欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 633-644.doi: 10.3724/SP.J.1006.2024.34100

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗与斑茅杂交染色体组构成特征研究

薛丽1(), 李心怡1, 黄勇泰1, 欧财篮1, 吴小青1, 余泽怀1, 崔泽田1, 张木清1, 邓祖湖2, 余凡1,*()   

  1. 1亚热带农业生物资源保护与利用国家重点实验室 / 广西甘蔗生物学重点实验室/广西大学农学院, 广西南宁 530004
    2福建农林大学农学院国家甘蔗工程技术研究中心, 福建福州 350002
  • 收稿日期:2023-06-16 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-09-27
  • 通讯作者: *余凡, E-mail: yufanky@163.com
  • 作者简介:E-mail: 1825600735@qq.com
  • 基金资助:
    广西大学甘蔗专项科研项目(2022GZB006);广西甘蔗生物学重点实验室自主研究课题(GXKLSCB-20190201)

Component characterization of chromosome sets in the hybrids between sugarcane and Tripidium arundinaceum

XUE Li1(), LI Xin-Yi1, HUANG Yong-Tai1, OU Cai-Lan1, WU Xiao-Qing1, YU Ze-Huai1, CUI Ze-Tian1, ZHANG Mu-Qing1, DENG Zu-Hu2, YU Fan1,*()   

  1. 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangxi Key Laboratory of Sugarcane Biology / College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
    2National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2023-06-16 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-09-27
  • Contact: *E-mail: yufanky@163.com
  • Supported by:
    Sugarcane Research Foundation of Guangxi University(2022GZB006);independent fund of Guangxi Key Laboratory of sugarcane biology(GXKLSCB-20190201)

摘要:

斑茅是甘蔗重要的野生种质资源, 渗入斑茅血缘来提高甘蔗抗性是目前甘蔗育种的重要途径之一。对甘蔗与斑茅杂交后代进行染色体分型有利于高效利用斑茅的各种优异性状。本研究利用斑茅特异引物鉴定斑茅与甘蔗杂交高世代材料的真实性, 通过荧光原位杂交对甘蔗与斑茅染色体进行分型, 以探究斑茅和甘蔗染色体在子代中的遗传与分离, 并分析其染色体组结构特征。结果表明, 杂交群体中有30份为斑茅的真实后代, 包含斑茅染色体从1~10条不等, 说明其后代群体基本服从n+n的遗传方式, 占整个真实后代群体的60%。斑茅与甘蔗发生染色体水平的重组约16.67%, 并且斑茅与不同血缘甘蔗重组的概率趋近一致。割手密种特异探针共定位结果表明, 斑茅血缘的渗入降低了近现代栽培甘蔗种中热带种血缘与重组血缘的占比, 并同时提高了割手密血缘的比例。本研究分析的甘蔗与斑茅杂交后代中不同血缘染色体组的遗传及结构特点, 为提高斑茅种质资源在甘蔗育种中的开发利用提供了细胞遗传学基础。

关键词: 甘蔗, 斑茅, 荧光原位杂交, 染色体遗传

Abstract:

T. arundinaceum (Tripidium arundinaceum) is an important wild germplasm resource of sugarcane. It is one of the important ways of sugarcane breeding to infiltrate its lineage to improve sugarcane resistance. Karyotyping of the hybrids between sugarcane and T. arundinaceum is beneficial for the efficient utilization of its various superior traits. In this study, we used species-specific primers for identifying the authenticity of the high generation hybrids between sugarcane and T. arundinaceum, and typed the sugarcane and T. arundinaceum chromosomes by fluorescence in situ hybridization to investigate the inheritance, segregation, and structural characteristics of T. arundinaceum in the offspring. These results indicated that 30 clones were true progeny with 1-10 T. arundinaceum chromosomes, indicating that their progeny population basically obeyed n+n mode of chromosome inheritance that accounted for 60% in the entire true progeny population. The probability of recombination at the chromosomal level between T. arundinaceum and sugarcane was about 16.67%, and the probability of recombination between T. arundinaceum and sugarcane of different lineages tended to be the same. Co-localization of S. spontaneum species-specific probes showed that infiltration of T. arundinaceum lineages reduced the proportion of S. officinarum and recombinant chromosomes in modern sugarcane cultivars, and simultaneously increased the proportion of S. spontaneum. In conclusion, analyzing the genetic and structural characteristics of different chromosome sets in the hybrids between sugarcane and T. arundinaceum provides a cytogenetic basis for improving the exploitation of T. arundinaceum germplasm resources in sugarcane breeding.

Key words: Saccharum, Tripidium arundinaceum, fluorescence in situ hybridization, chromosome inheritance

图1

甘蔗与斑茅杂交系谱图"

表1

供试材料"

序号
No.
无性系
Clone
来源
Source
序号
No.
无性系
Clone
来源
Source
1 海南92-77 Hainan 92-77 T. arundinaceum 19 崖城89-59 YCE 89-59 BC4
2 拔地拉 Badila S. officinarum 20 崖城89-60 YCE 89-60 BC4
3 Np-X S. spontaneum 21 崖城89-62 YCE 89-62 BC4
4 柳城05-136 LC 05-136 S. cultivars 22 崖城89-63 YCE 89-63 BC4
5 崖城05-164 YCE 05-164 BC3 23 崖城89-66 YCE 89-66 BC4
6 崖城89-23 YCE 89-23 BC4 24 崖城89-67 YCE 89-67 BC4
7 崖城89-40 YCE 89-40 BC4 25 崖城89-70 YCE 89-70 BC4
8 崖城89-41 YCE 89-41 BC4 26 崖城89-75 YCE 89-75 BC4
9 崖城89-42 YCE 89-42 BC4 27 崖城89-76 YCE 89-76 BC4
10 崖城89-47 YCE 89-47 BC4 28 崖城89-77 YCE 89-77 BC4
11 崖城89-48 YCE 89-48 BC4 29 崖城89-79 YCE 89-79 BC4
12 崖城89-49 YCE 89-49 BC4 30 崖城89-81 YCE 89-81 BC4
13 崖城89-50 YCE 89-50 BC4 31 崖城89-85 YCE 89-85 BC4
14 崖城89-52 YCE 89-52 BC4 32 崖城89-86 YCE 89-86 BC4
15 崖城89-53 YCE 89-53 BC4 33 崖城89-88 YCE 89-88 BC4
16 崖城89-54 YCE 89-54 BC4 34 崖城89-89 YCE 89-89 BC4
17 崖城89-55 YCE 89-55 BC4 35 崖城89-90 YCE 89-90 BC4
18 崖城89-57 YCE 89-57 BC4 36 崖城89-91 YCE 89-91 BC4

表2

基因组探针制备体系"

材料名称
Material name
斑茅基因组探针
Genomic probe of T. arundinaceum (µL)
割手密特异探针
Specific probe of S. spontaneum (µL)
10×DNA聚合酶I缓冲液 10×DNA polymerase I buffer 2.5 2.5
CY3/FITC标记的0.1 mmol L-1 dNTP混合液 CY3/FITC labeled 0.1 mmol L-1 dNTP mix 7 7
0.05 U μL-1 DNA内切酶I 0.05 U μL-1 DNase I 2 2
5 U μL-1 DNA聚合酶I 5 U μL-1 DNA polymerase I 2 2
DNA模板 DNA template 3 7.5
双蒸水 Double distilled water 8.5 4
总体系 Total system 25 25

图2

崖城05-164和柳城05-136的染色体组成鉴定 绿色: 斑茅基因组信号; 红色: 割手密特异重复序列探针信号; 灰色区域: 热带种血缘; 标尺为10 μm。"

图3

甘蔗与斑茅BC4杂交后代PCR产物电泳检测 M: 标准标记; 1、25: 海南92-77; 2、26: 空白对照; 3、27: 拔地拉; 4、28: Np-X; 5、29: 柳城05-136; 6、30: 崖城05-164。"

图4

甘蔗与斑茅杂交后代中包含6条斑茅染色体 红色: 割手密特异重复序列探针信号; 绿色: 斑茅基因组信号; 灰色区域: 热带种血缘; 标尺为10 μm。"

图5

含7条斑茅染色体的杂交后代 红色: 割手密特异重复序列探针信号; 绿色: 斑茅基因组信号; 灰色区域: 热带种血缘; 标尺为10 μm。"

图6

含8条斑茅染色体的杂交后代 红色: 割手密特异重复序列探针信号; 绿色: 斑茅基因组信号; 灰色区域: 热带种血缘; 标尺为10 μm。"

图7

含9条斑茅染色体的杂交后代 红色: 割手密特异重复序列探针信号; 绿色: 斑茅基因组信号; 灰色区域: 热带种血缘; 标尺为10 μm。"

图8

含0、1和10条斑茅染色体的杂交后代 红色: 割手密特异重复序列探针信号; 绿色: 斑茅基因组信号; 灰色区域: 热带种血缘; 标尺为10 μm。"

图9

甘蔗与斑茅杂交后代BC4群体斑茅染色体遗传图谱 红色: 割手密特异探针信号; 绿色: 斑茅基因组信号; 蓝色框: 斑茅血缘与热带种血缘易位; 黄色框: 重组染色体与斑茅染色体发生易位; 红色框: 斑茅血缘与割手密血缘易位。"

图10

甘蔗与斑茅真实杂交后代染色体遗传特征 (a) 89组合中不同斑茅染色体数目占比; (b) 正常染色体与易位染色体比值; (c) 89组合中不同血缘分布情况。"

图11

甘蔗斑茅杂交后代群体材料中鉴定的染色体易位 红色: 割手密特异探针信号; 绿色: 斑茅基因组信号; 灰色区域: 热带种血缘; 标尺为10 μm。"

表3

甘蔗与斑茅杂交后代BC4的染色体组成"

编号
Number
染色体数目
Number of
chromosome
斑茅染色体
T. arundinaceum
chromosome
割手密染色体
S. spontaneum chromosome
甘蔗属重组
Recombination of
sugarcane chromosome
热带种染色体
S. officinarum
chromosome
柳城05-136 LC05-136 110 0 16 30 64
崖城05-164 YCE05-164 115 15 14 12 74
崖城89-23 YCE89-23 113 7 21 19 66
崖城89-40 YCE89-40 116 9 21 16 70
崖城89-41 YCE89-41 113 7 19 20 67
崖城89-42 YCE89-42 111 7 21 12 71
崖城89-47 YCE89-47 115 8 20 16 71
崖城89-48 YCE89-48 114 8 24 18 64
崖城89-49 YCE89-49 110 9 19 15 67
崖城89-50 YCE89-50 112 10 18 17 67
崖城89-52 YCE89-52 113 9 21 17 66
崖城89-53 YCE89-53 113 6 20 18 69
崖城89-54 YCE89-54 113 8 21 20 64
崖城89-55 YCE89-55 113 9 22 18 64
崖城89-57 YCE89-57 112 7 21 16 68
崖城89-59 YCE89-59 112 7 23 20 62
崖城89-60 YCE89-60 113 8 17 14 74
崖城89-62 YCE89-62 110 7 16 16 71
崖城89-63 YCE89-63 113 8 20 15 70
崖城89-66 YCE89-66 115 0 14 16 85
崖城89-67 YCE89-67 110 7 18 16 69
崖城89-70 YCE89-70 113 7 18 14 74
崖城89-75 YCE89-75 113 6 20 20 67
崖城89-76 YCE89-76 111 7 21 18 65
崖城89-77 YCE89-77 113 9 21 15 68
崖城89-79 YCE89-79 113 5 20 14 74
崖城89-81 YCE89-81 112 1 20 19 72
崖城89-85 YCE89-85 111 7 19 14 71
崖城89-86 YCE89-86 113 8 18 15 72
崖城89-88 YCE89-88 111 8 17 19 67
崖城89-89 YCE89-89 113 9 20 16 68
崖城89-90 YCE89-90 111 8 18 16 69
崖城89-91 YCE89-91 111 6 19 13 73
[1] Li X T, Guo Y R, Huang F, Wang Q S, Chai J, Yu F, Wu J Y, Zhang M Q, Deng Z H. Authenticity identification of Saccharum officinarum and Saccharum spontaneum germplasm materials. Agronomy, 2022, 12: 819.
doi: 10.3390/agronomy12040819
[2] 方静平, 阙友雄, 陈如凯. 甘蔗属起源及其与近缘属进化关系研究进展. 热带作物学报, 2014, 35: 816-822.
Fang J P, Que Y Q, Chen R K. A review of Saccharum origin and its evolutionary relationship with related genera. Chin J Trop Crops, 2014, 35: 816-822 (in Chinese with English abstract).
[3] Singh R K, Singh R B, Singh S P, Sharma M L. Identification of sugarcane microsatellites associated to sugar content in sugarcane and transferability to other cereal genomes. Euphytica, 2011, 182: 335-354.
doi: 10.1007/s10681-011-0484-0
[4] 李富生, 何丽莲, 杨清辉, 杨生超, 肖关丽, 何顺长. 蔗茅的特异性状及其与甘蔗杂交F1代的染色体和RAPD鉴定研究. 分子植物育种, 2003, 1: 775-781.
Li F S, He L L, Yang Q H, Yang S C, Xiao G L, He S C. Evaluation of some special characters of Erianthus fulvus and identification of sugarcane hybrids based on chromosome number and RAPD. Mol Plant Breed, 2003, 1: 775-781 (in Chinese with English abstract).
[5] Tai P Y P, Miller J D. A core collection for Saccharum spontaneum L. from the world collection of sugarcane. Crop Sci, 2001, 41: 879-885.
doi: 10.2135/cropsci2001.413879x
[6] 刘文荣, 邓祖湖, 张木清, 卓晓蕾, 符成, 张垂明. 甘蔗斑茅的杂交利用及其杂种后代鉴定系列研究: III. 甘蔗斑茅远缘杂交后代细胞遗传分析. 作物学报, 2004, 30: 1093-1096.
Liu W R, Deng Z H, Zhang M Q, Zhuo X L, Fu C, Zhang C M. Use and characterization of the genuine intergeneric hybrids from the cross of Saccharum spp. and E. arundinaceum Retz: III. Cytogenetic analysis for the hybrid and backcross progeny of S. officinarum L. and Erianthus sect. Acta Agron Sin, 2004, 30: 1093-1096 (in Chinese with English abstract).
[7] Wang J P, Roe B, Macmil S, Yu Q Y, Murray J E, Tang H B, Chen C X, Najar F, Wiley G, Bowers J, Van Sluys M A, Rokhsar D S, Hudson M E, Moose S O, Paterson A H, Ming R. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics, 2010, 11: 261.
doi: 10.1186/1471-2164-11-261 pmid: 20416060
[8] Yang Q H, Li F S, He L L, He S C. Characterization of the chromosomal transmission of intergeneric hybrids of Saccharum spp. and Erianthus fulvus by genomic in situ hybridization. Crop Sci, 2010, 50: 1642-1648.
doi: 10.2135/cropsci2010.01.0004
[9] Piperidis G, Christopher M J, Carroll B J, Berding N, D'Hont A. Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome, 2000, 43: 1033-1037.
pmid: 11195335
[10] Burner D M, Legendre B L. Chromosome transmission and meiotic stability of sugarcane (Saccharum spp.) hybrid derivatives. Crop Sci, 1993, 33: 600-606.
doi: 10.2135/cropsci1993.0011183X003300030036x
[11] Deng Z H, Zhang M Q, Lin W L, Cheng F, Zhang C M, Li Y C, Lai L P, Lin Y Q, Chen R K. Analysis of disequilibrium hybridization in hybrid and backcross progenies of Saccharum officinarum × Erianthus arundinaceus. Agric Sci China, 2010, 9: 1271-1277.
doi: 10.1016/S1671-2927(09)60216-9
[12] Hermann S R, Aitken K S, Jackson P A, George A W, Piperidis N, Wei X, Kilian A, Detering F. Evidence for second division restitution as the basis for 2n+n maternal chromosome transmission in a sugarcane cross. Euphytica, 2012, 187: 359-368.
doi: 10.1007/s10681-012-0698-9
[13] Piperidis G, Piperidis N, D’Hont A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics, 2010, 284: 65-73.
doi: 10.1007/s00438-010-0546-3 pmid: 20532565
[14] 刘昔辉, 方锋学, 高轶静, 张荣华, 宋焕忠, 杨荣仲, 方位宽, 段维兴, 罗霆, 张革民. 斑茅割手密杂种后代真实性鉴定及遗传分析. 作物学报, 2012, 38: 914-920.
Liu X H, Fang F X, Gao Y J, Zhang R H, Song H Z, Yang R Z, Fang W K, Duan W X, Luo T, Zhang G M. Identification and genetic analysis of hybrid from cross between Erianthus arundinacius (Retz.)Jesws. and Saccharum spontaneum L. Acta Agron Sin, 2012, 38: 914-920 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00914
[15] Li X T, Huang F, Chai J, Wang Q S, Yu F, Huang Y J, Wu J Y, Wang Q N, Xu L N, Zhang M Q, Deng Z H. Chromosome behavior during meiosis in pollen mother cells from Saccharum officinarum × Erianthus arundinaceus F1 hybrids. BMC Plant Biol, 2021, 21: 139.
doi: 10.1186/s12870-021-02911-z
[16] Piperidis N, Chen J W, Deng H H, Wang L P, Jackson P, Piperidis G. GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Genome, 2010, 53: 331-336.
doi: 10.1139/g10-010 pmid: 20616864
[17] Wu J Y, Huang Y J, Lin Y Q, Fu C, Liu S M, Deng Z H, Li Q W, Huang Z X, Chen R K, Zhang M Q. Unexpected inheritance pattern of Erianthus arundinaceus chromosomes in the intergeneric progeny between Saccharum spp. and Erianthus arundinaceus. PLoS One, 2014, 9: e110390.
doi: 10.1371/journal.pone.0110390
[18] 陈健文, Piperidis N, 李奇伟, 陈勇生, 符成, Jackson P, Piperidis G, 邓海华. 用基因组原位杂交方法分析甘蔗-斑茅杂种及回交后代的染色体组成. 分子植物育种, 2010, 8: 293-296.
Chen J W, Piperidis N, Li Q W, Chen Y S, Fu C, Jackson P, Piperidis G, Deng H H. Chromosome pattern of the hybrids and their backcross progenies derived from sugarcane and Erianthus arundinaceus identified by in situ genomic hybridization. Mol Plant Breed., 2010, 8: 293-296 (in Chinese with English abstract).
[19] Huang Y J, Wu J Y, Wang P, Lin Y Q, Fu C, Deng Z H, Wang Q N, Li Q W, Chen R K, Zhang M Q. Characterization of chromosome inheritance of the intergeneric BC2 and BC3 progeny between Saccharum spp. and Erianthus arundinaceus. PLoS One, 2015, 10: e0133722.
doi: 10.1371/journal.pone.0133722
[20] Mace E S, Buhariwalla K K, Buhariwalla H K, Crouch J H. A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep, 2003, 21: 459-460.
doi: 10.1007/BF02772596
[21] Yang S, Zeng K, Chen K, Wu J Y, Wang Q N, Li X T, Deng Z H, Huang Y J, Huang F, Chen R K, Zhang M Q. Chromosome transmission in BC4 progenies of intergeneric hybrids between Saccharum spp. and Erianthus arundinaceus (Retz.) Jeswiet. Sci Rep, 2019, 9: 2528.
doi: 10.1038/s41598-019-38710-8
[22] Braz G T, Yu F, Zhao H N, Deng Z H, Birchler J A, Jiang J M. Preferential meiotic chromosome pairing among homologous chromosomes with cryptic sequence variation in tetraploid maize. New Phytol, 2021, 229: 3294-3302.
doi: 10.1111/nph.17098 pmid: 33222183
[23] Yu F, Zhao X W, Chai J, Ding X E, Li X T, Huang Y J, Wang X H, Wu J Y, Zhang M Q, Yang Q H, Deng Z H, Jiang J M. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. New Phytol, 2022, 233: 1953-1965.
doi: 10.1111/nph.v233.4
[24] Huang Y J, Chen H, Han J L, Zhang Y, Ma S L, Yu G R, Wang Z H, Wang K. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars. Chromosoma, 2020, 129: 45-55.
doi: 10.1007/s00412-019-00729-1 pmid: 31848693
[25] Meng Z, Wang Q N, Khurshid H, Raza G, Han J L, Wang B H, Wang K. Chromosome painting provides insights into the genome structure and evolution of sugarcane. Front Plant Sci, 2021, 12: 731664.
doi: 10.3389/fpls.2021.731664
[26] Wang K, Cheng H, Han J L, Esh A, Liu J Y, Zhang Y B, Wang B H. A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars. Chromosome Res, 2022, 30: 29-41.
doi: 10.1007/s10577-021-09680-3 pmid: 34988746
[27] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li X F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, Chen W Y, Li W, Xiao G L, Zhao J X, Hao Y C, Xu Y, Gao Y, Liu W J, Liu Y H, Yin H Y, Li J Z, Li X, Zhao Y, Wang X Q, Ni F, Ma X, Li A F, Xu S S, Bai G H, Nevo E, Gao C X, Ohm H, Kong L R. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.
doi: 10.1126/science.aba5435
[28] Li J J, Zhao L, Lü B Y, Fu Y, Zhang S F, Liu S H, Yang Q H, Wu J Y, Li J C, Chen X H. Development and characterization of a novel common wheat-Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance. J Integr Agric, 2023, 22: 1291-1307.
doi: 10.1016/j.jia.2022.08.039
[29] Alix K, Baurens F C, Paulet F, Glaszmann J C, D’Hont A. Isolation and characterization of a satellite DNA family in the Saccharum complex. Genome, 1998, 41: 854-864.
pmid: 9924794
[30] Pachakkil B, Terajima Y, Ohmido N, Ebina M, Irei S, Hayashi H, Takagi H. Cytogenetic and agronomic characterization of intergeneric hybrids between Saccharum spp. hybrid and Erianthus arundinaceus. Sci Rep, 2019, 9: 1748.
doi: 10.1038/s41598-018-38316-6 pmid: 30742000
[1] 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘[J]. 作物学报, 2024, 50(2): 310-324.
[2] 王恒波, 冯春燕, 张以星, 谢婉婕, 杜翠翠, 吴明星, 张积森. 甘蔗割手密种转录因子NAP亚家族的鉴定及SsNAP2a参与叶片衰老的功能分析[J]. 作物学报, 2024, 50(1): 110-125.
[3] 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397.
[4] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[5] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[6] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[7] 史培瑶, 陈丽娟, 孙昊杰, 程梦豪, 肖进, 袁春霞, 王秀娥, 王海燕. 顶芒山羊草特异寡核苷酸探针开发和oligo-FISH核型构建[J]. 作物学报, 2023, 49(6): 1455-1465.
[8] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[9] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[10] 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676.
[11] 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664.
[12] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[13] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[14] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[15] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .