欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 2025-2038.doi: 10.3724/SP.J.1006.2024.32061

• 耕作栽培·生理生化 • 上一篇    下一篇

滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响

宋志文1(), 赵蕾1, 毕俊国2, 唐清芸1, 王国栋3,*(), 李玉祥1,*()   

  1. 1石河子大学农学院 / 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832000
    2上海市农业生物基因中心, 上海 201106
    3新疆农垦科学院 / 农业农村部西北绿洲节水农业重点实验室 / 水肥资源高效利用兵团重点实验室, 新疆石河子 832000
  • 收稿日期:2023-12-21 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-24
  • 通讯作者: * 李玉祥, E-mail: yxli@shzu.edu.cn;王国栋, E-mail: 664812734@qq.com
  • 作者简介:E-mail: 17318598568@163.com
  • 基金资助:
    国家自然科学基金项目(32360527);国家自然科学基金项目(31460541);第三师图木舒克市科技计划项目(KJ2023CG03);石河子大学青年创新拔尖人才项目(CXBJ202003);石河子大学自主支持科研项目(ZZZC2022008)

Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation

SONG Zhi-Wen1(), ZHAO Lei1, BI Jun-Guo2, TANG Qing-Yun1, WANG Guo-Dong3,*(), LI Yu-Xiang1,*()   

  1. 1Key Laboratory of Oasis Ecological Agriculture, College of Agriculture, Shihezi University / Xinjiang Production and Construction Corps, Shihezi 832000, Xinjiang, China
    2Shanghai Agrobiological Gene Center, Shanghai 201106, China
    3Key Laboratory of Water-saving Agriculture in Northwest Oasis / Key Laboratory of Efficient Utilization of Water and Fertilizer Resources, Ministry of Agriculture and Rural Affairs, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, Xinjiang, China
  • Received:2023-12-21 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-24
  • Contact: * E-mail: yxli@shzu.edu.cn;E-mail: 664812734@qq.com
  • Supported by:
    National Natural Science Foundation of China(32360527);National Natural Science Foundation of China(31460541);Science and Technology Plan Project of Tumushuke City, the Third Division(KJ2023CG03);Young Innovative Top Talents Project of Shihezi University(CXBJ202003);Independent Support Scientific Research Project of Shihezi University(ZZZC2022008)

摘要:

研究滴灌条件下施氮量对不同氮效率品种关键生育时期干物质积累和氮素吸收转运及产量的影响, 为干旱半干旱区滴灌水稻高产高效生产提供技术参考。试验于2021—2022年开展, 以氮高效品种(T-43)和氮低效品种(LX-3)为供试材料, 采用裂区设计; 设置4个施氮水平, 分别为N0 (0 kg hm-2)、N1 (150 kg hm-2)、N2 (300 kg hm-2)和N3 (450 kg hm-2)。分析滴灌水稻在抽穗期和成熟期干物质积累、氮素吸收利用及产量对施氮量的响应差异。结果表明: (1) 施用氮肥可以增加滴灌水稻干物质积累量(1.99%~26.02%)和氮素积累量(25.67%~97.69%), 提高水稻产量(23.75%~66.75%); 但过量施氮(450 kg hm-2)会减小对干物质积累的促进作用, 导致结实率和穗粒数下降, 使氮素主要集中在秸秆中, 最终降低水稻对氮素的利用效率。(2) 在同一施氮条件下, T-43的有效穗数、结实率、抽穗期叶片和穗部干物质及氮素积累量均高于LX-3 (分别为1.65%~5.19%、0.42%~8.47%、7.61%~19.68%、19.81%~40.73%、19.81%~30.23%和20.14%~49.65%), 最终产量高于LX-3 (4.23%~28.47%)。(3) 氮素利用效率对施氮量的响应存在品种间差异(P<0.05)。与LX-3相比, T-43有更高的氮肥农学利用效率、氮素回收率和氮肥偏生产力(分别高1.05%~25.23%、5.86%~20.05%和10.09%~18.01%)。综上所述, 在滴灌栽培条件下, 选用氮高效品种(T-43), 配施300 kg hm-2氮肥表现出更佳的氮素吸收转运能力和更高的产量, 能更好地利用养分资源, 是本试验最佳的品种和施氮量组合方式。

关键词: 滴灌水稻, 氮效率品种, 干物质积累, 氮素积累, 氮素利用

Abstract:

The objective of this study is to explore the effects of nitrogen application levels on dry matter accumulation, nitrogen absorption and transport, and yield of rice varieties with different nitrogen efficiency during key growth stages under drip irrigation conditions, which can provide the technical reference for high-yield and efficient rice production under drip irrigation in arid and semi-arid areas. The experiment was conducted from 2021 to 2022, using high nitrogen efficient cultivar (T-43) and low nitrogen efficient cultivar (LX-3) as the test materials. The split zone design was conducted with four nitrogen application levels, namely N0 (0 kg hm-2), N1 (150 kg hm-2), N2 (300 kg hm-2), and N3 (450 kg hm-2). The differences in dry matter accumulation, nitrogen absorption and utilization, and yield response to nitrogen application in drip irrigated rice at heading and maturity stages were analyzed. The results showed as follows: (1) Applying nitrogen fertilizer can increase the dry matter accumulation (1.99%-26.02%) and nitrogen accumulation (25.67%-97.69%) of rice under drip irrigation, and increase rice yield (23.75%-66.75%). However, the excessive nitrogen application (450 kg hm-2) reduced the promoting effect on dry matter accumulation, leading to a decrease in seed setting rate and grain number per spike, mainly concentrating nitrogen in straw, ultimately reducing the nitrogen utilization efficiency of rice. (2) Under the same nitrogen application conditions, the effective number of panicles, seed setting rate, dry matter and nitrogen accumulation in leaves and panicles of T-43 were higher than LX-3 by 1.65%-5.19%, 0.42%-8.47%, 7.61%-19.68%, 19.81%-40.73%, 19.81%-30.23%, and 20.14%-49.65%, respectively, and the final yield was higher than LX-3 by 4.23%-28.47%. (3) The response of nitrogen utilization efficiency varies among varieties at P < 0.05. Compared with LX-3, T-43 had higher N Agronomic efficiency, N recovery efficiency, and N partial factor productivity higher by 1.05%-25.23%, 5.86%-20.05%, and 10.09%-18.01%, respectively. In conclusion, under drip irrigation cultivation, the selection of high nitrogen efficient cultivar (T-43) and the application of 300 kg hm-2 nitrogen showed better nitrogen uptake and transport capacity and higher yield, and could better utilize nutrient resources, which was the best combination of variety and nitrogen application rate in this experiment.

Key words: drip irrigation of rice, cultivar with high nitrogen efficiency, dry matter accumulation, nitrogen accumulation, nitrogen utilization

图1

2021-2022年最高气温、最低气温和降雨量"

表1

全生育期施肥量及分配比例"

指标
Index
处理
Treatment
播种期
Seeding stage
播种-穗始期
Seeding-panicle
initiation stage
穗始-抽穗期
Panicle initiation -heading stage
抽穗-成熟前15 d
Heading-15 d
before maturity
成熟前15 d-收获期
15 d before
maturation-harvest
总量
Total
施氮量
Nitrogen application levels (kg hm-2)
N0 0 0 0 0 0 0
N1 0 66.3 41.8 41.8 0 150
N2 0 140.8 79.6 79.6 0 300
N3 0 198.8 125.6 125.6 0 450
施肥次数Fertilization times 0 3 2 2 0 7

表2

滴灌施氮量对水稻产量及构成因子的影响"

年份
Year
品种
Cultivar
施氮量
Nitrogen
有效穗数
Effective panicle
(×104 hm-2)
穗粒数
Spikelets per panicle
千粒重
1000-grain weight (g)
结实率
Filled grain rate (%)
产量
Yield
(t hm-2)
2021 氮高效品种T-43 N0 371.74±30.2 4 b 72.00±0.82 c 22.51±0.83 a 80.08±5.61 b 4.81±0.39 c
N1 396.84±10.10 b 85.33±1.89 b 22.43±0.21 a 82.45±2.31 ab 6.34±0.09 b
N2 417.53±10.08 a 99.67±1.25 a 22.83±1.06 a 88.29±4.64 a 8.37±0.36 a
N3 409.54±16.96 a 95.33±1.25 a 22.90±0.82 a 87.09±3.63 ab 7.88±0.34 ab
氮低效品种LX-3 N0 360.91±12.34 c 72.33±2.87 c 23.50±0.10 a 74.53±4.68 b 4.59±0.58 c
N1 382.73±4.55 b 79.33±2.05 b 23.83±0.33 a 78.58±1.93 ab 5.68±0.22 b
N2 406.75±26.67 a 92.00±0.82 a 24.80±1.43 a 81.91±3.60 a 7.60±0.83 a
N3 402.88±14.32 a 84.67±2.49 b 25.06±0.91 a 80.29±1.33 a 7.56±0.91 a
2022 氮高效品种T-43 N0 365.27±11.20 c 84.00±1.00 b 22.41±0.44 a 78.15±3.26 a 5.37±0.26 c
N1 387.90±13.71 b 95.33±1.70 a 22.61±0.08 a 81.84±1.52 a 6.84±0.24 b
N2 427.33±13.13 a 104.00±3.56 a 22.85±0.34 a 83.08±3.56 a 8.43±0.46 a
N3 419.49±15.29 a 99.00±5.35 a 22.70±0.35 a 82.58±2.55 a 8.12±0.28 a
氮低效品种LX-3 N0 351.37±23.97 c 65.00±3.56 c 23.61±0.29 b 77.44±1.47 a 4.18±0.49 c
N1 380.14±15.27 b 74.00±1.41 bc 23.93±0.26 ab 81.50±1.98 a 5.48±0.26 b
N2 407.78±16.86 a 89.00±7.48 a 24.81±0.60 a 81.80±2.44 a 7.32±0.16 a
N3 398.79±8.78 ab 80.67±6.65 ab 24.34±0.32 ab 79.53±3.20 a 6.97±0.20 a
FF-value
年份Year (Y) 0.080 1.179 0.962 0.175 0.014
品种Cultivar (C) 7.445* 105.336** 14.131** 72.629** 44.159**
施氮量Nitrogen (N) 24.398** 67.165** 8.203** 4.711** 135.965**
Y×C 0.261 27.240** 5.352* 0.074 7.802**
Y×N 0.466 0.276 1.178 0.508 0.372
C×N 0.036 0.966 0.406 1.285 0.340
Y×C×N 0.209 1.542 0.044 0.172 0.284

图2

滴灌施氮量对水稻干物质积累的影响 处理同表2。T-43: 氮高效品种; LX-3: 氮低效品种。图中方柱上方不同小写字母表示同一年份各处理间存在显著差异(P < 0.05)。*和**分别表示在P < 0.05和P < 0.01水平差异显著, ns表示无显著差异。"

图3

滴灌施氮量对水稻干物质分配的影响 处理同表2。T-43: 氮高效品种; LX-3: 氮低效品种。"

图4

滴灌施氮量对水稻氮素积累量的影响 处理同表2。T-43: 氮高效品种; LX-3: 氮低效品种。图中方柱上方不同小写字母表示同一年份各处理间存在显著差异(P < 0.05)。*和**分别表示在P < 0.05和P < 0.01水平差异显著, ns表示无显著差异。"

图5

滴灌施氮量对水稻氮素积累量分配的影响 处理同表2。T-43: 氮高效品种; LX-3: 氮低效品种。"

图6

滴灌施氮量对水稻氮素转运量的影响 处理同表2。T-43: 氮高效品种; LX-3: 氮低效品种。图中方柱上方不同小写字母表示同一年份各处理间存在显著差异(P < 0.05)。*和**分别表示在P < 0.05和P < 0.01水平差异显著, ns表示无显著差异。"

图7

滴灌施氮量对水稻氮素转运率的影响 处理同表2。T-43: 氮高效品种; LX-3: 氮低效品种。图中方柱上方不同小写字母表示同一年份各处理间存在显著差异(P < 0.05)。*和**分别表示在P < 0.05和P < 0.01水平差异显著, ns表示无显著差异。"

图8

滴灌施氮量对水稻氮素利用特征的影响 处理同表2。T-43: 氮高效品种; LX-3: 氮低效品种。图中方柱上方不同小写字母表示同一年份各处理间存在显著差异(P < 0.05)。NAE、NPE、NRG、NRE、NPFP、NGPE分别表示氮肥农学利用效率、氮肥生理利用率、百千克籽粒需氮量、氮素回收率、氮肥偏生产力、氮素稻谷生产效率。*和**分别表示在P < 0.05和P < 0.01水平差异显著, ns表示无显著差异。"

图9

滴灌施氮量对水稻产量、植株干物质和氮素积累量归一化值的影响 处理同表2。T-43: 氮高效品种; LX-3: 氮低效品种。"

图10

产量、植株干物质和氮素积累量及氮素利用效率间的主成分分析 处理同表2。T-43: 氮高效品种; LX-3: 氮低效品种。Yield: 产量; HS: PDW、MS: PDW、HS: PNA、MS: PNA分别表示抽穗期干物质积累量、成熟期干物质积累量、抽穗期氮素积累量和成熟期氮素积累量; NAE、NPE、NRG、NRE、NPFP、NGPE分别表示氮肥农学利用效率、氮肥生理利用率、百千克籽粒需氮量、氮素回收率、氮肥偏生产力、氮素稻谷生产效率。"

表3

产量、干物质与氮素积累量及氮素利用效率间的相关系数"

品种
Cultivar
指标
Index
产量
Yield
百千克籽粒需氮量
NRG
氮素稻谷
生产效率
NGPE
氮素
回收率
NRE
氮肥偏
生产力
NPFP
氮肥农学
利用效率
NAE
氮肥生理
利用率
NPE
氮高效
品种T-43
百千克籽粒需氮量 NRG 0.390
氮素稻谷生产效 NGPE -0.431* -0.991**
氮素回收率 NRE 0.548** 0.701** -0.702**
氮肥偏生产力 NPFP 0.445* 0.566** -0.580** 0.943**
氮肥农学利用效率 NAE 0.725** 0.511* -0.549** 0.837** 0.860**
氮肥生理利用率 NPE 0.853** 0.481* -0.527** 0.645** 0.671** 0.916**
氮高效
品种T-43
抽穗期干物质积累量HS: PDW 0.880** 0.428* -0.446* 0.451* 0.341 0.594** 0.771**
成熟期干物质积累量MS: PDW 0.709** 0.621** -0.648** 0.759** 0.638** 0.729** 0.655**
抽穗期氮素积累量HS: PNA 0.893** 0.555** -0.579** 0.453* 0.345 0.594** 0.808**
成熟期氮素积累量MS: PNA 0.935** 0.687** -0.713** 0.682** 0.544** 0.747** 0.845**
氮低效
品种LX-3
百千克籽粒需氮量 NRG -0.111
氮素稻谷生产效 NGPE 0.077 -0.993**
氮素回收率 NRE 0.473* 0.502* -0.510*
氮肥偏生产力 NPFP 0.403 0.375 -0.393 0.959**
氮肥农学利用效率 NAE 0.709** 0.055 -0.101 0.676** 0.743**
氮肥生理利用率 NPE 0.824** -0.011 -0.044 0.543** 0.586** 0.952**
抽穗期干物质积累量HS: PDW 0.800** 0.076 -0.094 0.237 0.109 0.320 0.499*
成熟期干物质积累量MS: PDW 0.716** 0.489* -0.491* 0.694** 0.547** 0.603** 0.639**
抽穗期氮素积累量HS: PNA 0.808** 0.370 -0.398 0.579** 0.455* 0.598** 0.713**
成熟期氮素积累量MS: PNA 0.866** 0.392 -0.414* 0.668** 0.531** 0.662** 0.745**
[1] 李亚贞, 韩天富, 曲潇琳, 马常宝, 都江雪, 柳开楼, 黄晶, 刘淑军, 刘立生, 申哲, 张会民. 我国水稻的肥料贡献率时空变化及影响因素. 中国农业科学, 2023, 56: 674-685.
doi: 10.3864/j.issn.0578-1752.2023.04.007
Li Y Z, Han T F, Qu X L, Ma C B, Du J X, Liu K L, Huang J, Liu S J, Liu L S, Shen Z, Zhang H M. Spatio-temporal variations of fertilizer contribution rate for rice in China and its influencing factors. Sci Agric Sin, 2023, 56: 674-685 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.04.007
[2] 江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004, 37: 490-496.
Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J Y, Dong D F, Chen N P, Lu F Y, Qin H D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin, 2004, 37: 490-496 (in Chinese with English abstract).
[3] 闫湘, 金继运, 梁鸣早. 我国主要粮食作物化肥增产效应与肥料利用效率. 土壤, 2017, 49: 1067-1077.
Yan X, Jin J Y, Liang M Z. Fertilizer use efficiencies and yield-increasing rates of grain crops in China. Soils, 2017, 49: 1067-1077 (in Chinese with English abstract).
[4] 李敏, 张洪程, 李国业, 魏海燕, 殷春渊, 马群, 杨雄. 水稻氮效率基因型差异及其机理研究进展. 核农学报, 2011, 25: 1057-1063.
Li M, Zhang H C, Li G Y, Wei H Y, Yin C Y, Ma Q, Yang X. Genotypic difference of nitrogen use efficiency in rice its morphological and physiological mechanisms. J Nucl Agric Sci, 2011, 25: 1057-1063 (in Chinese with English abstract).
doi: 10.11869/hnxb.2011.05.1057
[5] Broadbent F E, De Datta S K, Laureles E V. Measurement of nitrogen utilization efficiency in rice genotypes. Agron J, 1987, 79: 786-791.
[6] 魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008, 34: 119-125.
doi: 10.3724/SP.J.1006.2008.00119
Wei H Y, Zhang H C, Hang J, Dai Q G, Huo Z Y, Xu K, Zhang S F, Ma Q, Zhang Q, Zhang J. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agron Sin, 2008, 34: 119-125 (in Chinese with English abstract).
[7] 孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40: 1639-1649.
doi: 10.3724/SP.J.1006.2014.01639
Sun Y J, Sun Y Y, Xu H, Li Y, Yan F J, Jiang M J, Ma J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2014, 40: 1639-1649 (in Chinese with English abstract).
[8] Wang J F, Fawibe O O, Fawibe K O, Isoda A. Water productivity, sink production and varietal differences in panicle structure of rice (Oryza sativa L.) under drip irrigation with plastic-film mulch. Field Crops Res, 2023, 291: 108790.
[9] Ringler C, Zhu T. Water resources and food security. Agron J, 2015, 107: 1533-1538.
[10] Zhang J, Hou J W, Zhang H Y, Meng C R, Zhang X J, Wei C Z. Low soil temperature inhibits yield of rice under drip irrigation. J Soil Sci Plant Nutr, 2019, 19: 228-236.
[11] 余锋, 李思宇, 邱园园, 卓鑫鑫, 黄健, 汪浩, 朱安, 刘昆, 刘立军. 稻田甲烷排放的微生物学机理及节水栽培对甲烷排放的影响. 中国水稻科学, 2022, 36: 1-12.
doi: 10.16819/j.1001-7216.2022.201202
Yu F, Li S Y, Qiu Y Y, Zhuo X X, Huang J, Wang H, Zhu A, Liu K, Liu L J. Microbiological mechanism of methane emission in paddy field and influence of water-saving cultivation on methane emission. Chin J Rice Sci, 2022, 36: 1-12 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.201202
[12] Zhang J X, Liu X W, Wu Q, Qiu Y Z, Chi D C, Xia G M, Arthur E. Mulched drip irrigation and maize straw biochar increase peanut yield by regulating soil nitrogen, photosynthesis and root in arid regions. Agric Water Manag, 2023, 289: 108565.
[13] 唐文雪, 马忠明, 罗双龙, 段誉. 河西绿洲灌区膜下滴灌水稻氮素平衡及氮肥投入阈值研究. 农业资源与环境学报, 2023, 40: 763-771.
Tang W X, Ma Z M, Luo S L, Duan Y. Research on nitrogen equilibrium and nitrogen fertilizer input threshold in rice soil with drip irrigation in the Hexi Oasis irrigation area. J Agric Resour Environ, 2023, 40: 763-771 (in Chinese with English abstract).
[14] Samoy-Pascual K, Lampayan R M, Remocal A T, Orge R F, Tokida T, Mizoguchi M. Optimizing the lateral dripline spacing of drip-irrigated aerobic rice to increase water productivity and profitability under the water-limited condition. Field Crops Res, 2022, 287: 108669.
[15] He H B, Ma F Y, Yang R, Chen L, Jia B, Cui J, Fan H, Wang X, Li L. Rice performance and water use efficiency under plastic mulching with drip irrigation. PLoS One, 2013, 8: e83103.
[16] Zheng J, Zhou M H, Zhu B, Fan J L, Lin H Y, Ren B, Zhang F C. Drip fertigation sustains crop productivity while mitigating reactive nitrogen losses in Chinese agricultural systems: evidence from a meta-analysis. Sci Total Environ, 2023, 886: 163804.
[17] Zhao L, Tang Q Y, Song Z W, Yin Y G, Wang G D, Li Y X. Increasing the yield of drip-irrigated rice by improving photosynthetic performance and enhancing nitrogen metabolism through optimizing water and nitrogen management. Front Plant Sci, 2023, 14: 1075625.
[18] Tang Q Y, Ma Y D, Zhao L, Song Z W, Yin Y G, Wang G D, Li Y X. Effects of water and nitrogen management on root morphology, nitrogen metabolism enzymes, and yield of rice under drip irrigation. Agronomy, 2023, 13: 1118.
[19] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 44-49.
Bao S D. Agricultural Chemistry Analysis in Soil, 3rd edn. Beijing: China Agriculture Press, 2000. pp 44-49 (in Chinese).
[20] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响. 作物学报, 2024, 50: 756-770.
doi: 10.3724/SP.J.1006.2024.32013
Wang L, Wu Y H, Qin Y H, Dan Y B, Chen H, Hao X S, Tian X H. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice. Acta Agron Sin, 2024, 50: 756-770 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.32013
[21] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响. 作物学报, 2021, 47: 2232-2249.
doi: 10.3724/SP.J.1006.2021.02086
Huang H, Jiang H X, Liu G M, Yuan J Q, Wang Y, Zhao C, Wang W L, Huo Z Y, Xu K, Dai Q G, Zhang H C, Li D J, Liu G L. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency. Acta Agron Sin, 2021, 47: 2232-2249 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02086
[22] 陈天祥, 杨顺瑛, 苏彦华. 基于高氮投入和基因型差异的水稻氮素营养特征. 土壤, 2023, 55: 954-963.
Chen T X, Yang S Y, Su Y H. Characteristics of nitrogen nutrition in rice based on high nitrogen input and genotype differences. Soils, 2023, 55: 954-963 (in Chinese with English abstract).
[23] 李立江, 蒋明金, 何星雷, 姬广梅, 张佳凤, 罗丹秋, 江学海, 田晋钰, 黎勇, 李敏. 施氮量对优质稻G优325氮肥利用率和产量的影响. 四川农业大学学报, 42: 515-522.
Li L J, Jiang M J, He X L, Ji G M, Zhang J F, Luo D Q, Jiang X H, Tian J Y, Li Y, Li M. Effect of nitrogen application rate on nitrogen efficiency and grain yield of high-quality indica rice variety Gyou 325. J Sichuan Agric Univ, 42: 515-522.
[24] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid- season japonica rice. Sci Agric Sin, 2006, 39: 1336-1345 (in Chinese with English abstract).
[25] 薛亚光, 王康君, 颜晓元, 尹斌, 刘立军, 杨建昌. 不同栽培模式对杂交粳稻常优3号产量及养分吸收利用效率的影响. 中国农业科学, 2011, 44: 4781-4792.
doi: 10.3864/j.issn.0578-1752.2011.23.003
Xue Y G, Wang K J, Yan X Y, Yin B, Liu L J, Yang J C. Effects of different cultivation patterns on grain yield and nutrient absorption and utilization efficiency of japonica hybrid rice Changyou 3. Sci Agric Sin, 2011, 44: 4781-4792 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2011.23.003
[26] 张洪程, 王夫玉. 中国水稻群体研究进展. 中国水稻科学, 2001, 15: 52-57.
Zhang H C, Wang F Y. Recent progress on research of rice population in China. Chin J Rice Sci, 2001, 15: 52-57 (in Chinese with English abstract).
[27] 王振洋, 王冀川, 郭子扬, 袁杰, 张凯雨, 王奉斌, 康德锐. 施氮量与栽插密度对南疆水稻氮素利用率及产量的影响. 华中农业大学学报, 2023, 42(5):72-81.
Wang Z Y, Wang J C, Guo Z Y, Yuan J, Zhang K Y, Wang F B, Kang D R. Effects of nitrogen application rate and planting density on nitrogen use efficiency and yield of rice in Southern Xinjiang. J Huazhong Agric Univ, 2023, 42(5): 72-81 (in Chinese with English abstract).
[28] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点. 作物学报, 2022, 48: 2285-2299.
doi: 10.3724/SP.J.1006.2022.12070
Zhou Q, Yuan R, Zhu K Y, Wang Z Q, Yang J C. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates. Acta Agron Sin, 2022, 48: 2285-2299 (in Chinese with English abstract).
[29] 王艳, 米国华, 陈范骏, 张福锁. 玉米自交系氮效率基因型差异的比较研究. 应用与环境生物学报, 2002, 8: 361-365.
Wang Y, Mi G H, Chen F J, Zhang F S. Genotypic difference in nitrogen efficiency of five maize inbred lines as affected by nitrate levels. Chin J Appl Environ Biol, 2002, 8: 361-365 (in Chinese with English abstract).
[30] 殷春渊, 张庆, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 马群, 杭杰, 张胜飞. 不同产量类型水稻基因型氮素吸收、利用效率的差异. 中国农业科学, 2010, 43: 39-50.
Yin C Y, Zhang Q, Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Ma Q, Hang J, Zhang S F. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance. Sci Agric Sin, 2010, 43: 39-50 (in Chinese with English abstract).
[31] 从夕汉, 施伏芝, 阮新民, 罗玉祥, 王元垒, 许有尊, 罗志祥. 施氮量对不同品种水稻氮素利用及碳氮代谢关键酶的影响. 河南农业大学学报, 2019, 53: 325-330.
Cong X H, Shi F Z, Ruan X M, Luo Y X, Wang Y L, Xu Y Z, Luo Z X. Effects of nitrogen application rate on nitrogen use efficiency and key enzymes for carbon and nitrogen metabolism in different rice varieties. J Henan Agric Univ, 2019, 53: 325-330 (in Chinese with English abstract).
[32] 张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45: 267-273.
Zhang Y L, Fan J B, Duan Y H, Wang D S, Ye L T, Shen Q R. Variation of nitrogen use efficiency of rice different in genotype and Its evaluation. Acta Pedol Sin, 2008, 45: 267-273 (in Chinese with English abstract).
[33] 韩志丽, 许桂玲, 冯跃华, 王晓珂, 卢苇, 李杰, 高钰琪, 任红军, 由晓璇. 不同地力条件下施氮量对杂交籼稻干物质积累、氮肥利用率和产量的影响. 中国稻米, 2023, 29(2):34-39.
doi: 10.3969/j.issn.1006-8082.2023.02.007
Han Z L, Xu G L, Feng Y H, Wang X K, Lu W, Li J, Gao Y Q, Ren H J, You X X. Effects of nitrogen application rate on dry matter accumulation, nitrogen use efficiency and yield of hybrid indica rice under different soil fertility condition. J Chin Rice, 2023, 29(2): 34-39 (in Chinese with English abstract).
[34] 陈天祥, 杨顺瑛, 王书伟, 苏彦华. 水稻氮素利用效率的基因型差异与调控途径. 土壤, 2022, 54: 873-881.
Chen T X, Yang S Y, Wang S W, Su Y H. Genotypic differences and regulatory strategies of nitrogen use efficiency in rice. Soils, 2022, 54: 873-881 (in Chinese with English abstract).
[35] 吕腾飞, 谌洁, 马鹏, 代邹, 杨志远, 徐徽, 郑传刚, 马均. 氮肥缓速配施对机插杂交稻氮素利用特征的影响. 中国农业科学, 2021, 54: 1410-1423.
doi: 10.3864/j.issn.0578-1752.2021.07.008
Lyu T F, Shen J, Ma P, Dai Z, Yang Z Y, Xu H, Zheng C G, Ma J. Effects of combined application of slow release nitrogen fertilizer and urea on the nitrogen utilization characteristics in machine transplanted hybrid rice. Sci Agric Sin, 2021, 54: 1410-1423 (in Chinese with English abstract).
[1] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[2] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[3] 徐泽, 吴莘玲, 刘震宇, 李涵佳, 冷鑫华, 吴天凡, 陈媛, 张祥, 陈德华. 密度与氮素对夏播棉氮素吸收利用的影响[J]. 作物学报, 2024, 50(6): 1584-1596.
[4] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[5] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[6] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[7] 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响[J]. 作物学报, 2024, 50(3): 686-694.
[8] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[9] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[10] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[11] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[12] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[13] 吴冬青, 李洲, 郭春林, 邹京南, 庞孜钦, 林非凡, 何海斌, 林文雄. 再生季稻与同期抽穗主季稻干物质分配特性及机制研究[J]. 作物学报, 2023, 49(3): 755-771.
[14] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[15] 柴健, 于爱忠, 李悦, 王玉珑, 王凤, 王鹏飞, 吕汉强, 杨学慧, 尚永盼. 绿肥还田量结合氮肥减施对绿洲灌区小麦产量和氮素吸收利用的影响[J]. 作物学报, 2023, 49(11): 3131-3140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .