欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 623-632.doi: 10.3724/SP.J.1006.2024.34091

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆叶型性状全基因组关联分析与候选基因鉴定

王琼1(), 朱宇翔1,2, 周密密1, 张威1, 张红梅1, 陈新1, 陈华涛1,*(), 崔晓艳1,*()   

  1. 1江苏省农业科学院经济作物研究所 / 江苏省高效园艺作物遗传改良重点实验室, 江苏南京 210014
    2扬州大学园艺园林学院, 江苏扬州 225009
  • 收稿日期:2023-05-25 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-10-07
  • 通讯作者: *陈华涛, E-mail: cht@jaas.ac.cn; 崔晓艳, E-mail: cxy@jaas.ac.cn
  • 作者简介:E-mail: wqwzw@163.com
  • 基金资助:
    江苏省基础研究计划(自然科学基金)项目(BK20220740);江苏省种业振兴揭榜挂帅项目(JBGS[2021]057);江苏省重点研发计划项目(BE2022328);江苏省重点研发计划项目(CX(22)5002)

Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.)

WANG Qiong1(), ZHU Yu-Xiang1,2, ZHOU Mi-Mi1, ZHANG Wei1, ZHANG Hong-Mei1, CEHN Xin1, CEHN Hua-Tao1,*(), CUI Xiao-Yan1,*()   

  1. 1Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences / Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
    2College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-05-25 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-10-07
  • Contact: *E-mail: cht@jaas.ac.cn; E-mail: cxy@jaas.ac.cn
  • Supported by:
    Natural Science Foundation of Jiangsu Province(BK20220740);Jiangsu Seed Industry Revitalizing Project(JBGS[2021]057);Key Research and Development Program of Jiangsu Province(BE2022328);Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)5002)

摘要:

大豆叶片的形状和垂直分布影响群体冠层结构和光合效率并最终影响大豆的产量。植物叶片大小、形态因着生位置不同而产生差异的现象称为异形叶, 虽然异形叶现象在被子植物中广泛存在, 但目前关于大豆叶片发育过程中异形叶的调控的研究还很有限。本研究通过对283份大豆种质资源的叶长、叶宽、叶形指数和异形叶指数等叶型相关的性状在江苏南京进行连续2年的考察, 利用全基因组关联分析检测到181个叶型性状相关位点, 其中能够在2个环境或多个性状中重复检测到的位点18个。利用检测到的与叶型相关的SNP位点, 结合基因的表达谱数据、拟南芥中同源基因的功能, 鉴定与大豆叶片发育和异形叶形成相关的候选基因。其中在20号染色体的相关位点Chr20: 36152820上游发现已知的大豆叶形调控基因Ln (Glyma.20G116200)。此外, 在19号染色体的相关位点Chr19:45155943附近鉴定到2个候选基因Glyma.19G192700Glyma.19G194100, 分别被注释为Growth-regulating factor 4 (GRF4)和LITTLE ZIPPER 3 (ZPR3)基因的同源基因, 为阐明大豆异形叶等叶型性状遗传的分子机制奠定了基础。

关键词: 大豆, 叶型, 异形叶, 全基因组关联分析, SNP标记

Abstract:

Leaf shape and vertical distribution of soybean affect canopy structure, photosynthetic efficiency, and yield. The existence of different leaf shapes and sizes on the same plant, which is known as heterophylly, has been observed in many flowering plant species. Yet, the genetic characteristics and genetic basis of heterophylly in soybean remain unknown. In this study, leaf characteristics such as leaf length, leaf width, leaf shape index, and heterophylly index were investigated in 283 soybean germplasm resources for two consecutive years in Nanjing, Jiangsu Province. A total of 181 related loci were detected by genome-wide association study (GWAS), among which 18 loci could be repeatedly detected in two environments or among multiple traits. Using the loci associated with leaf characteristics, we integrated the GWAS approach with the expression profiling data and gene-based association and functional annotation of orthologs in Arabidopsis to identify candidate genes involved in leaf development in soybean. The known soybean leaf shape regulatory gene Ln (Glyma.20G116200) was found upstream of locus Chr20:36152820. In addition, two candidate genes (Glyma.19G192700 and Glyma.19G194100) were identified near the related locus Chr19:45155943 on chromosome 19, homologous genes of growth-regulating factor 4 (GRF4), and LITTLE ZIPPER 3 (ZPR3), respectively. These results lay a solid foundation for expanding our understanding of the genetic mechanism of heterophylly in soybean.

Key words: soybean, leaf characteristics, heterophylly, GWAS, SNP markers

图1

试验设计示意图"

表1

大豆群体叶型相关性状的统计分析"

环境
Environment
性状
Trait
最小值
Min.
最大值
Max.
平均值±标准差
Mean±SD
变异系数
CV (%)
2021南京
2021 Nanjing
上部叶长 Upper leaf length 7.00 18.00 11.25±1.94 0.17
上部叶宽 Upper leaf width 2.50 9.70 5.66±1.41 0.25
上部叶形 Upper leaf shape 1.36 3.24 2.05±0.42 0.20
下部叶长 Lower leaf length 4.00 12.10 7.44±1.42 0.19
下部叶宽 Lower leaf width 2.80 8.03 4.94±1.00 0.20
下部叶形 Lower leaf shape 1.12 2.14 1.50±0.22 0.15
异形叶指数 Heterophylly leaf index 0.90 2.11 1.36±0.25 0.18
2022南京
2022 Nanjing
上部叶长 Upper leaf length 6.67 17.23 11.28±1.86 0.16
上部叶宽 Upper leaf width 3.53 11.17 6.13±1.39 0.23
上部叶形 Upper leaf shape 1.38 2.90 1.90±0.32 0.17
下部叶长 Lower leaf length 4.83 15.13 9.24±1.58 0.17
下部叶宽 Lower leaf width 2.90 9.60 5.72±1.29 0.23
下部叶形 Lower leaf shape 1.20 2.91 1.67±0.35 0.21
异形叶指数 Heterophylly leaf index 0.68 1.76 1.16±0.19 0.16

图2

大豆关联群体叶型相关性状的分布"

表2

叶型相关性状的相关系数"

性状
Trait
相关系数
Correlation coefficient
P
P-value
上部叶长 Upper leaf length 0.41 6.10E-09
上部叶宽 Upper leaf width 0.61 1.02E-19
上部叶形 Upper leaf shape 0.64 6.19E-22
下部叶长 Lower leaf length 0.26 4.24E-04
下部叶宽 Lower leaf width 0.36 9.75E-07
下部叶形 Lower leaf shape 0.59 4.49E-18
异形叶指数 Heterophylly leaf index 0.53 1.73E-13

图3

大豆关联群体叶型性状间的相关系数 *、**、***分别表示在0.05、0.01、0.001概率水平显著相关。"

表3

叶型相关性状的关联信号"

信号
Signal
标记
Marker
染色体
Chr.
位置
Position
P
P-value
性状
Trait
5_10.7 Chr05:10705738 5 10705738 7.47E-07 2021下部叶长 Lower leaf length in 2021
5_10.7 Chr05:10705738 5 10705738 1.93E-06 2021下部叶宽 Lower leaf width in 2021
10_50.7 Chr10:50760191 10 50760191 2.01E-06 2021上部叶形 Upper leaf shape in 2021
10_50.7 Chr10:50760191 10 50760191 1.10E-06 2021异形叶指数 Heterophylly index in 2021
13_39.7 Chr13:39721130 13 39721130 1.53E-06 2022上部叶宽 Upper leaf width in 2022
13_39.7 Chr13:39772387 13 39772387 8.95E-06 2021上部叶形 Upper leaf shape in 2021
16_32.2 Chr16:32235624 16 32235624 3.05E-06 2021上部叶长 Upper leaf length in 2021
16_32.2 Chr16:32236735 16 32236735 1.41E-06 2021下部叶长 Lower leaf length in 2021
17_40.9 Chr17:40908625 17 40908625 9.14E-06 2022 上部叶长 Upper leaf length in 2022
17_40.9 Chr17:40908625 17 40908625 2.91E-06 2022下部叶长 Lower leaf length in 2022
19_23.9 Chr19:23901295 19 23901295 2.43E-06 2021上部叶宽 Upper leaf width in 2021
19_23.9 Chr19:23901508 19 23901508 6.92E-06 2022上部叶宽 Upper leaf width in 2022
19_45.1 Chr19:45151266 19 45151266 6.05E-06 2022上部叶形 Upper leaf shape in 2022
19_45.1 Chr19:45155931 19 45155931 9.51E-06 2022上部叶宽 Upper leaf width in 2022
19_45.1 Chr19:45155943 19 45155943 2.45E-07 2021上部叶形 Upper leaf shape in 2021
19_45.1 Chr19:45155943 19 45155943 2.84E-08 2021异形叶指数 Heterophylly index in 2021
20_19.2 Chr20:19295767 20 19295767 8.08E-06 2022上部叶形 Upper leaf shape in 2022
20_19.2 Chr20:19295767 20 19295767 3.39E-06 2022下部叶形 Lower leaf shape in 2022

附图1

叶型相关性状关联分析曼哈顿图"

图4

候选基因Glyma.19G192700在大豆各组织中的表达模式"

[1] Wilson R F. Soybean:Market Driven Research Needs. New York: Springer New York, 2008. pp 3-15.
[2] 冯锋, 张志楠, 谷勇哲, 何俊卿, 田志喜. 提升我国大豆供给能力路径刍议. 中国科学院院刊, 2022, 37: 1281-1289.
Feng F, Zhang Z N, Gu Y Z, He J Q, Tian Z X. Discussion on approaches to improving soybean supply capacity in China. Bull Chin Acad Sci, 2022, 37: 1281-1289 (in Chinese with English abstract).
[3] 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪. 我国大豆分子设计育种成果与展望. 中国科学院院刊, 2018, 33: 915-922.
Tian Z X, Liu B H, Yang Y P, Li M, Yao Y, Ren X B, Xue Y B. Update and prospect of soybean molecular module-based designer breeding in China. Bull Chin Acad Sci, 2018, 33: 915-922 (in Chinese with English abstract).
[4] Reinhardt D, Kuhlemeier C. Plant architecture. EMBO Rep, 2002, 3: 846-851.
doi: 10.1093/embo-reports/kvf177 pmid: 12223466
[5] 赵团结, 盖钧镒, 李海旺, 邢邯, 邱家驯. 超高产大豆育种研究的进展与讨论. 中国农业科学, 2006, 39: 29-37.
Zhao T J, Gai J Y, Li H W, Xing H, Qiu J X. Advances in breeding for super high-yielding soybean cultivars. Sci Agric Sin, 2006, 39: 29-37 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.at-2005-6132
[6] Gao J, Yang S, Cheng W, Fu Y, Leng J, Yuan X, Jiang N, Ma J, Feng X. GmILPA1, encoding an APC8-like protein, controls leaf petiole angle in soybean. Plant Physiol, 2017, 174: 1167-1176.
doi: 10.1104/pp.16.00074 pmid: 28336772
[7] 彭玉华, 杨国保, 吴琳, 吴宇, 朱国富. 大豆叶形垂直分布类型在产量改良中的应用. 中国油料作物学报, 1999, 21(1): 14-17.
Peng Y H, Yang G B, Wu L, Wu Y, Zhu G F. Application of vertical leaf shape distribution to soybean yield improvement. Chin J Oil Crop Sci, 1999, 21(1): 14-17 (in Chinese with English abstract).
[8] Chen Q, Liu B, Ai L, Yan L, Lin J, Shi X, Zhao H, Wei Y, Feng Y, Liu C, Yang C, Zhang M. QTL and candidate genes for heterophylly in soybean based on two populations of recombinant inbred lines. Front Plant Sci, 2022, 13: 961619.
doi: 10.3389/fpls.2022.961619
[9] Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M, Pan Y, Zhou G, Ren H, Du W, Yan H, Wang Y, Han D, Shen Y, Liu S, Liu T, Zhang J, Qin H, Yuan J, Yuan X, Kong F, Liu B, Li J, Zhang Z, Wang G, Zhu B, Tian Z. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18: 161.
doi: 10.1186/s13059-017-1289-9 pmid: 28838319
[10] Han Y, Zhao X, Liu D, Li Y, Lightfoot D A, Yang Z, Zhao L, Zhou G, Wang Z, Huang L, Zhang Z, Qiu L, Zheng H, Li W. Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol, 2016, 209: 871-884.
doi: 10.1111/nph.13626 pmid: 26479264
[11] Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller J L, Kong F. Stepwise selection on homologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet, 2020, 52: 428-436.
doi: 10.1038/s41588-020-0604-7
[12] Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee S H, Wang W, Tian Z. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-414.
doi: 10.1038/nbt.3096 pmid: 25643055
[13] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122-127.
doi: 10.1007/BF02670470
[14] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[15] Zhang W, Xu W, Zhang H, Liu X, Cui X, Li S, Song L, Zhu Y, Chen X, Chen H. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theor Appl Genet, 2021, 134: 1329-1341.
doi: 10.1007/s00122-021-03774-6 pmid: 33507340
[16] Browning B L, Zhou Y, Browning S R. A one-penny imputed genome from next-generation reference panels. Am J Hum Genet, 2018, 103: 338-348.
doi: S0002-9297(18)30242-8 pmid: 30100085
[17] Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348-354.
doi: 10.1038/ng.548 pmid: 20208533
[18] Kim Y S, Kim S G, Lee M, Lee I, Park H Y, Seo P J, Jung J H, Kwon E J, Suh S W, Paek K H, Park C M. HD-ZIP III activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development. Plant Cell, 2008, 20: 920-933.
doi: 10.1105/tpc.107.057448
[19] Hewezi T, Maier T R, Nettleton D, Baum T J. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol, 2012, 159: 321-335.
doi: 10.1104/pp.112.193649 pmid: 22419826
[20] Horiguchi G, Kim G T, Tsukaya H. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J, 2005, 43: 68-78.
doi: 10.1111/j.1365-313X.2005.02429.x pmid: 15960617
[21] Kim J H, Kende H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 13374-13379.
doi: 10.1073/pnas.0405450101
[22] Kim J H, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J, 2003, 36: 94-104.
doi: 10.1046/j.1365-313X.2003.01862.x
[23] Liang G, He H, Li Y, Wang F, Yu D. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol, 2014, 164: 249-258.
doi: 10.1104/pp.113.225144 pmid: 24285851
[24] Sun P, Zhang W, Wang Y, He Q, Shu F, Liu H, Wang J, Wang J, Yuan L, Deng H. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol, 2016, 58: 836-847.
doi: 10.1111/jipb.v58.10
[25] Li S, Gao F, Xie K, Zeng X, Cao Y, Zeng J, He Z, Ren Y, Li W, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J, 2016, 14: 2134-2146.
doi: 10.1111/pbi.12569 pmid: 27107174
[26] Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd N P, Fu X. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018, 560: 595-600.
doi: 10.1038/s41586-018-0415-5
[27] Rodriguez R E, Mecchia M A, Debernardi J M, Schommer C, Weigel D, Palatnik J F. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development, 2010, 137: 103-112.
doi: 10.1242/dev.043067 pmid: 20023165
[28] Bhagsari A S, Brown R H. Leaf photosynthesis and its correlation with leaf area. Crop Sci, 1986, 26: 127-132.
doi: 10.2135/cropsci1986.0011183X002600010030x
[29] Sarlikioti V, De Visser P H, Buck-Sorlin G H, Marcelis L F. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Ann Bot, 2011, 108: 1065-1073.
doi: 10.1093/aob/mcr221
[30] Tischner T, Allphin L, Chase K, Orf J H, Lark K G. Genetics of seed abortion and reproductive traits in soybean. Crop Sci, 2003, 43: 464-473.
doi: 10.2135/cropsci2003.0464
[31] Jeong N, Moon J K, Kim H S, Kim C G, Jeong S C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet, 2011, 122: 865-874.
doi: 10.1007/s00122-010-1492-5 pmid: 21104397
[32] Fang C, Li W, Li G, Wang Z, Zhou Z, Ma Y, Shen Y, Li C, Wu Y, Zhu B, Yang W, Tian Z. Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J Genet Genomics, 2013, 40: 93-96.
doi: 10.1016/j.jgg.2013.01.002
[33] Jeong N, Suh S J, Kim M H, Lee S, Moon J K, Kim H S, Jeong S C. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell, 2012, 24: 4807-4818.
doi: 10.1105/tpc.112.104968
[34] Li Y, Hou Z, Li W, Li H, Lu S, Gan Z, Du H, Li T, Zhang Y, Kong F, Cheng Y, He M, Ma L, Liao C, Li Y, Dong L, Liu B, Cheng Q. The legume-specific transcription factor E1 controls leaf morphology in soybean. BMC Plant Biol, 2021, 21: 531.
doi: 10.1186/s12870-021-03301-1 pmid: 34773981
[1] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[2] 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896.
[3] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[4] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[5] 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622.
[6] 宋健, 熊亚俊, 陈伊洁, 徐瑞新, 刘康林, 郭庆元, 洪慧龙, 高华伟, 谷勇哲, 张丽娟, 郭勇, 阎哲, 刘章雄, 关荣霞, 李英慧, 王晓波, 郭兵福, 孙如建, 闫龙, 王好让, 姬月梅, 常汝镇, 王俊, 邱丽娟. 大豆巢式关联作图(NAM)群体构建及花色和种皮色遗传分析[J]. 作物学报, 2024, 50(3): 556-575.
[7] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[8] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[9] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[10] 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109.
[11] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[12] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[13] 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063.
[14] 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859.
[15] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .