作物学报 ›› 2024, Vol. 50 ›› Issue (3): 613-622.doi: 10.3724/SP.J.1006.2024.34093
刘薇(), 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威
LIU Wei(), WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei
摘要:
异丙基苹果酸合成酶(isopropylmalate synthase, IPMS)和异丙基苹果酸脱氢酶(isopropylmalate dehydrogenase, IPMDH)是亮氨酸生物合成中的重要限速酶, 但二者在植物生长发育中的功能鲜有报道。本研究对拟南芥AtIPMDH2基因在大豆中的同源基因GmIPMDH进行了克隆和分析。该基因编码的氨基酸序列中含有Iso_dh亚家族保守结构域, 且启动子中含有大量的光反应元件及激素应答元件。实时荧光定量PCR显示大豆叶片中GmIPMDH的表达量随着植株的生长发育逐渐升高。对GmIPMDH进行了烟草的异位表达和大豆的过量表达, 表型分析发现GmIPMDH的过量表达显著提前了烟草和大豆的开花时间, 且株高和节数均显著增加。转录组分析显示, GmIPMDH过量表达大豆叶片中的若干开花相关基因及赤霉素合成相关基因的表达量发生变化, 推测GmIPMDH可能通过赤霉素合成通路参与赤霉素介导的植物开花诱导和株型调控。本研究首次阐明了GmIPMDH在开花期调控中的作用, 为今后进一步研究GmIPMDH调控大豆开花和生长发育的分子机制提供了一定的基础。
[1] |
Abedin M J, Wang D, McDonnell M A, Lehmann U, Keleka K. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Different, 2007, 14: 500-510.
doi: 10.1038/sj.cdd.4402039 |
[2] |
Binder S, Knill T, Schuster J. Branched-chain amino acid metabolism in higher plants. Physiol Plant, 2007, 129: 68-78.
doi: 10.1111/ppl.2007.129.issue-1 |
[3] |
Junk D J, Mourad G S. Isolation and expression analysis of the isopropylmalate synthase gene family of Arabidopsis thaliana. J Exp Bot, 2002, 53: 2453-2454.
doi: 10.1093/jxb/erf112 |
[4] |
He Y Q, Cheng J P, He Y, Yang B, Cheng Y H, Yang C, Zhang H S, Wang Z F. Influence of isopropylmalate synthase OsIPMS1 on seed vigor associated with amino acid and energy metabolism in rice. Plant Biotechnol J, 2019, 17: 322-337.
doi: 10.1111/pbi.2019.17.issue-2 |
[5] |
Field B, Furniss C, Wilkinson A, Mithen R. Expression of a Brassica isopropylmalate synthase gene in Arabidopsis perturbs both glucosinolate and amino acid metabolism. Plant Mol Biol, 2006, 60: 717-727.
doi: 10.1007/s11103-005-5547-y pmid: 16649108 |
[6] |
Ellerström M, Josefsson L G, Rask L, Ronne H. Cloning of a cDNA for rape chloroplast 3-isopropylmalate dehydrogenase by genetic complementation in yeast. Plant Mol Biol, 1992, 18: 557-566.
pmid: 1371407 |
[7] | Jackson S D, Sonnewald U, Willmitzer L. Cloning and expression analysis of beta-isopropylmalate dehydrogenase from potato. Mol Genet Genomics, 1993, 236: 309-314. |
[8] |
Nozawa A, Takano J, Miwa K, Nakagawa Y, Fujiwara T. Cloning of cDNAs encoding isopropylmalate dehydrogenase from Arabidopsis thaliana and accumulation patterns of their transcripts. Biosci Biotechnol Biochem, 2005, 69: 806-810.
doi: 10.1271/bbb.69.806 |
[9] |
He Y, Mawhinney T P, Preuss M L, Schroeder A C, Chen B, Abraham L, Jez J M, Chen S X. A redox-active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis. Plant J, 2009, 60: 679-690.
doi: 10.1111/tpj.2009.60.issue-4 |
[10] |
He Y, Chen L, Zhou Y, Mawhinney T P, Chen B, Kang B H, Hauser B A, Chen S. Functional characterization of Arabidopsis thaliana isopropylmalate dehydrogenases reveals their important roles in gametophyte development. New Phytol, 2011, 189: 160-175.
doi: 10.1111/nph.2010.189.issue-1 |
[11] |
Goodstein D M, Shu S, Howson R, Neupane R, Hayes R D, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar D S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res, 2012, 40: D1178-D1186.
doi: 10.1093/nar/gkr944 |
[12] | Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Marchler G H, Song J S, Thanki N, Wang Z, Yamashita R A, Zhang D, Zheng C, Bryant S H. CDD: NCBI’s conserved domain database. Nucleic Acids Res, 2015, 43: D222-D226. |
[13] | Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995, 11: 681-684. |
[14] |
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer F T, de Beer T A P, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: W296-W303.
doi: 10.1093/nar/gky427 |
[15] | Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327. |
[16] |
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 2012, 13: 134.
doi: 10.1186/1471-2105-13-134 pmid: 22708584 |
[17] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[18] |
Gallois P, Marinho P. Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco. Methods Mol Biol, 1995, 49: 39-48.
pmid: 8563823 |
[19] |
Paz M M, Martinez J C, Kalvig A B, Fonger T M, Wang K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep, 2006, 25: 206-213.
doi: 10.1007/s00299-005-0048-7 |
[20] | 李巧峡, 张丽, 王玉, 黄小霞. 赤霉素调控植物开花及花器官发育的研究进展. 中国细胞生物学学报, 2019, 41: 746-758. |
Li Q X, Zhang L, Wang Y, Huang X X. The research progress of gibberellin on the regulation of flowering and floral organ development in plant. Chin J Cell Biol, 2019, 41: 746-758 (in Chinese with English abstract). | |
[21] |
Bao S J, Hua C M, Shen L S, Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. J Integr Plant Biol, 2020, 62: 118-131.
doi: 10.1111/jipb.v62.1 |
[22] |
Wu K, Xu H, Gao X H, Fu X D. New insights into gibberellin signaling in regulating plant growth-metabolic coordination. Curr Opin Plant Biol, 2021, 63: 102074.
doi: 10.1016/j.pbi.2021.102074 |
[23] |
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378 |
[24] |
Xie Y Y, Chen L T. Epigenetic regulation of gibberellin metabolism and signaling. Plant Cell Physiol, 2020, 61: 1912-1918.
doi: 10.1093/pcp/pcaa101 pmid: 32745197 |
[25] |
刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定. 作物学报, 2022, 48: 886-895.
doi: 10.3724/SP.J.1006.2022.13026 |
Liu L, Zhan W M, Ding W S, Liu T, Cui L H, Jiang L L, Zhang Y P, Yang J P. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize. Acta Agron Sin, 2022, 48: 886-895 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.13026 |
|
[26] |
Osnato M, Castillejo C, Matías-Hernández L, Pelaz S. TEMPRANILLO genes link photoperiod and gibberellin pathways to control flowering in Arabidopsis. Nat Commun, 2012, 3: 808.
doi: 10.1038/ncomms1810 |
[27] |
Hu Y X, Tao Y B, Xu Z F. Overexpression of Jatropha gibberellin 2-oxidase 6 (JcGA2ox6) induces dwarfism and smaller leaves, flowers and fruits in Arabidopsis and Jatropha. Front Plant Sci, 2017, 8: 2103.
doi: 10.3389/fpls.2017.02103 |
[28] | Cheng J, Ma J J, Zheng X B, Lyu H L, Zhang M M, Tan B, Ye X, Wang W, Zhang L L, Li Z Q, Li J D, Feng J C. Functional analysis of the gibberellin 2-oxidase gene family in peach. Front Plant Sci, 2021, 12: 61915. |
[1] | 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819. |
[2] | 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632. |
[3] | 宋健, 熊亚俊, 陈伊洁, 徐瑞新, 刘康林, 郭庆元, 洪慧龙, 高华伟, 谷勇哲, 张丽娟, 郭勇, 阎哲, 刘章雄, 关荣霞, 李英慧, 王晓波, 郭兵福, 孙如建, 闫龙, 王好让, 姬月梅, 常汝镇, 王俊, 邱丽娟. 大豆巢式关联作图(NAM)群体构建及花色和种皮色遗传分析[J]. 作物学报, 2024, 50(3): 556-575. |
[4] | 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279. |
[5] | 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309. |
[6] | 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66. |
[7] | 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264. |
[8] | 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109. |
[9] | 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171. |
[10] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[11] | 李刚, 周彦辰, 熊亚俊, 陈伊洁, 郭庆元, 高杰, 宋健, 王俊, 李英慧, 邱丽娟. 大豆叶型调控基因Ln及其同源基因单倍型分析[J]. 作物学报, 2023, 49(8): 2051-2063. |
[12] | 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
[13] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[14] | 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064. |
[15] | 朱治, 李龙, 李超男, 毛新国, 郝晨阳, 朱婷, 王景一, 常建忠, 景蕊莲. 小麦转录因子TaMYB5-3B与株高和千粒重相关[J]. 作物学报, 2023, 49(4): 906-916. |
|