花图示; B: 不同株系GmIPMDH表达水平; C: 过量表达大豆开花时间统计; D: 播种36 d后大豆株高统计; E: 播种36 d后大豆节数统计。**表示在0.01概率水平显著差异(t检验)。"

图5

田间GmIPMDH过量表达大豆株系的开花时间统计 A: GmIPMDH不同株系中的表达水平; B: 田间GmIPMDH过量表达大豆株系的开花时间统计。**表示在0.01概率水平显著差异。"

图6

GmIPMDH过量表达大豆的转录组学分析 A, B: GmIPMDH过量表达大豆(35S::GmIPMDH)和野生型大豆(Wm82)差异基因表达量层次聚类图; C: 差异表达基因数量; D: 差异表达基因韦恩图; E: 14 d时花期相关差异表达基因表达水平; F: 17 d时花期相关差异表达基因表达水平。"

表3

花期相关差异表达基因功能注释"

基因登录号
Gene ID
同源基因
Homologs
通路
Pathways
时间
Days
Glyma.02G185500 AGL18, AT3G57390 光周期、光感知及信号传导
Photoperiodism, light perception and signaling
14 d
Glyma.07G132400 AS1, AT2G37630 光周期、光感知及信号传导
Photoperiodism, light perception and signaling
Glyma.15G044400 TOE1, AT2G28550 衰老光周期、光感知及信号传导
Aging photoperiodism, light perception and signaling
Glyma.09G261600 LATE MERISTEM IDENTITY2, AT3G61250 花发育及分生组织特性
Flower development and meristem identity
Glyma.02G121500 SEPALLATA1, AT5G15800 花发育及分生组织特性
Flower development and meristem identity
Glyma.20G153700 SEPALLATA 3, AT1G24260 花发育及分生组织特性
Flower development and meristem identity
Glyma.20G144400 TIC, AT3G22380 节律钟途径
Circadian Clock
Glyma.06G173800 REF6, AT3G48430 整体交互途径
General
Glyma.11G256800 MED13, AT1G55325 整体交互途径
General
Glyma.13G027600 UBP12, AT5G06600 整体交互途径
General
Glyma.15G029000 FPA, AT2G43410 整体交互途径
General
Glyma.19G010200 MBD9, AT3G01460 整体交互途径
General
Glyma.04G022100 FD, AT4G35900 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
17 d
Glyma.05G239400 FKF1, AT1G68050 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.07G058200 SPA1, AT2G46340 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.08G141000 NF-YB3, AT4G14540 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.10G204400 TEM1, AT1G25560 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.18G174500 LATE, AT5G48890 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.19G023200 CDF2, AT5G39660 光周期、光感知及信号传导
Photoperiodism, light perception, and signaling
Glyma.15G044400 TOE1, AT2G28550 衰老光周期、光感知及信号传导
Aging photoperiodism, light perception, and signaling
Glyma.10G066800 PETAL LOSS, AT5G03680 花发育及分生组织特性
Flower development and meristem identity
Glyma.20G153700 SEPALLATA 3, AT1G24260 花发育及分生组织特性
Flower development and meristem identity
Glyma.02G146900 TIC, AT3G22380 节律钟
Circadian clock
Glyma.04G228300 PRR5, AT5G24470 节律钟
Circadian clock
Glyma.03G206100 UBP12, AT5G06600 整体交互途径
General
Glyma.04G200500 ICE1, AT3G26744 春化途径
Vernalization
Glyma.07G033800 GA3ox1, AT1G15550 激素途径
Hormones
Glyma.13G218200 GA2ox2, AT1G30040 激素途径
Hormones
Glyma.13G259400 GA2ox1, AT1G78440 激素途径
Hormones
Glyma.20G141200 GA2ox8, AT4G21200 激素途径
Hormones
[1] Abedin M J, Wang D, McDonnell M A, Lehmann U, Keleka K. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Different, 2007, 14: 500-510.
doi: 10.1038/sj.cdd.4402039
[2] Binder S, Knill T, Schuster J. Branched-chain amino acid metabolism in higher plants. Physiol Plant, 2007, 129: 68-78.
doi: 10.1111/ppl.2007.129.issue-1
[3] Junk D J, Mourad G S. Isolation and expression analysis of the isopropylmalate synthase gene family of Arabidopsis thaliana. J Exp Bot, 2002, 53: 2453-2454.
doi: 10.1093/jxb/erf112
[4] He Y Q, Cheng J P, He Y, Yang B, Cheng Y H, Yang C, Zhang H S, Wang Z F. Influence of isopropylmalate synthase OsIPMS1 on seed vigor associated with amino acid and energy metabolism in rice. Plant Biotechnol J, 2019, 17: 322-337.
doi: 10.1111/pbi.2019.17.issue-2
[5] Field B, Furniss C, Wilkinson A, Mithen R. Expression of a Brassica isopropylmalate synthase gene in Arabidopsis perturbs both glucosinolate and amino acid metabolism. Plant Mol Biol, 2006, 60: 717-727.
doi: 10.1007/s11103-005-5547-y pmid: 16649108
[6] Ellerström M, Josefsson L G, Rask L, Ronne H. Cloning of a cDNA for rape chloroplast 3-isopropylmalate dehydrogenase by genetic complementation in yeast. Plant Mol Biol, 1992, 18: 557-566.
pmid: 1371407
[7] Jackson S D, Sonnewald U, Willmitzer L. Cloning and expression analysis of beta-isopropylmalate dehydrogenase from potato. Mol Genet Genomics, 1993, 236: 309-314.
[8] Nozawa A, Takano J, Miwa K, Nakagawa Y, Fujiwara T. Cloning of cDNAs encoding isopropylmalate dehydrogenase from Arabidopsis thaliana and accumulation patterns of their transcripts. Biosci Biotechnol Biochem, 2005, 69: 806-810.
doi: 10.1271/bbb.69.806
[9] He Y, Mawhinney T P, Preuss M L, Schroeder A C, Chen B, Abraham L, Jez J M, Chen S X. A redox-active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis. Plant J, 2009, 60: 679-690.
doi: 10.1111/tpj.2009.60.issue-4
[10] He Y, Chen L, Zhou Y, Mawhinney T P, Chen B, Kang B H, Hauser B A, Chen S. Functional characterization of Arabidopsis thaliana isopropylmalate dehydrogenases reveals their important roles in gametophyte development. New Phytol, 2011, 189: 160-175.
doi: 10.1111/nph.2010.189.issue-1
[11] Goodstein D M, Shu S, Howson R, Neupane R, Hayes R D, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar D S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res, 2012, 40: D1178-D1186.
doi: 10.1093/nar/gkr944
[12] Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Marchler G H, Song J S, Thanki N, Wang Z, Yamashita R A, Zhang D, Zheng C, Bryant S H. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2015, 43: D222-D226.
[13] Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995, 11: 681-684.
[14] Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer F T, de Beer T A P, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: W296-W303.
doi: 10.1093/nar/gky427
[15] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[16] Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 2012, 13: 134.
doi: 10.1186/1471-2105-13-134 pmid: 22708584
[17] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[18] Gallois P, Marinho P. Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco. Methods Mol Biol, 1995, 49: 39-48.
pmid: 8563823
[19] Paz M M, Martinez J C, Kalvig A B, Fonger T M, Wang K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep, 2006, 25: 206-213.
doi: 10.1007/s00299-005-0048-7
[20] 李巧峡, 张丽, 王玉, 黄小霞. 赤霉素调控植物开花及花器官发育的研究进展. 中国细胞生物学学报, 2019, 41: 746-758.
Li Q X, Zhang L, Wang Y, Huang X X. The research progress of gibberellin on the regulation of flowering and floral organ development in plant. Chin J Cell Biol, 2019, 41: 746-758 (in Chinese with English abstract).
[21] Bao S J, Hua C M, Shen L S, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol, 2020, 62: 118-131.
doi: 10.1111/jipb.v62.1
[22] Wu K, Xu H, Gao X H, Fu X D. New insights into gibberellin signaling in regulating plant growth-metabolic coordination. Curr Opin Plant Biol, 2021, 63: 102074.
doi: 10.1016/j.pbi.2021.102074
[23] Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378
[24] Xie Y Y, Chen L T. Epigenetic regulation of gibberellin metabolism and signaling. Plant Cell Physiol, 2020, 61: 1912-1918.
doi: 10.1093/pcp/pcaa101 pmid: 32745197
[25] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定. 作物学报, 2022, 48: 886-895.
doi: 10.3724/SP.J.1006.2022.13026
Liu L, Zhan W M, Ding W S, Liu T, Cui L H, Jiang L L, Zhang Y P, Yang J P. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize. Acta Agron Sin, 2022, 48: 886-895 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.13026
[26] Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun, 2012, 3: 808.
doi: 10.1038/ncomms1810
[27] Hu Y X, Tao Y B, Xu Z F. Overexpression of Jatropha gibberellin 2-oxidase 6 (JcGA2ox6) induces dwarfism and smaller leaves, flowers and fruits in Arabidopsis and Jatropha. Front Plant Sci, 2017, 8: 2103.
doi: 10.3389/fpls.2017.02103
[28] Cheng J, Ma J J, Zheng X B, Lyu H L, Zhang M M, Tan B, Ye X, Wang W, Zhang L L, Li Z Q, Li J D, Feng J C. Functional analysis of the gibberellin 2-oxidase gene family in peach. Front Plant Sci, 2021, 12: 61915.
[1] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[2] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[3] 宋健, 熊亚俊, 陈伊洁, 徐瑞新, 刘康林, 郭庆元, 洪慧龙, 高华伟, 谷勇哲, 张丽娟, 郭勇, 阎哲, 刘章雄, 关荣霞, 李英慧, 王晓波, 郭兵福, 孙如建, 闫龙, 王好让, 姬月梅, 常汝镇, 王俊, 邱丽娟. 大豆巢式关联作图(NAM)群体构建及花色和种皮色遗传分析[J]. 作物学报, 2024, 50(3): 556-575.
[4] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279.
[5] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[6] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[7] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[8] 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109.
[9] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[10] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[11] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[12] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[13] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[14] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[15] 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关[J]. 作物学报, 2023, 49(4): 906-916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .