欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 1934-1947.doi: 10.3724/SP.J.1006.2024.32046

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

OsRPTA18参与调控水稻叶片倾角的功能

何丹丹1,2(), 舒亚洲1,2(), 周海连1,2, 吴松果1,2, 魏晓双1,2, 杨明冲1,2, 李波1,2, 吴正丹1,2, 韩世健2, 杨娟2,3, 王继斌1,2,4,*(), 王令强1,2,3,*()   

  1. 1广西大学 / 亚热带农业生物资源保护与利用国家重点实验室, 广西南宁 530004
    2广西大学农学院, 广西南宁 530004
    3植物科学国家级实验教学示范中心 / 广西大学, 广西南宁 530004
    4茅台学院, 贵州仁怀 564501
  • 收稿日期:2023-12-01 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-18
  • 通讯作者: * 王继斌, E-mail: wangjibin@mtxy.edu.cn;王令强, E-mail: lqwang@gxu.edu.cn
  • 作者简介:何丹丹, E-mail: 2117301009@st.gxu.edu.cn;
    舒亚洲, E-mail: 991181293@qq.com
    ** 同等贡献
  • 基金资助:
    广西自然科学基金面上项目(2022GXNSFAA035479);广西自然科学基金重点项目(2020GXN9)

OsRPTA18 participated in the regulation of leaf inclination in rice

HE Dan-Dan1,2(), SHU Ya-Zhou1,2(), ZHOU Hai-Lian1,2, WU Song-Guo1,2, WEI Xiao-Shuang1,2, YANG Ming-Chong1,2, LI Bo1,2, WU Zheng-Dan1,2, HAN Shi-Jian2, YANG Juan2,3, WANG Ji-Bin1,2,4,*(), WANG Ling-Qiang1,2,3,*()   

  1. 1Guangxi University / State Key Laboratory of Conservation and Utilization of Agric-Biological Resources, Nanning 530004, Guangxi, China
    2College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
    3National Demonstration Center for Experimental Plant Science Education / Guangxi University, Nanning 530004, Guangxi, China
    4Moutai Institute, Renhuai 564501, Guizhou, China
  • Received:2023-12-01 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-18
  • Contact: * E-mail: wangjibin@mtxy.edu.cn;E-mail: lqwang@gxu.edu.cn
  • About author:** Contributed equally to this work
  • Supported by:
    General Project of Guangxi Natural Science Foundation(2022GXNSFAA035479);Key Project of Guangxi Natural Science Foundation(2020GXN9)

摘要:

RPTA (regulatory particle triple-A ATPase)家族与植物的生长发育、激素调控和逆境胁迫反应密切相关。本研究一共鉴定到33个OsRPTA基因家族成员, 并分析了其基因位置、基因结构、motif组成和启动子顺式作用元件等信息。随后, 利用水稻CREP数据库下载的数据, 分析了OsRPTA基因家族成员的全生育期组织表达模式。发现大部分OsRPTA基因在穗、胚乳和愈伤组织中具有较高的表达水平。β-D-葡萄糖苷酸酶(GUS)染色进一步显示, 基因成员OsRPTA18主要在叶枕、根、叶、叶鞘、茎节、内稃和外稃的维管束等部位表达。亚细胞定位结果显示OsRPTA18蛋白定位于细胞核。通过CRISPR/Cas9基因编辑获得了突变体材料osrpta18-1osrpta18-2。与中花11相比, 突变体植株的株高、叶倾角变小, 粒宽和千粒重降低。组织切片结果表明, 突变体osrpta18旗叶倾角变小是由于叶枕近轴面厚壁细胞增殖, 导致近轴面与远轴面细胞和维管束的不对称性减弱。本研究有助于了解水稻RPTA基因家族功能, 并为利用OsRPTA18基因培育理想株型的水稻品种提供参考。

关键词: 水稻, RPTA基因家族, 叶枕, 叶倾角

Abstract:

The regulatory particle triple-A ATPase (RPTA) gene family is closely related to plant growth and development, hormone regulation and stress response. In this study, a total of 33 members of the gene family were identified in rice and their gene locations, gene structures, motifs composition, and cis-elements in the promoter regions were revealed. Then, the relative expression patterns of the gene members in OsRPTA family were investigated with the data downloaded from rice CREP database. Most of the OsRPTA genes expressed highly in panicle, endosperm and callus tissues. β-D-glucuronidase (GUS) staining further indicated that one of the members, OsRPTA18, was expressed in collar, root, leaf, leaf sheath, stem node, vascular bundles of glume and lemma. Subcellular localization indicated that OsRPTA18 protein was in nucleus. Two knock-out mutants (osrpta18-1 and osrpta18-2) were generated by CRISPR/Cas9 editing technology and both exhibited reduced plant height, leaf inclination, accompanied by the decreased grain width and 1000-grain weight compared to the wild type Zhonghua 11. Transverse section staining of the lamina joints of the plants indicated the changes in the cell wall thickness and vascular bundle size, causing the obvious proliferation of thick-walled cells at adaxial side, thus decreasing asymmetric development of the lamina joints and the leaf angel in the osrpta18 mutants. These results of this study are valuable for further functional analysis of RPTA genes and utilization of the OsRPTA18 gene for the genetic improvement of rice varieties with ideal plant architecture.

Key words: rice, RPTA gene family, collar, leaf inclination

表1

本研究引物序列"

引物名称
Primer name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
OsRPTA18-CRISPR-Target TAGAGCTAGAAATAGCAAGTTAAAAT TAGAGCTAGAAATAGCAAGTTAAAAT
OsRPTA18-CRISPR-Identify CCGGAAGAGGAGACCCATCTCGACA CACTCCTATCTCACTGGCTGGTA
OsRPTA18-GUS TATGACCATGATTACGAATTCGAATGTGCAGAACACTGTGAGGA TGGCTGCAGGTCGACGGATCCGGTAGACAAAAGATACCCTAACCAAGA
OsRPTA18-GUS-Identify CAGTGAGCGCAACGCAATTA CCCAGTCACGACGTTGTAAAACG

表2

水稻RPTA基因家族信息"

基因名称
Gene name
基因LOC号
Gene LOC number
染色体Chr. 核酸长度Nucleotide length
(bp)
氨基酸数目
Number of amino acids (aa)
分子量
Molecular weight
(kD)
等电点
pI
不稳定
系数Instability index
脂肪族
指数Aliphatic index
平均疏水性
Grand average of hydropathicity
OsRPTA1 LOC_Os01g04814.4 1 1260 400 44.17 6.98 47.96 73.91 -0.453
OsRPTA2 LOC_Os01g12660.1 1 2928 841 93.42 8.23 48.06 87.81 -0.378
OsRPTA3.1 LOC_Os01g43480.1 1 1281 813 89.85 5.54 38.12 89.95 -0.341
OsRPTA3.2 LOC_Os01g43480.2 1 1290 754 84.23 5.76 40.71 87.17 -0.415
OsRPTA3.3 LOC_Os01g43480.3 1 1230 676 75.82 5.38 37.24 86.53 -0.480
OsRPTA4 LOC_Os01g48270.1 1 1353 411 45.57 5.42 51.96 86.85 -0.378
OsRPTA5.1 LOC_Os01g55260.1 1 3333 387 43.47 6.02 47.87 87.75 -0.428
OsRPTA5.2 LOC_Os01g55260.2 1 1074 307 34.56 6.23 51.23 97.25 -0.286
OsRPTA6 LOC_Os02g10640.1 2 1731 401 44.58 7.03 28.84 93.40 -0.333
OsRPTA7 LOC_Os02g11050.1 2 1737 425 47.22 8.90 40.91 93.58 -0.342
OsRPTA8 LOC_Os02g21970.1 2 1176 420 46.45 5.74 37.35 88.95 -0.328
OsRPTA9 LOC_Os02g51400.1 2 2568 976 109.51 5.41 53.23 81.72 -0.553
OsRPTA10 LOC_Os02g54340.1 2 2484 427 47.68 6.03 33.77 83.94 -0.406
OsRPTA11.1 LOC_Os02g56000.1 2 2097 430 47.79 4.94 41.09 92.10 -0.427
OsRPTA11.2 LOC_Os02g56000.2 2 2313 410 45.48 4.88 41.48 93.25 -0.375
OsRPTA12 LOC_Os03g18690.1 3 1464 451 49.71 5.91 45.46 90.98 -0.388
OsRPTA13 LOC_Os03g22420.1 3 1290 1111 121.68 6.13 43.49 82.72 -0.373
OsRPTA14 LOC_Os04g21660.1 4 1281 358 39.50 5.32 35.59 93.45 -0.239
OsRPTA15 LOC_Os04g39190.1 4 2922 577 62.28 9.84 50.51 92.25 -0.148
OsRPTA16 LOC_Os04g42110.1 4 1272 579 62.80 7.24 44.39 89.67 -0.231
OsRPTA17 LOC_Os05g31220.1 5 1206 392 42.30 6.73 44.03 94.65 -0.151
OsRPTA18.1 LOC_Os05g50750.1 5 1536 856 94.86 5.58 46.24 83.87 -0.485
OsRPTA18.2 LOC_Os05g50750.2 5 1446 828 91.67 5.52 47.76 84.93 -0.475
OsRPTA18.3 LOC_Os05g50750.3 5 1182 699 77.05 5.38 45.08 80.42 -0.597
OsRPTA19 LOC_Os06g01980.1 6 3246 771 84.78 7.31 55.90 78.48 -0.486
OsRPTA20 LOC_Os06g03940.1 6 1347 488 107.10 9.43 45.81 84.78 -0.381
OsRPTA21 LOC_Os06g07630.1 6 3279 430 47.77 4.94 38.87 92.77 -0.412
OsRPTA22 LOC_Os06g09290.1 6 1347 427 47.68 6.03 33.77 83.94 -0.406
OsRPTA23 LOC_Os06g12160.1 6 588 974 108.20 5.72 53.80 85.51 -0.496
OsRPTA24 LOC_Os06g39870.1 6 3609 424 46.82 9.03 39.28 93.33 -0.289
OsRPTA25 LOC_Os06g40560.1 6 1260 402 44.58 8.48 29.86 93.72 -0.315
OsRPTA26.1 LOC_Os06g45820.3 6 2928 512 55.06 8.55 33.69 87.79 -0.167
OsRPTA26.2 LOC_Os06g45820.4 6 1281 482 51.45 7.79 30.88 94.07 -0.084
OsRPTA27 LOC_Os06g50050.1 6 1290 394 43.69 7.65 63.65 92.34 -0.254
OsRPTA28 LOC_Os07g47530.1 7 1230 1082 1184.00 8.40 42.38 81.67 -0.385
OsRPTA29 LOC_Os07g49150.1 7 1353 449 49.58 5.91 44.33 89.87 -0.414
OsRPTA30 LOC_Os08g44240.1 8 3333 1093 119.51 5.91 47.33 95.12 -0.135
OsRPTA31 LOC_Os09g38730.1 9 1074 449 48.69 4.90 37.33 91.94 -0.263
OsRPTA32 LOC_Os10g30580.2 10 1731 196 21.81 4.88 57.44 75.28 -0.559
OsRPTA33 LOC_Os11g43970.1 11 1737 1203 131.21 6.81 48.55 80.52 -0.478

图1

水稻RPTA基因家族的染色体位置?蛋白聚类和共线性分析 A: OsRPTA基因家族的在染色体上位置; B: OsRPTA蛋白的无根系统发育树聚类; C: OsRPTA基因家族的共线性分析, 红线和灰线分别指示OsRPTA家族基因成员的共线性关系和水稻基因组中所有基因的共线性关系。"

图2

水稻RPTA基因家族的基序组成?保守结构域和基因结构 A: OsRPTA蛋白保守基序分析; B: OsRPTA蛋白结构域分析; C: OsRPTA基因的外显子-内含子结构分析, 绿色方框表示5′和3′非翻译区(UTR), 黄色方框表示编码区(CDS)的外显子, 黑线表示内含子。"

图3

水稻RPTA基因家族启动子顺式作用元件 基因的顺式作用元件数量用数字表示, 灰色框表示没有相应的元件。"

图4

水稻RPTA基因家族共表达分析 代表相对信号值的色阶如图所示(绿色表示低表达; 黑色表示中等表达, 红色表示高表达)。N1、N7、N20: 授粉后14、17、21 d后的胚乳。N2、N18: 旗叶。N3~N6、N17、N24、N29: 愈伤组织。N8: 小穗。N9、N30: 叶。N10、N31: 叶鞘。N11、N22: 穗。N12~N14: 胚芽。N15、N16: 胚根。N19、N23: 抽穗前 5d 的茎。N21: 吸涨后种子。N25: 颖壳。N26: 雄蕊。N27、N28、N32: 抽穗 3、4、5 期的幼穗。N33: 根。N34: 茎。N35、N36: 叶和根。N37~N39: GA3、KT、NAA处理下三叶期的幼苗。"

图5

OsRPTA18pro-GUS转基因植株各组织器官的β-葡糖醛酸酶(GUS)染色 A: 萌发的种子; B: 三叶期苗子的根、叶、茎和叶枕; C: 抽穗第3期植株的根、叶、茎节间、叶枕、叶枕横切、叶鞘横切、茎节、小花、颖壳横切; D: 抽穗第五期的根、叶、茎节间、叶枕、叶枕横切、叶鞘横切、茎节、茎横切以及成熟早期的种子。"

图6

水稻RPTA18蛋白在本氏烟草中的亚细胞定位 35S::GFP为空载体; 35S:OSRPTA18-GFP为OsRPTA18与pD1301S的重组载体; 35S::H2B-mCherry为细胞核marker载体; 标尺为20 μm。"

图7

CRISPR/Cas9编辑材料osrpta18-1和osrpta18-2的创建 A: gRNA靶点序列与Cas9/gRNA重组示意图; B: 突变体(osrpta18-1和osrpta18-2)与中花11 (ZH11)野生型(WT)植株中的OsRPTA18基因序列比对, 蓝色字母表示靶点序列, 删除线代表缺失核苷酸, 红色小写字母为插入核苷酸, -表示缺失核苷酸, +表示插入核苷酸。"

图8

CRISPR/Cas9编辑材料osrpta18-1和osrpta18-2的表型 A: 萌发后10 d的幼苗和叶倾角(标尺为1 cm) (n = 26); B: 生长 100 天后整株植物和株高表型(标尺为10 cm) (n = 60); C: 生长100 d 后的旗叶和叶倾角(n = 45); D: 粒长(n = 66)、粒宽(n = 34)和千粒重(n = 5)。以上所有数据采用One-way ANOVA (和非参数检验或混合模型)统计分析。*表示P < 0.05, **表示P < 0.01。"

图9

CRISPR/Cas9编辑材料osrpta18-1和osrpta18-2叶枕部位细胞增殖、细胞壁加厚和维管束的改变 A: 植株叶枕部位比较; B: 植株的叶枕横截面比较, 红框指示叶枕的近轴端和远轴端(标尺为500 μm); C: 叶枕远轴端的放大图(标尺为40 μm); D: 叶枕近轴端的放大图(标尺为40 μm)。"

[1] Chen L T, Li Y C, Sottas C, Lazaris A, Petrillo S K, Metrakos P, Li L, Ishida Y, Saito T, Garza S, Papadopoulos V. Loss of mitochondrial ATPase ATAD3A contributes to nonalcoholic fatty liver disease through accumulation of lipids and damaged mitochondria. J Biol Chem, 2022, 298: 102008.
[2] Xu H Y, Holly V R. The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies. Skelet Muscle, 2021, 11: 25.
doi: 10.1186/s13395-021-00280-7 pmid: 34772465
[3] Kotani Y, Morito D, Yamazaki S, Ogino K, Kawakami K, Takashima S, Hirata H, Nagata K. Neuromuscular regulation in zebrafish by a large AAA+ ATPase/ubiquitin ligase, mysterin/RNF213. Sci Rep, 2015, 5: 16161.
doi: 10.1038/srep16161 pmid: 26530008
[4] Morito D, Nishikawa K, Hoseki J, Kitamura A, Kotani Y, Kiso K, Kinjo M, Fujiyoshi Y, Nagata K. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state. Sci Rep, 2014, 4: 4442.
doi: 10.1038/srep04442 pmid: 24658080
[5] Qi Y, Liu H, Daniels M P, Zhang G, Xu H. Loss of Drosophila i-AAA protease, dYME1L, causes abnormal mitochondria and apoptotic degeneration. Cell Death Differ, 2016, 23: 291-302.
doi: 10.1038/cdd.2015.94 pmid: 26160069
[6] Cui K, Qin L, Tang X Y, Nong J K, Chen J, Wu N, Gong X, Yi L X, Yang C H, Xia S T. A single amino acid substitution in RFC4 leads to endoduplication and compromised resistance to DNA damage in Arabidopsis thaliana. Genes, 2022, 13: 1037.
[7] Zhang B T, Van Aken O, Thatcher L, De Clercq I, Duncan O, Law S R, Murcha M W, van der Merwe M, Seifi H S, Carrie C, Cazzonelli C, Radomiljac J, Höfte M, Singh K B, Van Breusegem F, Whelan J. The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana. Plant J, 2014, 80: 709-727.
[8] Wu Q F, Han T T, Yang L, Wang Q, Zhao Y X, Jiang D, Ruan X. The essential roles of OsFtsH2 in developing the chloroplast of rice. BMC Plant Biol, 2021, 21: 445.
doi: 10.1186/s12870-021-03222-z pmid: 34598671
[9] 张海丽, 高静, 张昊, 李生辉, 邢继红, 王凤茹, 董金皋. 油菜素内酯对水稻细胞伸长和分裂的调控. 农业生物技术学报, 2015, 23: 71-79.
Zhang H L, Gao J, Zhang H, Li S H, Xing J H, Wang F R, Dong J G. The regulation of brassinosteroid (BR) on elongation and division of rice (Oryza sativa) cells. J Agric Biotechnol, 2015, 23: 71-79 (in Chinese with English abstract).
[10] Guo J F, Li W, Shang L G, Wang Y G, Yan P, Bai Y H, Da X W, Wang K, Guo Q Q, Jiang R R, Mao C Z, Mo X R. OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1. New Phytol, 2021, 230: 1953-1966.
[11] Huang Q N, Shi Y F, Zhang X B, Song L X, Feng B H, Wang H M, Xu X, Li X H, Guo D, Wu J L. Single base substitution in OsCDC48isresponsible for premature senescence and death phenotype in rice. J Integr Plant Biol, 2016, 58: 12-28.
[12] Zhang Y, Iqbal M F, Wang Y L, Qian K Y, Xiang J X, Xu G H, Fan X R. OsTBP2.1, A TATA-binding protein, alters the ratio of OsNRT2.3b to OsNRT2.3a and improves rice grain yield. Int J Mol Sci, 2022, 23: 10795.
[13] Yedidi R S, Wendler P, Enenkel C. AAA-ATPases in protein degradation. Int J Mol Sci, 2017, 4: 42.
[14] Tong H N, Chu C C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci, 2018, 23: 1016-1028.
doi: S1360-1385(18)30187-0 pmid: 30220494
[15] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展. 作物学报, 2023, 49: 1735-1746.
doi: 10.3724/SP.J.1006.2023.22050
Xu N, Xu Q, Xu Z J, Chen W F. Research progress on physiological ecology and genetic basis of rice plant architecture. Acta Agron Sin, 2023, 49: 1735-1746 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22050
[16] 马梦影, 巩文靓, 康雪蒙, 段海燕. 水稻理想株型改良的研究进展. 中国农学通报, 2020, 36(29): 1-6.
doi: 10.11924/j.issn.1000-6850.casb20190900610
Ma M Y, Gong W Y, Kang X M, Duan H Y. The improvement of ideal plant type of rice: a review. Chin Agric Sci Bull, 2020, 36(29): 1-6 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb20190900610
[17] Dong H J, Zhao H, Li S L, Han Z M, Hu G, Liu C, Yang G Y, Wang G W, Xie W B, Xing Y Z. Genome-wide association studies reveal that members of bHLH subfamily 16 share a conserved function in regulating flag leaf angle in rice (Oryza sativa L.). PLoS Genet, 2018, 14: 1007323.
[18] 徐静, 王莉, 钱前, 张光恒. 水稻叶片形态建成分子调控机制研究进展. 作物学报, 2013, 39: 767-774.
Xu J, Wang L, Qian Q, Zhang G H. Research advance in molecule regulation mechanism of leaf morphogenesis in rice (Oryza sativa L.). Acta Agron Sin, 2013, 39: 767-774 (in Chinese with English abstract).
[19] 胡娟, 林晗, 徐娜, 焦然, 戴志俊, 鲁草林, 饶玉春, 王跃星. 水稻叶倾角分子机制及育种应用的研究进展. 中国水稻科学, 2019, 33: 391-400.
doi: 10.16819/j.1001-7216.2019.9029
Hu J, Lin H, Xu N, Jiao R, Dai Z J, Lu C L, Rao Y C, Wang Y X. Advances in molecular mechanisms of rice leaf inclination and its application in breeding. Chin J Rice Sci, 2019, 33: 391-400 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.9029
[20] Huang P, Zhao J Z, Hong J L, Zhu B, Xia S, Zhu E G, Han P F, Zhang K W. Cytokinins regulate rice lamina joint development and leaf angle. Plant Physiol, 2023, 191: 56-69.
[21] Xing M Q, Wang W, Fang X, Xue H W. Rice OsIAA6 interacts with OsARF1 and regulates leaf inclination. Crop J, 2022, 10: 1580-1588.
[22] Fàbregas N, Caño-Delgado A I. Turning on the microscope turret: a new view for the study of brassinosteroid signaling in plant development. Physiol Plant, 2014, 151: 172-183.
doi: 10.1111/ppl.12130 pmid: 24547704
[23] 张晓琼, 王晓雯, 田维江, 张孝波, 孙莹, 李杨羊, 谢佳, 何光华, 桑贤春. LAZY1通过BR途径调控水稻叶夹角的发育. 作物学报, 2017, 43: 1767-1773.
Zhang X Q, Wang X W, Tian W J, Zhang X B, Sun Y, Li Y Y, Xie J, He G H, Sang X C. LAZY1regulates the development of rice leaf angle through BR pathway. Acta Agron Sin, 2017, 43: 1767-1773 (in Chinese with English abstract).
[24] Gan L J, Wu H, Wu D P, Zhang Z F, Guo Z F, Yang N, Xia K, Zhou X, Oh K, Matsuoka M, Ng D, Zhu C H. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Sci, 2015, 241: 238-245.
doi: 10.1016/j.plantsci.2015.10.012 pmid: 26706074
[25] Chen H J, Wan Y, Teng K C, Liu B H, Zhao N, Xu K Z, Li J X. The role of OsOFP8gene in regulating rice leaf angle. J Plant Biochem Biot, 2023, 32: 304-318.
[26] 凌启鸿, 陆卫平, 蔡建中, 曹显祖. 水稻根系分布与叶角关系的研究初报. 作物学报, 1989, 15: 123-131.
Ling Q H, Lu W P, Cai J Z, Cao X Z. The relationship between root distribution and leaf angle in rice plant. Acta Agron Sin, 1989, 15: 123-131 (in Chinese with English abstract).
[27] Liu J M, Park S J, Huang J, Lee E J, Xuan Y H, Je BI, Kumar V, Priatama R A, Vimal R K, Kim S H, Min M K, Cho J H, Kim T H, Chandran A K N, Jung K H, Takatsuto S, Fujioka S, Han C D. Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice. J Exp Bot, 2016, 67: 1883-1895.
doi: 10.1093/jxb/erw002 pmid: 26826218
[28] Luo X Y, Zheng J S, Huang R Y, Huang Y M, Wang H C, Jiang L R, Fang X J. Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Rep, 2016, 35: 2423-2433.
pmid: 27623811
[29] Kokkirala V R, Yonggang P, Abbagani S, Zhu Z, Umate P. Subcellular localization of proteins of Oryza sativa L. in the model tobacco and tomato plants. Plant Signal Behav, 2010, 5: 1336-1341.
[30] Lee J H, Schöffl F. GUS activity staining in gels: a powerful tool for studying protein interactions in plants. Plant Mol Biol Rep, 1995, 13: 346-354.
[31] 杨捷频. 常规石蜡切片方法的改良. 生物学杂志, 2006, 23(1): 45-46.
Yang J P. Improvement of traditional paraffin section preparation methods. J Biol, 2006, 23(1): 45-46 (in Chinese with English abstract).
[32] Ferrero-Serrano Á, Assmann S M. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J Exp Bot, 2016, 67: 3433-3443.
doi: 10.1093/jxb/erw183 pmid: 27194741
[33] Cao Y Y, Zhong Z J, Wang H Y, Shen R X. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol J, 2022, 20: 426-436.
doi: 10.1111/pbi.13780 pmid: 35075761
[1] 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322.
[2] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[3] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[4] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[5] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[6] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[7] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[8] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[9] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[10] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[11] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[12] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[13] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[14] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[15] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[2] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[3] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[4] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[5] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[6] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[7] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[8] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[9] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[10] 邱崇力. 普通小麦与六倍体小黑麦杂交不亲和性的研究 Ⅰ.杂种的胚胎发育[J]. 作物学报, 1986, (01): 49 -56 .