欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1684-1698.doi: 10.3724/SP.J.1006.2024.32044

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

长粒香型的超短生育期水稻新品系创制

裴法敬1(), 张文轩1, 张晓1, 王昕钰1,2, 彭少兵1, 米甲明1,*()   

  1. 1华中农业大学作物遗传改良全国重点实验室 / 湖北洪山实验室 / 华中农业大学植物科学技术学院, 湖北武汉 430070,
    2广东省农业科学院水稻研究所 / 农业农村部华南优质稻遗传育种实验室(省部共建), 广东广州 510640
  • 收稿日期:2023-10-21 接受日期:2024-01-31 出版日期:2024-07-12 网络出版日期:2024-03-09
  • 通讯作者: *米甲明, E-mail: mjm@mail.hzau.edu.cn
  • 作者简介:E-mail: peifajing@webmail.hzau.edu.cn
  • 基金资助:
    湖北省重点研发计划项目(2022BBA0034);湖北省重点研发计划项目(2021BBA225);湖北省科技重大专项(2022ABA001)

Developing new rice lines with ultrashort-duration, long-grain, and fragrance

PEI Fa-Jing1(), ZHANG Wen-Xuan1, ZHANG Xiao1, WANG Xin-Yu1,2, PENG Shao-Bing1, MI Jia-Ming1,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement / Hubei Hongshan Laboratory / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Rice Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, Guangdong, China
  • Received:2023-10-21 Accepted:2024-01-31 Published:2024-07-12 Published online:2024-03-09
  • Contact: *E-mail: mjm@mail.hzau.edu.cn
  • Supported by:
    Hubei Key Research and Development Program(2022BBA0034);Hubei Key Research and Development Program(2021BBA225);Science and Technology Major Program of Hubei(2022ABA001)

摘要:

培育优质、超短生育期的水稻品种对提高长江中下游地区复种指数, 保障我国粮食安全具有重要意义。本研究以超短生育期水稻品系CPPC09-180-28-1-5为母本, 携带香味基因fgr和粒长基因GW7的优质水稻品种象牙香占为父本, 通过杂交、回交并结合全基因组分子标记辅助选择技术培育了3个携带纯合fgrGW7基因的优质、超短生育期水稻新品系。对新育成品系进行香味鉴定、主要农艺性状考察及稻米品质分析。结果表明, 导入fgrGW7基因的新品系具有明显香味, 粒长较受体CPPC09-180-28-1-5显著增长, 品质较优。新品系的全生育期85~98 d, 与受体CPPC09-180-28-1-5基本一致, 可作早稻或晚稻在长江中下游稻区进行种植, 提高复种指数。此外, 新育成品系在株高、千粒重以及单株产量等性状较受体CPPC09-180-28-1-5有显著减小, 表明本研究中携带目标基因的2个染色体片段导入对受体CPPC09- 180-28-1-5的主要农艺性状具有显著的影响。本研究可为优质、超短生育期的水稻分子育种提供种质资源和育种策略。

关键词: 水稻, 优质, 超短生育期, 分子标记辅助选择

Abstract:

Developing high-quality and ultrashort-duration rice varieties is of great significance for improving the multiple cropping index in the middle and lower reaches of Yangtze River to ensure our food security. In this study, the ultrashort-duration rice line CPPC09-180-28-1-5 was used as the recipient parent. The high-quality variety Xiangyaxiangzhan which carrying the fragrance gene fgr and the grain length gene GW7 was used as the donor parent. Three new breeding lines carrying homozygous fgr and GW7 genes were bred with high-quality and ultrashort-duration, via hybridization, backcrossing and genome-wide marker-assisted selection. Fragrance identification, main agronomic characters, and grain quality analysis of the new breeding lines were carried out. The new lines carrying fgr and GW7 genes had obvious fragrance. The grain length of the new lines was significantly increased compared with the recipient parent CPPC09-180-28-1-5, resulting in better grain quality. The whole growth period of the new lines was about 85-98 days, which was basically consistent with the recipient parent CPPC09-180-28-1-5. The new lines could be planted as early or late rice in the rice area of the middle and lower reaches of the Yangtze River to improve the multiple cropping index. In addition, plant height, 1000-grain weight, and yield per plant of the new breeding lines were significantly reduced compared with the recipient parent CPPC09-180-28-1-5, indicating that the introgression of two chromosome fragments carrying target genes in this study has a significant effect on the main agronomic traits of CPPC09-180-28-1-5. This study provides the germplasm resources and strategies for breeding high grain quality and ultrashort-duration rice by the molecular breeding.

Key words: rice, high-quality, ultrashort-duration, marker-assisted selection

图1

全基因组分子标记辅助回交育种技术路线"

附图1

BC3F1世代中选单株的遗传背景分析 1~12依次标识水稻的12条染色体。黑点代表目标基因在染色体上的位置, 灰色区域表示受体亲本基因组片段, 蓝色区域表示杂合的基因组片段。"

表1

KASP标记引物序列"

标记
Marker
染色体
Chr.
SNP位点
SNP position
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
fgr-8UD2869 8 20,382,869 8UD2869-G GAAGGTGACCAAGTTCATGCTAACCATAGGAGCAGCTGAAG
8UD2869-A GAAGGTCGGAGTCAACGGATTAACCATAGGAGCAGCTGAAA
8UD2869-R GGTTGCATTTACTGGGAGTT
GW7-7YG6092 7 24,666,092 7YG6092-T GAAGGTGACCAAGTTCATGCTTTATGTCGATCTCCTTCACCATGCT
7YG6092-C GAAGGTCGGAGTCAACGGATTTTATGTCGATCTCCTTCACCATGCC
7YG6092-R TCGAAGAGTCCAAGAAGCAGAATC
GW7-7YG6398 7 24,666,398 7YG6398-G GAAGGTGACCAAGTTCATGCTCATGCTCGCCAATGCAAGG
7YG6398-A GAAGGTCGGAGTCAACGGATTCATGCTCGCCAATGCAAGA
7YG6398-R GTTCAGAAACCTCAGGAAGCTG
1JB0799 1 9,190,799 1JB0799-A GAAGGTGACCAAGTTCATGCTTCATTATCTCAAATAGGCAAATACCTTCA
1JB0799-G GAAGGTCGGAGTCAACGGATTTCATTATCTCAAATAGGCAAATACCTTCG
1JB0799-R TCGTCGTTTTCTTTAGCAATTCTCA
2VC9082 2 21,229,082 2VC9082-G GAAGGTGACCAAGTTCATGCTAGAGGACTGAGAAAAGGGTAATCG
2VC9082-A GAAGGTCGGAGTCAACGGATTAGAGGACTGAGAAAAGGGTAATCA
2VC9082-R GACGTTCTACACTTCTGATCCAGT
3ZC1943 3 25,271,943 3ZC1943-T GAAGGTGACCAAGTTCATGCTCATGACCACGTATGTTGAAAGTAGTT
3ZC1943-C GAAGGTCGGAGTCAACGGATTCATGACCACGTATGTTGAAAGTAGTC
3ZC1943-R TGTGGTCTCTGTTTTCCTTGAAAG
10TE2494 10 19,472,494 10TE2494-A GAAGGTGACCAAGTTCATGCTAGTTATGCCAACCAATAGCACTAA
10TE2494-C GAAGGTCGGAGTCAACGGATTAGTTATGCCAACCAATAGCACTAC
10TE2494-R AGAAGAAGAATAAGTTTGGCGCAG

附图2

BC2F1世代中选单株的遗传背景分析 1~12依次标识水稻的12条染色体。黑点代表目标基因在染色体上的位置, 灰色区域表示受体亲本基因组片段, 蓝色区域表示杂合的基因组片段。"

图2

新育成品系的遗传背景分析 1~12依次标识水稻的12条染色体。黑点代表目标基因在染色体上的位置, 灰色区域表示受体亲本基因组片段, 红色区域表示渗入的供体亲本基因组片段。"

表2

KOH法香味评价结果"

品系名称
Breeding line
评价结果(2021武汉晚季)
Evaluation (2021 Wuhan late season)
评价结果(2022海南)
Evaluation (2022 Hainan)
CPPC09-180-28-1-5 无香味Non-fragrant 无香味Non-fragrant
FJ2161-1 有香味Fragrant 有香味Fragrant
FJ2161-2 有香味Fragrant 有香味Fragrant
FJ2162-1 有香味Fragrant
象牙香占Xiangyaxiangzhan 有香味Fragrant 有香味Fragrant

表3

新育成品系的稻米品质分析结果(2021武汉晚季)"

品系名称
Breeding line
出糙率
Brown
rice rate
(%)
精米率
Milling
rice rate
(%)
整精米率
Head
rice rate
(%)
垩白粒率
Chalky
rice rate
(%)
垩白度
Chalkiness degree
(%)
粒长
Head rice length
(mm)
长宽比
Head rice length/width ratio
直链淀粉
含量
Amylose content (%)
胶稠度
Gel
consistency
(mm)
CPPC09-180-28-1-5 77.4±0.2 66.8±0.4 63.9±0.3 13.8±2.8 3.1±0.7 5.5±0.1 2.7±0.0 13.7±0.3 76.9±0.5
FJ2161-1 73.1±0.8** 61.7±3.6* 56.4±1.8** 31.6±5.5** 9.7±2.6** 6.5±0.4** 3.9±0.2** 12.7±1.7 80.2±4.0
FJ2161-2 72.6±2.4* 60.6±3.1* 53.9±3.6** 20.3±3.4** 8.4±1.8** 6.6±0.3** 3.8±0.3** 13.2±0.8 82.5±1.2**
FJ2162-1 70.5±1.2** 55.8±1.8** 49.4±1.0** 33.6±6.7** 13.0±0.2** 6.2±0.1** 3.6±0.1** 12.7±0.3* 74.9±0.8

表4

新育成品系的稻米品质分析结果(2022海南)"

品系名称
Breeding line
出糙率
Brown
rice rate
(%)
精米率
Milling
rice rate
(%)
整精米率
Head
rice rate
(%)
垩白粒率
Chalky
rice rate
(%)
垩白度
Chalkiness degree
(%)
粒长
Head
rice length
(mm)
长宽比
Head rice length/width ratio
直链淀粉
含量
Amylose content (%)
胶稠度
Gel
consistency
(mm)
CPPC09-180-28-1-5 75.3±0.9 67.4±0.7 64.1±0.5 37.4±3.5 9.6±1.7 6.3±0.1 3.2±0.1 10.0±0.5 79.8±2.5
FJ2161-1 71.5±0.2* 61.9±0.8* 46.8±0.5** 38.7±1.9 13.3±0.1 6.9±0.1** 4.1±0.0** 10.5±0.3 77.5±3.5
FJ2161-2 71.5±0.3* 61.4±0.5** 48.4±0.5** 26.8±0.7 7.4±0.4 6.9±0.0** 4.1±0.1** 10.6±0.4 79.0±2.6
FJ2162-1 72.6±0.2 61.4±0.2** 49.1±0.3** 38.1±2.7 12.8±2.4 6.8±0.1** 4.0±0.1** 9.7±0.4 73.2±1.3*
象牙香占Xiangyaxiangzhan 71.9±0.4* 64.9±0.8 59.1±1.7 0.0±0.0** 0.0±0.0* 7.1±0.1** 4.3±0.0** 18.3±0.2** 60.0±0.0**

图3

新育成品系与亲本品系的粒型比较(2022年海南) A: 稻谷粒型; B: 整精米粒型。"

图4

新育成品系与亲本品系的播齐历期"

表5

新育成品系的主要农艺性状表现(2021武汉晚季)"

品系名称
Breeding line
株高
Plant height (cm)
有效穗数
Number of panicles per plant
平均穗长
Average
panicle length
(cm)
每穗颖花数
Number of spikelets per plant
结实率
Seed-
setting rate
(%)
千粒重
1000-grain weight
(g)
单株产量
Grain yield
per plant
(g)
CPPC09-180-28-1-5 91.8±1.8 11.8±1.2 23.5±0.9 153.5±13.4 63.8±6.6 19.9±0.8 23.1±4.3
FJ2161-1 87.9±1.7** 12.4±1.1 25.5±1.3** 149.8±14.8 58.1±2.5* 18.3±0.4** 19.7±3.0
FJ2161-2 86.0±3.0** 12.0±2.3 25.3±0.7** 152.4±8.5 57.8±7.9 18.2±1.0** 19.0±3.0*
FJ2162-1 86.5±1.6** 11.0±1.6 24.6±0.5** 138.9±5.3* 57.1±6.8 17.8±0.6** 15.7±4.4**

附图3

新育成品系与亲本品系的株型比较(2021武汉晚季)"

表6

新育成品系的主要农艺性状表现(2022海南)"

品系名称
Breeding line
株高
Plant height (cm)
有效穗数
Number of panicles per plant
平均穗长
Average
panicle length
(cm)
每穗颖花数
Number of spikelets per plant
结实率
Seed-setting rate
(%)
千粒重
1000-grain weight
(g)
单株产量
Grain yield
per plant
(g)
CPPC09-180-28-1-5 74.6±1.0 9.3±2.3 19.7±0.3 150.4±8.0 63.1±7.4 23.8±1.3 25.2±6.5
FJ2161-1 67.8±3.3* 9.0±1.2 20.7±0.7* 129.3±8.9* 51.6±3.8* 20.2±0.7** 12.1±1.7*
FJ2161-2 65.7±4.1* 8.3±1.3 20.3±0.7 128.7±9.1* 46.9±3.5* 20.1±0.7** 10.1±2.1**
FJ2162-1 70.1±3.3 9.5±2.6 20.6±0.2** 124.5±9.4* 48.0±2.9* 20.9±0.9* 11.8±3.1*
象牙香占
Xiangyaxiangzhan
108.5±3.5** 14.0±1.7* 25.4±0.4** 157.1±4.9 70.3±1.7 20.1±0.6* 31.1±3.5
[1] 王飞, 彭少兵. 水稻绿色高产栽培技术研究进展. 生命科学, 2018, 30: 1129-1136.
Wang F, Peng S B. Research progress in rice green and high-yield management practices. Chin Bull Life Sci, 2018, 30: 1129-1136 (in Chinese with English abstract).
[2] Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
doi: 10.1073/pnas.1116437108 pmid: 22106295
[3] Ray D K, Foley J A. Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett, 2013, 8: 44041.
[4] 辛良杰, 李秀彬. 近年来我国南方双季稻区复种的变化及其政策启示. 自然资源学报, 2009, 24: 58-65.
doi: 10.11849/zrzyxb.2009.01.007
Xin L J, Li X B. Changes of multiple cropping in double cropping rice area of southern China and its policy implications. J Nat Resour, 2009, 24: 58-65 (in Chinese with English abstract).
[5] 蒋敏, 李秀彬, 辛良杰, 谈明洪. 南方水稻复种指数变化对国家粮食产能的影响及其政策启示. 地理学报, 2019, 74: 32-43.
doi: 10.11821/dlxb201901003
Jiang M, Li X B, Xin L J, Tan M H. Paddy rice multiple cropping index changes in southern China: impacts on national grain production capacity and policy implications. J Geogr Sci, 2019, 74: 32-43 (in Chinese with English abstract).
[6] Chen J N, Huang M, Cao F B, Yin X H, Zou Y B. Availability of existing early-season rice cultivars as resources for selecting high-yielding short-duration cultivars of machine-transplanted late-season rice. Exp Agric, 2019, 56: 218-226.
[7] 潘想成, 杨国栋, 符迎迎, 王昕钰, 熊渠, 徐乐, 彭少兵. 新育成超短生育期品系在双季稻双直播下的产量表现及农艺特性. 作物学报, 2023, 49: 2738-2752.
Pan X C, Yang G D, Fu Y Y, Wang X Y, Xiong Q, Xu L, Peng S B. Yield performance and agronomic characteristics of a newly developed ultrashort-duration line in direct-seeded double-season rice system. Acta Agron Sin, 2023, 49: 2738-2752 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22065
[8] 张坤, 吕伟生, 胡水秀, 曾勇军, 潘晓华, 石庆华. 机插对早稻生育期的影响及原因探究. 江西农业大学学报, 2016, 38: 813-820.
Zhang K, Lyu W S, Hu S X, Zeng Y J, Pan X H, Shi Q H. Influence of mechanical transplantation on the growth period of early rice and its causes. Acta Agric Univ Jiangxiensis, 2016, 38: 813-820 (in Chinese with English abstract).
[9] 韦银兰, 罗友谊, 唐启源, 王慰亲, 郑华斌. 机械种植方式对双季稻生育期、产量及经济效益的影响. 杂交水稻, 2022, 37(1): 122-128.
Wei Y L, Luo Y Y, Tang Q Y, Wang W Q, Zheng H B. Effects of mechanical planting methods on growth period, yield and economic benefits of double-cropping rice. Hybrid Rice, 2022, 37(1): 122-128 (in Chinese).
[10] 朱德峰, 陈惠哲, 徐一成, 张玉屏. 我国双季稻生产机械化制约因子与发展对策. 中国稻米, 2013, 19(4): 1-4.
doi: 10.3969/j.issn.1006-8082.2013.04.001
Zhu D F, Chen H Z, Xu Y C, Zhang Y P. Restriction factors and development countermeasures of mechanization of double- cropping rice production in China. China Rice, 2013, 19(4): 1-4 (in Chinese).
[11] Wang X, Xu L, Li X, Yang G, Wang F, Peng S. Grain yield and lodging-related traits of ultrashort-duration varieties for direct- seeded and double-season rice in Central China. J Integr Agric, 2022, 21: 2888-2899.
[12] 徐善斌, 郑洪亮, 刘利锋, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻. 中国水稻科学, 2020, 34: 406-412.
doi: 10.16819/j.1001-7216.2020.0104
Xu S B, Zheng H L, Liu L F, Bu Q Y, Li X F, Zou D T. Improvement of grain shape and fragrance by using CRISPR/Cas9 system. Chin J Rice Sci, 2020, 34: 406-412 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2020.0104
[13] 康云海, 方玉, 李潜龙, 杜明, 张从合. 水稻粒型基因研究进展及其育种应用. 杂交水稻, 2022, 37(3): 7-10.
Kang Y H, Fang Y, Li Q L, Du M, Zhang C H. Research progress of the genes of rice grain shape and their application in breeding. Hybrid Rice, 2022, 37(3): 7-10 (in Chinese with English abstract).
[14] Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
[15] Verma D K, Srivastav P P. Extraction, identification and quantification methods of rice aroma compounds with emphasis on 2-acetyl-1-pyrroline (2-AP) and its relationship with rice quality: a comprehensive review. Food Rev Int, 2022, 38: 111-162.
[16] Bradbury L M, Fitzgerald T L, Henry R J, Jin Q S, Waters D L. The gene for fragrance in rice. Plant Biotechnol J, 2005, 3: 363-370.
doi: 10.1111/j.1467-7652.2005.00131.x pmid: 17129318
[17] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014, 33: 1-14.
[18] 杨青青, 唐家琪, 张昌泉, 高继平, 刘巧泉. KASP标记技术在主要农作物中的应用及展望. 生物技术通报, 2022, 38(4): 58-71.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1378
Yang Q Q, Tang J Q, Zhang C Q, Gao J P, Liu Q Q. Application and prospect of KASP marker technology in main crops. Biotechnol Bull, 2022, 38(4): 58-71 (in Chinese with English abstract).
[19] Majeed U, Darwish E, Rehman S U, Zhang X Y. Kompetitive allele specific PCR (KASP): a single plex genotyping platform and its application. J Agric Sci, 2019, 11: 1916-9752.
[20] Yu H, Xie W, Li J, Zhou F, Zhang Q. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J, 2014, 12: 28-37.
doi: 10.1111/pbi.12113 pmid: 24034357
[21] 邱树青, 陆青, 喻辉辉, 倪雪梅, 张耕耘, 何航, 谢为博, 周发松. 水稻全基因组选择育种技术平台构建与应用. 生命科学, 2018, 30: 1120-1128.
Qiu S Q, Lu Q, Yu H H, Ni X M, Zhang G Y, He H, Xie W B, Zhou F S. The development and application of rice whole genome selection breeding platform. Chin Bull Life Sci, 2018, 30: 1120-1128 (in Chinese with English abstract).
[22] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.15.001
[23] Varshney R K, Bohra A, Yu J, Graner A, Zhang Q, Sorrells M E. Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci, 2021, 26: 631-649.
doi: 10.1016/j.tplants.2021.03.010 pmid: 33893045
[24] 王红波. 全基因组分子标记背景选择创建抗褐飞虱水稻新材料. 华中农业大学博士学位论文, 湖北武汉, 2019.
Wang H B. Development of Rice Breeding Lines for Brown Planthopper Resistance Using Whole Genome Marker Assisted Background Selection. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[25] 国家水稻数据中心. 中国水稻品种及其系谱数据库. [2023-02-17] https://www.ricedata.cn/variety/varis/600877.htm.
China Rice Data Center. China Rice Variety and Genealogy Gata Bank. [2023-02-17]https://www.ricedata.cn/variety/varis/600877.htm.
[26] 穆春华, 张发军, 李文才, 孙琦, 丁照华, 王磊, 孟昭东. 玉米叶片基因组快速提取方法研究. 玉米科学, 2010, 18(3): 170-172.
Mu C H, Zhang F J, Li W C, Sun Q, Ding Z H, Wang L, Meng Z D. A method of genomic DNA extraction of maize. Maize Sci, 2010, 18(3): 170-172 (in Chinese with English abstract).
[27] Sood B C, Siddiq E A. A rapid technique for scent determination in rice. Indian J Genet Plant Breed, 1978, 38: 268-275.
[28] 胡培松, 邵雅芳, 朱智伟, 于永红, 章林平, 胡贤巧, 朱大伟. 食用稻品种品质. 北京: 中国农业出版社, 2021. pp 1-5.
Hu P S, Shao Y F, Zhu Z W, Yu Y H, Zhang L P, Hu X Q, Zhu D W. Cooking Rice Variety Quality, Beijing: China Agriculture Press, 2021. pp 1-5 (in Chinese).
[29] 彭波, 孙艳芳, 陈报阳, 孙瑞萌, 孔冬艳, 庞瑞华, 李先文, 宋晓华, 李慧龙, 李金涛, 周棋赢, 柳琳, 段斌, 宋世枝. 水稻香味基因及其在育种中的应用研究进展. 植物学报, 2017, 52: 797-807.
doi: 10.11983/CBB16197
Peng B, Sun Y F, Chen B Y, Sun R M, Kong D Y, Pang R H, Li X W, Song X H, Li H L, Li J T, Zhou Q Y, Liu L, Duan B, Song S Z. Research progress of fragrance gene and its application in rice breeding. Chin Bull Bot, 2017, 52: 797-807 (in Chinese with English abstract).
[30] He Q, Park Y J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Mol Breed, 2015, 35: 217.
[31] Bradbury L M, Henry R J, Jin Q, Reinke R F, Waters D L. A perfect marker for fragrance genotyping in rice. Mol Breed, 2005,16: 279-283.
[32] Shi W, Yang Y, Chen S, Xu M. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed, 2008, 22: 185-192.
[33] 黄娟, 刘开强, 邓国富, 卿冬进, 高菊, 伍豪, 周维永, 杨燕宇, 朱昌兰, 高利军. 水稻香味基因荧光分子标记开发及育种应用. 植物生理学报, 2020, 56: 1015-1022.
Huang J, Liu K Q, Deng G F, Qing D J, Gao J, Wu H, Zhou W Y, Yang Y Y, Zhu C L, Gao L J. Development and breeding application of fluorescent molecular marker for rice fragrance gene. Plant Physiol J, 2020, 56: 1015-1022 (in Chinese with English abstract).
[34] Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47: 944-948.
[35] Zhang L, Ma B, Bian Z, Li X, Zhang C, Liu J, Li Q, Liu Q, He Z. Grain size selection using novel functional markers targeting 14 genes in rice. Rice, 2020, 13: 63.
doi: 10.1186/s12284-020-00427-y pmid: 32902771
[36] Chen S, Lin X H, Xu C G, Zhang Q. Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci, 2000, 40: 239-244.
[37] 兰艳荣, 王俊义, 王弋, 牟同敏. 分子标记辅助选择改良水稻光温敏核不育系华201S的白叶枯病抗性. 中国水稻科学, 2011, 5: 169-174.
Lan Y R, Wang J Y, Wang Y, Mou T M. Improvement of rice bacterial blight resistance of Hua 201S, an elite photo-thermo- sensitive genic male sterile line, by molecular marker-assisted selection. Chin J Rice Sci, 2011, 25: 169-174 (in Chinese with English abstract).
[38] 胡兰, 孙双燕, 曹伟召, 曾文秀, 赵国超, 李建粤. 利用分子标记辅助选育优质长粒香型软米水稻新品系“上师大19号”. 上海农业学报, 2020, 36(4): 1-5.
Hu L, Sun S Y, Cao W Z, Zeng W X, Zhao G C, Li J Y. Development of a aromatic soft rice line “Shangshida No. 19” with long grain by molecular marker-assisted selection. Acta Agric Shanghai, 2020, 36(4): 1-5 (in Chinese with English abstract).
[39] 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉. 稻米品质性状基因的克隆与功能研究进展. 中国农业科学 2016, 49: 4267-4283.
doi: 10.3864/j.issn.0578-1752.2016.22.002
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Sci Agric Sin, 2016, 49: 4267-4283 (in Chinese with English abstract).
[40] Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584.
doi: 10.1073/pnas.1014419107 pmid: 20974950
[41] Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266-1269.
[42] 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学, 2015, 29: 431-438.
doi: 10.3969/j.issn.1001G7216.2015.04.013
Zhu J H, Zhang C Q, Gu M H, Liu Q Q. Progress in the allelic variation of Wx gene and its application in rice breeding. Chin J Rice Sci, 2015, 29: 431-438 (in Chinese with English abstract).
[43] 杨勇, 陆彦, 郭淑青, 石仲慧, 赵杰, 范晓磊, 李钱峰, 刘巧泉, 张昌泉. 籼稻背景下导入Wxin等位基因改良稻米食味和理化品质. 作物学报, 2019, 45: 1628-1637.
doi: 10.3724/SP.J.1006.2019.82064
Yang Y, Lu Y, Guo S Q, Shi Z H, Zhao J, Fan X L, Li Q F, Liu Q Q, Zhang C Q. Improvement of rice eating quality and physicochemical properties by introgression of Wxin allele in indica varieties. Acta Agron Sin, 2019, 45: 1628-1637 (in Chinese with English abstract).
[44] 郑永丹. 中国主要粮食作物生育期时空格局及其变化. 华中师范大学硕士学位论文, 湖北武汉, 2015.
Zheng Y D. Research on the Spatial-Temporal Distribution of Growth Period of Main Grain Crops and Its Change in China. MS Thesis of Central China Normal University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[45] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44: 845-850.
Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin (Vitae), 2014, 44: 845-850 (in Chinese with English abstract).
[46] 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响. 中国农业科学, 2023, 56: 249-263.
doi: 10.3864/j.issn.0578-1752.2023.02.004
Zhang X L, Tao W, Gao G Q, Chen L, Guo H, Zhang H, Tang M Y, Liang T F. Effects of direct seeding cultivation method on growth stage, lodging resistance and yield benefit of double- cropping early rice. Sci Agric Sin, 2023, 56: 249-263 (in Chinese with English abstract).
[47] 周训华, 唐广心, 朱志华, 何华元. “稻-稻-油”三熟制生产模式探讨. 作物研究, 2015, 29: 64-66.
Zhou X H, Tang G X, Zhu Z H, He H Y. Discussion on the production model of the “rice-rice-rape” triple cropping system. Crop Res, 2015, 29: 64-66 (in Chinese).
[48] 孙松. 稻田二熟制与三熟制生产力及生态经济效益综合评价. 江西农业大学硕士学位论文, 江西南昌, 2018.
Sun S. Study on Comprehensive Evaluation of Double Cropping Systems and Triple Cropping Systems Productivity and Ecological Economic Benefit. MS Thesis of Jiangxi Agricultural University, Nanchang, Jiangxi, China, 2018 (in Chinese with English abstract).
[1] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[2] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[3] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[4] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[5] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[6] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[7] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[8] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[9] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[10] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[11] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[12] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[13] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[14] 张丽洁, 周海宇, MUHAMMAD Zeshan, MUNSIF Ali Shad, 杨明冲, 李波, 韩世健, 张翠翠, 胡利华, 王令强. 水稻花粉小肽锌指蛋白基因OsFLZ13功能研究[J]. 作物学报, 2024, 50(3): 543-555.
[15] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 耿惠敏;张怀琼;任正隆. 1BL/1RS易位系对小麦高分子量谷蛋白亚基遗传的影响初析[J]. 作物学报, 2008, 34(01): 167 -170 .
[2] 杨志彬;陈兵林;周治国. 花铃期棉田速效养分时空变异特征及对棉花产量品质的影响[J]. 作物学报, 2008, 34(08): 1393 -1402 .
[3] 吴金红;蒋江松;陈惠兰;王石平. 水稻稻瘟病抗性基因Pi-2(t)的精细定位[J]. 作物学报, 2002, 28(04): 505 -509 .
[4] 杨建昌;王志琴;陈新红;赵步洪;王泽港;朱庆森. 旱种水稻结实期茎中碳同化物的运转及其生理机制[J]. 作物学报, 2004, 30(02): 108 -114 .
[5] 熊洪;冉茂林;徐富贤;洪松. 南方稻区再生稻研究进展及发展[J]. 作物学报, 2000, 26(03): 297 -304 .
[6] 蒋观敏;罗耀武;李喆浩. 同源四倍体高粱不育系和保持系的生物学及生理特性研究[J]. 作物学报, 2000, 26(04): 444 -448 .
[7] 张宾;赵明;董志强;李建国;陈传永;孙锐. 作物高产群体LAI动态模拟模型的建立与检验[J]. 作物学报, 2007, 33(04): 612 -619 .
[8] 张子龙, 陶士珩, 李加纳. 甘蓝型黄籽油菜与黑籽油菜苗期生理特性的比较研究[J]. 作物学报, 2007, 33(05): 837 -842 .
[9] 颜济; 敖栋辉. 小麦生长锥发育形态的观察[J]. 作物学报, 1963, 2(04): 411 -426 .
[10] 王乃元. 野生稻(O.rufipogon)新胞质改良不育系稻米品质的研究[J]. 作物学报, 2006, 32(02): 253 -259 .