作物学报 ›› 2024, Vol. 50 ›› Issue (3): 556-575.doi: 10.3724/SP.J.1006.2024.34094
宋健1,6(), 熊亚俊1,6, 陈伊洁1,6, 徐瑞新2, 刘康林1, 郭庆元1, 洪慧龙2, 高华伟2, 谷勇哲2, 张丽娟2, 郭勇2, 阎哲2, 刘章雄2, 关荣霞2, 李英慧2, 王晓波3, 郭兵福4, 孙如建5, 闫龙7, 王好让8, 姬月梅9, 常汝镇2, 王俊1,6,*(), 邱丽娟2,*()
SONG Jian1,6(), XIONG Ya-Jun1,6, CHEN Yi-Jie1,6, XU Rui-Xin2, LIU Kang-Lin1, GUO Qing-Yuan1, HONG Hui-Long2, GAO Hua-Wei2, GU Yong-Zhe2, ZHANG Li-Juan2, GUO Yong2, YAN Zhe2, LIU Zhang-Xiong2, GUAN Rong-Xia2, LI Ying-Hui2, WANG Xiao-Bo3, GUO Bing-Fu4, SUN Ru-Jian5, YAN Long7, WANG Hao-Rang8, JI Yue-Mei9, CHANG Ru-Zhen2, WANG Jun1,6,*(), QIU Li-Juan2,*()
摘要:
巢式关联作图(Nested Association Mapping, NAM)群体在作物学遗传与育种研究中具有广泛的应用。本研究在前期大豆种质资源评价基础上, 利用35份不同地区来源的代表性种质与中豆41 (公共母本)杂交, 构建了一套大豆NAM群体。PCA和聚类分析发现, 不同亲本组合的RIL群体基本聚在一起, 显示出清晰的遗传结构。利用该NAM群体亲本间花色和种皮色具有显著差异的RIL群体进行全基因组关联分析, 定位到1个主要位点qFC13-1与花色显著关联, 该位点与W1位点重合; 定位到12个位点与种皮色显著相关, 其中9个位点为3种以上方法共定位, 3个位点为2种方法共定位, 包括4个已知位点和8个新位点。研究结果表明, 构建的NAM群体适于进行大豆相关性状遗传分析, 为大豆复杂性状的遗传解析和育种实践提供了良好的基础材料。
[1] |
Gireesh C, Sundaram R M, Anantha S M, Pandey M K, Madhav M S, Rathod S, Yathish K R, Senguttuvel P, Kalyani B M, Ranjith E, Subbarao L V, Mondal T K, Swamy M, Rakshit S. Nested association mapping (NAM) populations: present status and future prospects in the genomics era. Crit Rev Plant Sci, 2021, 40: 49-67.
doi: 10.1080/07352689.2021.1880019 |
[2] |
Nordborg M, Tavaré S. Linkage disequilibrium: what history has to tell us. Trends Genet, 2002, 18: 83-90.
pmid: 11818140 |
[3] |
Visscher P M, Wray N R, Zhang Q, Sklar P, McCarthy M I, Brown M A, Yang J. 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet, 2017, 101: 5-22.
doi: S0002-9297(17)30240-9 pmid: 28686856 |
[4] |
Yu J, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178: 539-551.
doi: 10.1534/genetics.107.074245 pmid: 18202393 |
[5] |
Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J M, Cao M, Rong T, Xu Y. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA, 2010, 107: 19585-19590.
doi: 10.1073/pnas.1006105107 pmid: 20974948 |
[6] |
McMullen M D, Kresovich S, Villeda S H, Bradbury P, Li H, Sun Q, Flint-Garica S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell S E, Peterson B, Pressoir G, Romero S, Rosas M O, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz J C, Goodman M, Ware D, Holland J B, Buckler E S. Genetic properties of the maize nested association mapping population. Science, 2009, 325: 737-740.
doi: 10.1126/science.1174320 pmid: 19661427 |
[7] |
Kump K L, Bradbury P J, Wisser R J, Buckler E S, Belcher A R, Oropeza-Rosas M A, Zwonitzer J C, Kresovich S, Mcmullen M D, Ware D, Balint-Kurti P J, Holland J B. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet, 2011, 43: 163-168.
doi: 10.1038/ng.747 pmid: 21217757 |
[8] |
Poland J A, Bradbury P J, Buckler E S, Nelson R J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA, 2011, 108: 6893-6898.
doi: 10.1073/pnas.1010894108 pmid: 21482771 |
[9] |
Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R, McMullen M, Holland J B, Buckler E S. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43: 159-162.
doi: 10.1038/ng.746 pmid: 21217756 |
[10] |
Cook J P, McMullen M D, Holland J B, Tian F, Bradbury P, Ross-Ibarra J, Buckler E S, Flint-Garcia S A. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol, 2012, 158: 824-834.
doi: 10.1104/pp.111.185033 pmid: 22135431 |
[11] |
Peiffer J A, Flint-Garcia S A, Leon N D, McMullen M, Kaeppler S M, Buckler E S. The genetic architecture of maize stalk strength. PLoS One, 2013, 8: e67066.
doi: 10.1371/journal.pone.0067066 |
[12] |
Zhang N, Gibon Y, Wallace J G, Lepak N, Li P, Dedow L, Chen C, So Y S, Kremling K, Bradbury P J, Brutnell T, Stitt M, Buckler E S. Genome-wide association of carbon and nitrogen metabolism in the maize nested association mapping population. Plant Physiol, 2015, 168: 575-583.
doi: 10.1104/pp.15.00025 pmid: 25918116 |
[13] |
Li C, Sun B, Li Y, Cheng L, Xun W, Zhang D, Shi Y, Song Y, Buckler E S, Zhang Z, Wang T, Li Y. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics, 2016, 17: 894.
doi: 10.1186/s12864-016-3170-8 |
[14] |
Schnaithmann F, Kopahnke D, Pillen K. A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor Appl Genet, 2014, 127: 1513-1525.
doi: 10.1007/s00122-014-2315-x pmid: 24797143 |
[15] |
Bajgain P, Rouse M N, Tsilo T J, Macharia G K, Bhavani S, Jin Y, Anderson J A. Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS One, 2016, 11: e0155760.
doi: 10.1371/journal.pone.0155760 |
[16] |
Hoyos-Villegas V, Song Q, Wright E M, Beebe S E, Kelly J D. Joint linkage QTL mapping for yield and agronomic traits in a composite map of three common bean RIL populations. Crop Sci, 2016, 56: 2546-2563.
doi: 10.2135/cropsci2016.01.0063 |
[17] |
Li J, Bus A, Spamer V, Stich B. Comparison of statistical models for nested association mapping in rapeseed (Brassica napus L.) through computer simulations. BMC Plant Biol, 2016, 16: 26.
doi: 10.1186/s12870-016-0707-6 |
[18] |
Pandey M K, Roorkiwal M, Singh V K, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney R K. Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci, 2016, 7: 455.
doi: 10.3389/fpls.2016.00455 pmid: 27199998 |
[19] |
Bouchet S, Olatoye M O, Marla S R, Perumal R, Tesso T, Yu J, Tuinstra M, Morris G P. Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics, 2017, 206: 573-585.
doi: 10.1534/genetics.116.198499 pmid: 28592497 |
[20] | Fragoso C A, Moreno M, Wang Z, Heffelfinger C, Arbelaez L J, Aguirre J A, Franco N, Romero L E, Labadie K, Zhao H, Dellaporta S L, Lorieux M. Genetic architecture of a rice nested association mapping population. Genes Genom Genet, 2017, 7: 1913-1926. |
[21] |
Maranna S, Kumawat G, Nataraj V, Gireesh C, Gupta S, Satpute G K, Ratnaparkhe M B, Yadav D P. NAM population: a novel genetic resource for soybean improvement: development and characterization for yield and attributing traits. Plant Genet Resour, 2019, 17: 545-553.
doi: 10.1017/S1479262119000352 |
[22] |
Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B Z. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J, 2020, 18: 1457-1471.
doi: 10.1111/pbi.13311 pmid: 31808273 |
[23] | Song Q L, Yan L, Quigley C V, Jordan B, Fickus E, Schroeder S, Song B H, Charles An Y Q, Hyten D L, Nelson R L, Rainey K M, Beavis W, Specht J, Diers B, Cregan P. Genetic characterization of the soybean nested association mapping population. Plant Genome, 2017, 10: 3835. |
[24] | Xavier A, Jarquin D, Howard R, Ramasubramanian V, Specht J E, Graef G L, Beavis W D, Diers B W, Song Q, Cregan P, Nelson R, Mian R, Shannon J G, Mchale L K, Wang D, Schapaugh W, Lorenz A J, Xu S, Muir W M, Rainey K M. Genome-wide analysis of grain yield stability and environmental interactions in a multiparental soybean population. Genes Genom Genet, 2018, 8: 519-529. |
[25] | Diers B W, Specht J, Rainey K M, Cregan P, Song Q, Ramasubramanian V, Graef G L, Nelson R, Schapaugh W, Wang D, Shannon J G, Mchale L K, Kantartzi S K, Xavier A, Mian R, Stupar R M, Michno J M, Charles An Y Q, Goettel W, Ward R, Fox C, Lipka A E, Hyten D L, Cary T, Beavis W. Genetic architecture of soybean yield and agronomic traits. Genes Genom Genet, 2018, 8: 3367-3375. |
[26] |
Scott K, Balk C, Veney D, Mchale L K, Dorrance A E. Quantitative disease resistance loci towards and three species of in six soybean nested association mapping populations. Crop Sci, 2019, 59: 605-623.
doi: 10.2135/cropsci2018.09.0573 |
[27] |
Lopez M A, Xavier A, Rainey K M. Phenotypic variation and genetic architecture for photosynthesis and water use efficiency in soybean (Glycine max L. Merr.). Front Plant Sci, 2019, 10: 680.
doi: 10.3389/fpls.2019.00680 |
[28] |
Beche E, Gillman J D, Song Q J, Nelson R, Beissinger T, Decker J, Shannon G, Scaboo A M. Genomic prediction using training population design in interspecific soybean populations. Mol Breed, 2021, 41: 15.
doi: 10.1007/s11032-021-01203-6 |
[29] |
李曙光, 曹永策, 贺建波, 王吴彬, 邢光南, 杨加银, 赵团结, 盖钧镒. 大豆巢式关联作图群体蛋白质含量的遗传解析. 中国农业科学, 2020, 53: 1743-1755.
doi: 10.3864/j.issn.0578-1752.2020.09.005 |
Li S G, Cao Y C, He J B, Wang W B, Xing G N, Yang J Y, Zhao T J, Gai J Y. Genetic dissection of protein content in a nested association mapping population of soybean. Sci Agric Sin, 2020, 53: 1743-1755 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.09.005 |
|
[30] |
He J, Meng S, Zhao T, Xing G, Yang S, Li Y, Guan R, Lu J, Wang Y, Xia Q, Yang B, Gai J. An innovative procedure of genome- wide association analysis fits studies on germplasm population and plant breeding. Theor Appl Genet, 2017, 130: 2327-2343.
doi: 10.1007/s00122-017-2962-9 |
[31] | 刘晓冬, 王英男, 齐广勋, 赵勇, 仲晓芳, 董英山, 王玉民. 大豆花色研究进展. 东北农业科学, 2017, 42(6): 53-57. |
Liu X D, Wang Y N, Qi G X, Zhao Y, Zhong X F, Dong Y S, Wang Y M. A review of researches on flower color of soybean. J Northeast Agric Sci, 2017, 42(6): 53-57 (in Chinese with English abstract). | |
[32] |
邱红梅, 陈亮, 侯云龙, 王新风, 陈健, 马晓萍, 崔正果, 张玲, 胡金海, 王跃强, 邱丽娟. 大豆种子颜色遗传调控机制研究进展. 作物学报, 2021, 47: 2299-2313.
doi: 10.3724/SP.J.1006.2021.14022 |
Qiu H M, Chen L, Hou Y L, Wang X F, Chen J, Ma X P, Cui Z G, Zhang L, Hu J H, Wang Y Q, Qiu L J. Reserch progress on genetic regulatory mechanism of seed color in soybean (Glycine max). Acta Agron Sin, 2021, 47: 2299-2313 (in Chinese with English abstract). | |
[33] |
Song J, Liu Z, Hong H, Ma Y, Tian L, Li X, Li Y H, Guan R, Guo Y, Qiu L J. Identification and validation of loci governing seed coat color by combining association mapping and bulk segregation analysis in soybean. PLoS One, 2016, 11: e0159064.
doi: 10.1371/journal.pone.0159064 |
[34] |
Yuan B, Yuan C, Wang Y, Liu X, Qi G, Wang Y, Dong L, Zhao H, Li Y, Dong Y. Identification of genetic loci conferring seed coat color based on a high-density map in soybean. Front Plant Sci, 2022, 13: 968618.
doi: 10.3389/fpls.2022.968618 |
[35] |
Park G T, Sundaramoorthy J, Lee J D, Kim J H, Seo H S, Song J T, Martina S. Elucidation of molecular identity of the W3 locus and its implication in determination of flower colors in soybean. PLoS One, 2015, 10: e0142643.
doi: 10.1371/journal.pone.0142643 |
[36] | Zabala G, Vodkin L O. A rearrangement resulting in small tandem repeats in the F3’5’H gene of white flower genotypes is associated with the soybean W1 locus. Crop Sci, 2007, 47: S113-S124. |
[37] |
Takahashi R, Dubouzet J G, Matsumura H, Yasuda K, Iwashina T. A new allele of flower color gene W1 encoding flavonoid 3’5’-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja. BMC Plant Biol, 2010, 10: 155.
doi: 10.1186/1471-2229-10-155 pmid: 20663233 |
[38] |
Sundaramoorthy J, Park G T, Chang J H, Lee J D, Kim J H, Seo H S, Chung G, Hoe K J, Soo S H, Gyuhwa C, Song J T. Identification and molecular analysis of four new alleles at the W1 locus associated with flower color in soybean. PLoS One, 2016, 11: e0159865.
doi: 10.1371/journal.pone.0159865 |
[39] |
Yan F, Di S, Rodas F R, Rodriguez Torrico T, Murai Y, Iwashina T, Anai T, Takahashi R. Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2. BMC Plant Biol, 2014, 14: 58.
doi: 10.1186/1471-2229-14-58 |
[40] |
Xu M, Brar H K, Grosic S, Palmer R G, Bhattacharyya M K. Excision of an active CACTA-like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Genetics, 2010, 184: 53-63.
doi: 10.1534/genetics.109.107904 |
[41] |
Xu M, Palmer R G. Genetic analysis and molecular mapping of a pale flower allele at the W4 locus in soybean. Genome, 2005, 48: 334-340.
doi: 10.1139/g04-105 |
[42] |
Zabala G, Vodkin L O. The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell, 2005, 17: 2619-2632.
doi: 10.1105/tpc.105.033506 |
[43] |
Iwashina T, Githiri S M, Benitez E R, Takemura T, Kitajima J, Takahashi R. Analysis of flavonoids in flower petals of soybean near-isogenic lines for flower and pubescence color genes. J Hered, 2007, 98: 250-257.
doi: 10.1093/jhered/esm012 pmid: 17420179 |
[44] |
Sundaramoorthy J, Park G T, Lee J D, Kim J H, Seo H S, Song J T. A P3A-type ATPase and an R2R3-MYB transcription factor are involved in vacuolar acidification and flower coloration in soybean. Front Plant Sci, 2020, 11: 580085.
doi: 10.3389/fpls.2020.580085 |
[45] |
Senda M, Masuta C, Ohnishi S, Goto K, Kasai A, Sano T, Hong J S, MarFarlane S. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes. Plant Cell, 2004, 16: 807-818.
doi: 10.1105/tpc.019885 |
[46] |
Cho Y B, Jones S I, Vodkin L O. Mutations in argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max. Plant Cell 2017, 29: 708-725.
doi: 10.1105/tpc.17.00162 |
[47] |
Zabala G, Vodkin L. Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3' hydroxylase. Genetics, 2003, 163: 295-309.
doi: 10.1093/genetics/163.1.295 |
[48] |
Gillman J D, Tetlow A, Lee J D, Shannon J G, Bilyeu K. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol, 2011, 11: 155.
doi: 10.1186/1471-2229-11-155 pmid: 22070454 |
[49] | Zabala G, Vodkin L O, Cui Z. Methylation affects transposition and splicing of a large CACTA transposon from a MYB transcription factor regulating anthocyanin synthase genes in soybean seed coats. PLos One, 2014, 9: e111959. |
[50] |
Gao R, Han T, Xun H, Zeng X, Li P, Li Y, Wang Y, Shao Y, Cheng X, Feng X, Zhao J, Wang L, Gao X. MYB transcription factor GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. J Exp Bot, 2021, 72: 4401-4418.
doi: 10.1093/jxb/erab152 |
[51] |
Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50: 1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128 |
[52] |
Xie M, Chung C Y, Li M W, Wong F L, Wang X, Liu A, Wang Z, Leung K Y, Wong T H, Tong S W, Xiao Z, Fan K, Ng M S, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen H T, Cannon S B, Foyer C H, Chan T F, Lam H M. A reference-grade wild soybean genome. Nat Commun, 2019, 10: 1216.
doi: 10.1038/s41467-019-09142-9 pmid: 30872580 |
[53] |
Tokumitsu Y, Kozu T, Yamatani H, Ito T, Nakano H, Hase A, Sasada H, Takada Y, Kaga A, Ishimoto M, Kusaba M, Nakashima T, Abe J, Yamada T. Functional divergence of G and its homologous genes for green pigmentation in soybean seeds. Front Plant Sci, 2021, 12: 796981.
doi: 10.3389/fpls.2021.796981 |
[54] |
Liu C, Chen X, Wang W, Hu X, Han W, He Q, Yang H, Xiang S, Gai J. Identifying wild versus cultivated gene-alleles conferring seed coat color and days to flowering in soybean. Int J Mol Sci, 2021, 22: 1559.
doi: 10.3390/ijms22041559 |
[55] |
Lu N, Rao X, Li Y, Jun J H, Dixon R A. Dissecting the transcriptional regulation of proanthocyanin and anthocyanin biosynthesis in soybean (Glycine max). Plant Biotechnol J, 2021, 19: 1429-1442.
doi: 10.1111/pbi.v19.7 |
[56] | 宋喜娥, 李英慧, 常汝镇, 郭平毅, 邱丽娟. 中国栽培大豆(Glycine max (L.) Merr.) 微核心种质的群体结构与遗传多样性. 中国农业科学, 2010, 43: 2209-2219. |
Song X E, Li Y H, Chang R Z, Guo P Y, Qiu L J. Population structure and genetic diversity of mini core collection of cultivated soybean (Glycine max (L.)Merr.) in China. Sci Agric Sin, 2010, 43: 2209-2219 (in Chinese with English abstract). | |
[57] |
Li Y H, Qin C, Wang L, Jiao C, Hong H, Tian Y, Li Y, Xing G, Wang J, Gu Y, Gao X, Li D, Li H, Liu Z, Jing X, Feng B, Zhao T, Guan R, Guo Y, Liu J, Yan Z, Zhang L, Ge T, Li X, Wang X, Qiu H, Zhang W, Luan X, Han Y, Han D, Chang R, Guo Y, Reif J C, Jackson S A, Liu B, Tian S, Qiu L J. Genome-wide signatures of the geographic expansion and breeding of soybean. Sci China Life Sci, 2023, 66: 350-365.
doi: 10.1007/s11427-022-2158-7 |
[58] | Darrigues A, Hall J, van der Knaap E, Francis D M, Gray S. Tomato analyzer-color test: a new tool for efficient digital phenotyping. J Am SocHortic, 2008, 133: 579-586. |
[59] | Rodríguez G R, Moyseenko J B, Robbins M D, Huarachi Morejón N, Francis D M, Esther V D K. Tomato analyzer: a useful software application to collect accurate and detailed morphological and colorimetric data from two-dimensional objects. J Vis Exp, 2010, 16: 1856. |
[60] |
Sadohara R, Long Y, Izquierdo P, Urrea C A, Morris D, Cichy K. Seed coat color genetics and genotype × environment effects in yellow beans via machine-learning and genome-wide association. Plant Genome, 2021, 15: e20173.
doi: 10.1002/tpg2.v15.1 |
[61] |
Sun R, Sun B, Tian Y, Su S, Zhang Y, Zhang W, Wang J, Yu P, Guo B, Li H, Li Y, Gao H, Gu Y, Yu L, Ma Y, Su E, Li Q, Hu X, Zhang Q, Guo R, Chai S, Feng L, Wang J, Hong H, Xu J, Yao X, Wen J, Liu J, Li Y, Qiu L J. Dissection of the practical soybean breeding pipeline by developing ZDX1, a high-throughput functional array. Theor Appl Genet, 2022, 135: 1413-1427.
doi: 10.1007/s00122-022-04043-w pmid: 35187586 |
[62] |
Price M N, Dehal P S, Arkin A P. FastTree 2-approximately maximum-likelihood trees for arge alignments. PLoS One, 2010, 5: e9490.
doi: 10.1371/journal.pone.0009490 |
[63] |
Minh B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M, Haeseler A V, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol, 2020, 37: 1530-1534.
doi: 10.1093/molbev/msaa015 pmid: 32011700 |
[64] |
Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011, 88: 76-82.
doi: 10.1016/j.ajhg.2010.11.011 pmid: 21167468 |
[65] |
Browning B L, Tian X, Zhou Y, Browning S R. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet, 2021, 108: 1880-1890.
doi: 10.1016/j.ajhg.2021.08.005 pmid: 34478634 |
[66] |
Li M, Zhang Y W, Zhang Z C, Xiang Y, Liu M H, Zhou Y H, Zuo J F, Zhang H Q, Chen Y, Zhang Y M. A compressed variance component mixed model for detecting QTNs and QTN-by- environment and QTN-by-QTN interactions in genome-wide association studies. Mol Plant, 2022, 15: 630-650.
doi: 10.1016/j.molp.2022.02.012 |
[67] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[68] |
Kang H M, Zaitlen N A, Wade C M, Kirby A, Heckerman D, Daly M J, Eskin E. Efficient control of population structure in model organism association mapping. Genetics, 2008, 178: 1709-1723.
doi: 10.1534/genetics.107.080101 pmid: 18385116 |
[69] | Yu Y, Zhang H, Long Y, Shu Y, Zhai J. Plant public RNA-seq database: a comprehensive online database for expression analysis of -45 000 plant public RNA-Seq libraries. Plant Biotechnol J, 2022, 20: 806-808. |
[70] |
Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R. A single-base deletion in soybean flavonoid 3’-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol, 2002, 50: 187-196.
doi: 10.1023/A:1016087221334 |
[71] |
Yang K, Jeong N, Moon J K, Lee Y H, Lee S H, Kim H M, Hwang C H, Back K, Palmer R G, Jeong S C. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered, 2010, 101: 757.
doi: 10.1093/jhered/esq078 pmid: 20584753 |
[72] |
Lim Y J, Kwon S J, Qu S, Kim D G, Eom S H. Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-induced soybean mutant lines with different seed coat colors. Antioxidants, 2021, 10: 353.
doi: 10.3390/antiox10030353 |
[73] |
Kim J H, Park J S, Lee C Y, Jeong M G, Xu J L, Choi Y, Jung H W, Choi H K. Dissecting seed pigmentation-associated genomic loci and genes by employing dual approaches of reference-based and k-mer-based GWAS with 438 glycine accessions. PLoS One, 2020, 15: e0243085.
doi: 10.1371/journal.pone.0243085 |
[74] |
Cho Y B, Jones S I, Vodkin L O. Nonallelic homologous recombination events responsible for copy number variation within an RNA silencing locus. Plant Direct, 2019, 3: e00162.
doi: 10.1002/pld3.2019.3.issue-8 |
[1] | 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819. |
[2] | 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632. |
[3] | 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622. |
[4] | 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309. |
[5] | 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264. |
[6] | 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109. |
[7] | 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171. |
[8] | 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063. |
[9] | 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
[10] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[11] | 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064. |
[12] | 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150. |
[13] | 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844. |
[14] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[15] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
|