欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 2039-2052.doi: 10.3724/SP.J.1006.2024.32047

• 耕作栽培·生理生化 • 上一篇    下一篇

根际微生物响应再生稻衰老的演变特征及其延效机制

郭春林1(), 林满红1, 陈婷1,2, 陈鸿飞1,2, 林文芳3, 林文雄1,2,3,*()   

  1. 1福建省农业生态过程与安全监控重点实验室 / 作物生态与分子生理学福建省高校重点实验室, 福建福州 350002
    2福建农林大学菌草与生态学院, 福建福州 350002
    3福建农林大学生命科学学院, 福建福州 350002
  • 收稿日期:2023-11-12 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-28
  • 通讯作者: * 林文雄, E-mail: lwx@fafu.edu.cn
  • 作者简介:E-mail: guochunlin0516@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0300508);国家重点研发计划项目(2017YFD0301602);福建省科技厅对外合作项目(2018I0002)

Evolution characteristics of rhizosphere microorganisms in response to ratoon rice senescence and underlying carry-over effect mechanism

GUO Chun-Lin1(), LIN Man-Hong1, CHEN Ting1,2, CHEN Hong-Fei1,2, LIN Wen-Fang3, LIN Wen-Xiong1,2,3,*()   

  1. 1Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3College of Life Sciences, Fujian Agriculture And Forestry University, Fuzhou 350002, Fujian, China
  • Received:2023-11-12 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-28
  • Contact: * E-mail: lwx@fafu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300508);National Key Research and Development Program of China(2017YFD0301602);Foreign Cooperation Project of Fujian Provincial Science and Technology Department(2018I0002)

摘要:

探索根际微生物响应再生稻生育后期植株衰老进程的菌群演变规律及其生态对策是防止作物早衰发生, 促进耕地土壤肥力和作物生产力协同提升的关键。本研究选用2个具有亲缘关系的常规再生稻品种黄华占(Huanghuazhan, HHZ)和丰华占(Fenghuazhan, FHZ)为供试材料, 采用高通量测序等方法研究再生稻生育后期根际菌群随植株衰老进程而发生的多样变化、菌群演变生态策略和物种间生态位关系。结果表明, 2个具有紧密亲缘关系的供试品种其生育后期的自然衰老变化趋于一致。但在同等施肥条件下, 丰华占生育后期的所有相关生理指标衰败速度均明显高于黄华占, 即呈现早衰现象, 并显著影响其头季和再生季稻的干物质积累与籽粒灌浆结实, 进而减产。进一步分析结果证实, 根际微生物多样性与再生稻植株的衰老进程紧密关联, 具体表现在随着再生稻生育后期的推进, FHZ根际微生物多样性Chao 1指数和Shannon指数下降幅度更大, 根际微生物生态位宽度变小。进一步分析发现, HHZ头季稻成熟期较FHZ头季稻成熟期根际土壤显著提高了地杆菌属(Geobacter)、卤囊菌属(Haliangium)、亚硝酸盐氧化菌属(Candidatus_Nitrotoga)以及硝化螺菌属(Nitrospira)的相对丰度(0.61%、0.17%、0.42%和0.045%); 而在慢生根瘤菌属(Bradyrhizobium)、鞘脂单胞菌属(Sphingomonas)以及芽单胞菌属(Gemmatimonas)上HHZ较FHZ显著下降了0.29%、0.76%和0.15%; HHZ根际上调的微生物在土壤的营养循环和有效性转化上起到重要功能作用, 其根际土壤微生物生态位宽度比FHZ高36.81%, 反映了根际微生物对资源利用的差异, 是微生物适应土壤胁迫环境的生物印迹。本研究认为植物早衰发生是根际微生物生态对策的结果, 再生稻头季植株根际土壤微生物群落结构差异对其再生季具有显著的延效作用。因此, 加强再生稻头季后期的根际调控, 强化根际土壤微生物菌群的合理构建, 促进根际正效应形成, 是活化土壤营养环境, 防止再生稻早衰发生, 进一步提升再生季稻产量的关键。

关键词: 再生稻, 早衰, 根际微生物, 根际效应, 栽培调控

Abstract:

The objective of this study is to investigate the ecological strategies and evolutionary patterns of rhizosphere microorganisms at the late stages of ratoon rice growth, which is crucial for preventing premature crop senescence, enhancing crop productivity, and improving soil fertility in cultivated land. In this study, two genetically related conventional ratoon rice varieties, namely Huanghuazhan (HHZ) and Fenghuazhan (FHZ), were selected as the experimental materials. We employed high throughput sequencing and correlation analysis to explore the changes in diversity, ecological strategies, and inter-species niche relationships of rhizosphere microbiota at the late growth stage of ratoon rice with respect to plant aging. The results demonstrated a consistent trend in the natural aging changes at the late growth stages of both varieties. However, under identical fertilization conditions, FHZ exhibited a significantly higher decay rate of all relevant physiological indicators compared to HHZ at the late growth stage. This observation suggested that the premature aging greatly impacted dry matter accumulation, grain filling, and seed-setting in both seasons, ultimately leading to reduced crop yield. Further analysis confirmed a close relationship between rhizosphere microorganism diversity and the aging process of ratoon rice. Specifically, FHZ showed a significant decrease in rhizosphere microbial diversity index and niche width during the development of ratoon rice’s late growth period. Conversely, Agrobacterium (0.61%), Halocystium (0.17%), Nitrite Oxidizing Bacteria (0.42%), and Nitrospiridium genera (0.045%) were more prominent in HHZ during main crop maturity period (HMR) compared to FHZ’s main crop maturity period (FMR). On the other hand, Bradyrhizobium (0.29%), Sphingomonas (0.76%), and Gemmatimonas (0.15%) displayed an opposite pattern for these genera. Furthermore, we observed that up-regulated microorganisms in HHZ's rhizosphere played a crucial role in nutrient cycling and availability as well as soil transformation processes. Additionally, the niche breadth of rhizosphere soil microorganisms was 36.81% higher in HHZ compared to FHZ, indicating their adaptive response to soil stress environments. This phenomenon reflected the variations in resource utilization by rhizosphere microorganisms, thereby elucidating the evolutionary dynamics and competitive ability for resources among them, ultimately impacting the growth, development, and yield of ratoon rice plants. This study suggests that plant premature senescence is a consequence of an ecological strategy employed by rhizosphere microorganisms. Furthermore, differences in the structure of rhizosphere soil microbial communities during the initial season significantly delay their regeneration season in ratoon rice cultivation. In conclusion, enhancing regulation within the rhizosphere environment, establishing a rational construction of rhizosphere soil microbial communities, and promoting positive effects on plant growth are crucial processes for activating soil nutrients, preventing premature senescence in ratoon rice plants, and further improving its yield.

Key words: ratoon rice, premature senescence, rhizosphere microorganisms, rhizosphere effects, cultivation regulation

表1

不同品种的再生稻产量及其产量构成因素的比较"

年份
Year
处理
Treatment
头季Main crop 再生季Ratoon rice 头季稻
产量
MCY
(kg hm-2)
再生季稻
产量
MCY
(kg hm-2)
有效穗数
EP
(×104 hm-2)
每穗
粒数
NG
千粒重
NG
(g)
结实率
SSP
(%)
有效穗数
EP
(×104 hm-2)
每穗
粒数
NG
千粒重
NG
(g)
结实率
SSP
(%)
2018 丰华占FHZ 141.70 b 188.07 a 21.04 b 94.18 a 292.32 b 59.40 a 18.65 b 78.75 b 5273.16 b 2556.77 b
黄华占HHZ 187.49 a 177.70 b 23.09 a 87.90 b 391.59 a 55.30 b 19.90 a 93.20 a 6780.10 a 4023.51 a
2019 丰华占FHZ 165.90 b 181.91 a 21.54 b 93.84 a 398.20 b 57.82 a 15.95 b 67.80 b 6085.03 b 2474.89 b
黄华占HHZ 215.22 a 178.68 a 23.12 a 84.18 b 472.80 a 53.55 a 18.86 a 80.37 a 7471.94 a 3780.28 a
F 年份Year (A) NS NS NS NS 10.02 NS 6.12* NS NS NS
F-value 品种Variety (B) 22.56** NS 29.26** 31.72** 7.63* NS 8.71* 16.05** 6.87* 24.39**
A×B 24.09** NS 8.56** 15.83** 43.12** NS 35.14** 16.13** 4.32* 7.24*

图1

再生稻不同生育期生理指标 a): 再生稻不同生育期SPAD值; b): 再生稻不同生育期根系活力; c): 再生稻不同生育期净光合速率。MB: 头季稻孕穗期; MH: 头季稻齐穗期; MG: 头季稻灌浆期; MR: 头季成熟期; RB: 再生季稻孕穗期; RH: 再生季稻齐穗期; RG: 再生季稻灌浆期; RR: 再生季稻成熟期; FHZ: 丰华占; HHZ: 黄华占。SPAD衰减指数 = (同季前期叶片SPAD值-同季后期叶片SPAD值)/同季前期叶片的SPAD值。Pn: 光合速率, 叶片Pn衰减率 = (同季齐穗期叶片Pn-同季成熟期叶片Pn)/同季齐穗期Pn×100%。根系活力衰减率 = (同季齐穗期根活-同季成熟期根活)/同季齐穗期根活×100%。"

图2

不同品种的再生稻齐穗后干物质的转运 M_SSVT: 头季稻茎鞘转运量; R_SSVT: 再生季稻茎鞘转运量; M_LVT: 头季稻叶片转运量; R_LVT: 再生季稻叶片转运量; M_SSTR: 头季稻茎鞘转运率; R_SSTR: 再生季茎鞘转运率; M_LTR: 头季稻叶片转运率; R_LTR: 再生季稻叶片转运率; M_SSCR: 头季稻茎鞘贡献率; R_SSCR: 再生季稻贡献率; M_LCR: 头季稻叶片贡献率; R_LCR: 再生季稻叶片贡献率; M_HI: 头季稻收获指数; R_HI: 再生季稻收获指数。相同季节的同个指标上的不同字母表示差异显著(P < 0.05)。"

图3

不同试验再生稻品种头季和再生季生育后期不同阶段根际土壤微生物多样性指数与生态位宽度 a): 不同品种根际土壤微生物多样性(Chao1指数); b: 不同品种根际土壤微生物多样性(Shannon指数); c): 不同品种的生态位宽度。缩写同图1。"

图4

再生稻根际土壤主要优势菌属 a): 根际土壤微生物在不同优势度范围下的占比; b): 表示优势度指数 > 0.003的微生物。"

图5

头季稻成熟期根际土壤主要优势菌属相对丰度"

表2

细菌群落的网络图特性"

处理
Treatment
平均度
Average degree
网络直径Network
diameter
密度
Graph density
平均路径长度
Average
path length
平均聚类系数Clustering
coefficient
节点
Node

Edge
丰华占头季成熟期FMR 3.969 2 0.021 1.979 0.990 191 379
丰华占再生季齐穗期FRH 1.988 2 0.012 1.988 0 173 172
丰华占再生季成熟期FRR 5.939 2 0.030 1.970 0.985 198 588
黄华占头季成熟期HMR 5.948 2 0.026 1.974 0.987 233 693
黄华占再生季齐穗期HRH 5.934 2 0.033 1.967 0.984 182 540
黄华占再生季成熟期HRR 3.971 2 0.019 1.981 0.990 206 409

图6

不同再生稻试验品种在不同生育期下基于相关性分析优势菌属的共生网络图 每个节点的大小与度呈正比关系。按照门水平分类给节点着色。红线: 正相关关系; 蓝线: 负相关关系。"

图7

不同试验品种在不同生育期的优势菌与非优势菌的生态位重叠指数 MB、MH、MG、MR、RB、RH、RG、RR分别代表头季稻孕穗期、齐穗期、灌浆期、成熟期和再生季稻的孕穗期、齐穗期、灌浆期、成熟期。"

图8

头季稻成熟期的优势菌与头季稻和再生季稻产量的相关性分析 MTY: 头季稻的产量; RTY: 再生季稻的产量。"

[1] Yuan S, Cassman K G, Huang J, Peng S, Grassini P. Can ratoon cropping improve resource use efficiencies and profitability of rice in central China? Field Crops Res, 2019, 234: 66-72.
[2] Xu Y, Liang L Q, Wang B, Xiang J B, Gao M T, Fu Z Q, Long P, Luo H B, Huang C. Conversion from double-season rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit. Sci Total Environ, 2022, 813: 152550.
[3] 林志敏, 李洲, 翁佩莹, 吴冬青, 邹京南, 庞孜钦, 林文雄. 再生稻田温室气体排放特征及碳足迹. 应用生态学报, 2022, 33: 1340-1351.
doi: 10.13287/j.1001-9332.202205.013
Lin Z M, Li Z, Weng P Y, Wu D Q, Zou J N, Pang Z Q, Lin W X. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice. Chin J Appl Ecol, 2022, 33: 1340-1351 (in Chinese with English abstract).
[4] 宋开付, 张广斌, 徐华, 马静. 中国再生稻种植的影响因素及可持续性研究进展. 土壤学报, 2020, 57: 1365-1377.
Song K F, Zhang G B, Xu H, Ma J. A review of research on influencing factors and sustainability of ratoon rice cultivation in China. Acta Pedol Sin, 2020, 57: 1365-1377 (in Chinese with English abstract).
[5] 林文雄, 陈鸿飞, 张志兴, 徐倩华, 屠乃美, 方长旬, 任万军. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23: 392-401.
Lin W X, Chen H F, Zhang Z X, Xu Q H, Tu N M, Fang C X, Ren W J. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology. Chin J Eco-Agric, 2015, 23: 392-401 (in Chinese with English abstract).
[6] 徐富贤, 熊洪, 张林, 朱永川, 蒋鹏, 郭晓艺, 刘茂. 再生稻产量形成特点与关键调控技术研究进展. 中国农业科学, 2015, 48: 1702-1717.
doi: 10.3864/j.issn.0578-1752.2015.09.04
Xu F X, Xiong H, Zhang L, Zhu Y C, Jiang P, Guo X Y, Liu M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Sci Agric Sin, 2015, 48: 1702-1717 (in Chinese with English abstract).
[7] 陈鸿飞, 庞晓敏, 张仁, 张志兴, 徐倩华, 方长旬, 李经勇, 林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响. 作物学报, 2017, 43: 1507-1517.
Chen H F, Pang X M, Zhang R, Zhang Z X, Xu Q H, Fang C X, Li J Y, Lin W X. Effects of different irrigation and fertilizer application regimes on soil enzyme activities and microbial functional diversity in rhizosphere of ratooning rice. Acta Agron Sin, 2017, 43: 1507-1517 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.01507
[8] 黄锦文, 吴珈谊, 陈鸿飞, 张志兴, 方长旬, 邵彩虹, 林伟伟, 翁佩莹, 林文雄. 头季稻氮肥运筹对再生稻根际机能及产量的影响. 中国水稻科学, 2021, 35: 383-395.
doi: 10.16819/j.1001-7216.2021.200603
Huang J W, Wu J Y, Chen H F, Zhang Z X, Fang C X, Shao C H, Lin W W, Weng P Y, Lin W X. Nitrogen fertilizer management for main crop rice and its carrying-over effect on rhizosphere function and yield of ratoon rice. Chin J Rice Sci, 2021, 35: 383-395 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2021.200603
[9] 胡香玉, 钟旭华, 彭碧琳, 刘彦卓, 黄农荣, 梁开明, 潘俊峰, 傅友强. 不同氮肥运筹下低桩机收再生稻的产量和经济效益. 中国稻米, 2019, 25(4): 16-21.
doi: 10.3969/j.issn.1006-8082.2019.04.004
Hu X Y, Zhong X H, Peng B L, Liu Y Z, Huang N R, Liang K M, Pan J F, Fu Y Q. Analysis on the rice research trend based on bibliometrics of literature. China Rice, 2019, 25(4): 16-21 (in Chinese with English abstract).
[10] Guo Y F, Ren G D, Zhang K W, Li Z H, Miao Y, Guo H W. Leaf senescence: progression, regulation, and application. Mol Hortic, 2021, 1: 5.
doi: 10.1186/s43897-021-00006-9 pmid: 37789484
[11] Kim J, Woo H R R, Nam H G G. Toward systems understanding of leaf senescence: an integrated multi-omics perspective on leaf senescence research. Mol Plant, 2016, 9: 813-825.
[12] Shamsu A Z, Syed H R Z, Mustapha S, Kabiru D D. Nitrogen defciency regulates premature senescence by modulating fag leaf function, ROS homeostasis, and intercellular sugar concentration in rice during grain. J Genet Eng Biotechnol, 2021, 19: 177.
doi: 10.1186/s43141-021-00275-3 pmid: 34812974
[13] Zakari S A, Asad M A U, Han Z, Guan X, Zaidi S H R, Gang P, Cheng F M. Senescence-related translocation of nonstructural carbohydrate in rice leaf sheaths under diferent nitrogen supply. Agron J, 2020, 112: 1601-1616.
[14] Lu G W, Casaretto J A, Ying S, Mahmood K, Liu F, Bi Y M, Rothstein S J. Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting. Plant Mol Biol, 2017, 94: 215-227.
[15] Sade N, Del Mar Rubio-Wilhelmi M, Umnajkitikorn K, Blumwald E. Stress-induced senescence and plant tolerance to abiotic stress. J Exp Bot, 2018, 69: 845-853.
doi: 10.1093/jxb/erx235 pmid: 28992323
[16] Wang B F, Zhang Y X, Bi Z Z, Liu Q, Xu T T, Yu N, Cao Y R, Zhu A K, Wu W X, Zhan X D, Anis G B, Yu P, Chen D B, Cheng S H, Cao L Y. Impaired function of the calciumdependent protein kinase, OsCPK12, leads to early senescence in rice (Oryza sativa L.). Front Plant Sci, 2019, 10: 52.
[17] Yang S L, Fang G N, Zhang A P, Ruan B P, Jiang H Z, Ding S L, Liu C L, Zhang Y, Jaha N, Hu P, Xu Z J, Gao Z Y, Wang J Y, Qian Q. Rice EARLY SENESCENCE 2, encoding an inositol polyphosphate kinase, is involved in leaf senescence. BMC Plant Biol, 2020, 20: 393.
[18] Franco-Orozco B, Berepiki A, Ruiz O, Gamble L, Griffe L L, Wang S, Birch P R J, Kanyuka K, Avrova A. A new proteinaceous pathogenassociated molecular pattern (PAMP) identified in Ascomycete fungi induces cell death in Solanaceae. New Phytol, 2017, 214: 1657-1672.
doi: 10.1111/nph.14542 pmid: 28386988
[19] Greenberg J T, Yao N. The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microb, 2004, 6: 201-211.
[20] Lin F F, Letuma P, Li Z W, Lin S, Rensing C, Lin W X. Rhizospheric pathogen proliferation and ROS production are associated with premature senescence of the osvha-a1 rice mutant. J Exp Bot, 2021, 72: 247-263.
[21] Chen H F, Yao F F, Yang Y C, Zhang Z X, Fang C X, Chen T, Lin W X. Progress and challenges of rice ratooning technology in Fujian province, China. Crop Environ, 2023, 2: 121-125.
[22] Peng S B, Zheng C, Yu X. Progress and challenges of rice ratooning technology in China. Crop Environ, 2023, 2: 5-11.
[23] Lin W X. Developmental status and problems of rice ratooning. J Integr Agric, 2019, 18: 246-247.
[24] Huang J W, Wu J Y, Chen H F, Zhang Z X, Fang C X, Shao C H, Lin W W, Weng P Y, Muhammad U K, Lin W X. Optimal management of nitrogen fertilizer in the main rice crop and its carrying-over effect on ratoon rice under mechanized cultivation in Southeast China. J Integr Agric, 2022, 21: 351-364.
[25] 李可, 禹晴, 徐云姬, 杨建昌. 水稻叶片早衰突变体的农艺与生理性状研究进展. 中国水稻科学, 2020, 34: 104-114.
doi: 10.16819/j.1001-7216.2020.9078
Li K, Yu Q, Xu Y J, Yang J C. Research progress in agronomic and physiological traits of early leaf senescence mutants in rice. Chin J Rice Sci, 2020, 34: 104-114 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2020.9078
[26] Edwards J A, Santos-Medellín C M, Liechty Z S, Nguyen B, Lurie E, Eason S, Phillips G, Sundaresan V. Compositional shifts in rootassociated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol, 2018, 16: e2003862.
[27] Zhang J Y, Zhang N, Liu Y X, Zhang X N, Hu B, Qin Y, Xu H R, Wang H, Guo X X, Qian J M, Wang W, Zhang P F, Jin T, Chu C C, Bai Y. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci China Life Sci, 2018, 61: 613-621.
doi: 10.1007/s11427-018-9284-4 pmid: 29582350
[28] Vargas W A, Mandawe J C, Kenerley C M. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol, 2009, 151: 792-808.
[29] 刘晔. 不同生态区稻田土壤微生物群落差异及深耕作用机制研究. 河南农业大学博士学位论文, 河南郑州, 2022.
Liu Y. Study of Different Ecological Regions and Deep Ploughing on Soil Microbial Community in Paddy Soil. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2022. (in Chinese with English abstract).
[30] Zhong Y Q W, Hu J H, Xia Q M, Zhang S L, Li X, Pan X Y, Zhao R P, Wang R W, Yan W M, Shang-Guan Z P, Hu F Y, Yang C D, Wang W. Soil microbial mechanisms promoting ultrahigh rice yield. Soil Biol Biochem, 2020, 143: 107741.
[31] Smith J L, Collins H P, Bailey V L. The effect of young biochar on soil respiration. Soil Biol Biochem, 2010, 42: 2345-2347.
[32] Thijs S, Op D B M, Beckers B, Truyens S, Stevens V, Jonathan D, Van H J D, Nele W, Vangronsveld J. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front Microbiol, 2017, 8: 8494.
[33] 林满红. 低留桩再生稻增产减排的栽培调控及其作用机制研究. 福建农林大学博士学位论文, 福建福州, 2023.
Lin M H. The Cultivation Regulation and Its Underlying Mechanism of High Yield and Mitigated Emissions from Low Cut Stubble Rice Ratooning. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2023 (in Chinese with English abstract).
[34] Liu Y, Chen X T, Liu J X, Liu T T, Cheng J M, Wei G H, Lin Y B. Temporal and spatial succession and dynamics of soil fungal communities in restored grassland on the Loess Plateau in China. Land Degrad Dev, 2019, 30: 1273-1287.
[35] Csardi G. The igraph software package for complex network research. Comp Sci, 2006, 1695: 1-9.
[36] 郑海雷, 李振基, 陈小麟. 生态学(第三版). 科学出版社, 2007.
Zheng H L, Lin Z J, Chen X L. Ecology, 3rd edn. Science Press, 2007 (in Chinese).
[37] 何花榕, 杨惠杰, 李义珍, 卓传营, 张上守, 郑荣和. 超级稻II优航1号再生高产栽培的库源结构特征分析. 中国农学通报, 2008, 24: 52-57.
He H R, Yang H J, Li Y Z, Zhuo C Y, Zhang S S, Zheng R H. High yield characteristics of source and sink in super rice Eryouhang No.1. Chin Agric Sci Bull, 2008, 24: 52-57 (in Chinese with English abstract).
[38] Williams A, De Vries F. Plant root exudation under drought: implications for ecosystem functioning. New Phytol, 2020, 225: 1899-1905.
doi: 10.1111/nph.16223 pmid: 31571220
[39] Zhang Q, Liu X C, Yu G L, Wang H, Feng D Q, Zhao H L, Liu L J. Agronomic and physiological characteristics of high-yielding ratoon rice varieties. Agron J, 2021, 113: 5063-5075.
[40] Guo S W, Xia S J, Zhao X Q, Zhu H X. Studies on endogenous hormones and nutritional physiology related to the premature senescence of super-hybrid rice liangyoupeijiu and its parents at late growth stage. Agric Sci Technol, 2014, 15: 1914-1918.
[41] 陈鸿飞. 再生稻高产稳产形成的生理生态特性及比较蛋白组学分析. 福建农林大学博士学位论文, 福建福州, 2009.
Chen H F. Analysis of Ecophysiological Characteristics and Its Comparative Proteomics of High and Stable Yield Formation in Ratoon Rice. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2009 (in Chinese with English abstract).
[42] Zou J N, Pang Z Q, Li Z, Guo C L, Lin H M, Li Z, Chen H F, Huang J W, Chen T, Xu H L, Qin B, Letuma P, Lin W W, Lin W X. The underlying mechanism of variety-water-nitrogen-stubble damage interaction on yield formation of ratoon rice with low stubble height under mechanized harvesting. J Integr Agric, 2024, 23: 2-9.
[43] 刘璐, 刘星, 靖宪月, 黄玲艳, 周顺桂. 地杆菌: 驱动厌氧生物地球化学循环的“多面手”. 微生物学报, 2022, 62: 2277-2288.
Liu L, Liu X, Jing X Y, Huang L Y, Zhou S G. Geoabcter: the “generalist” driving anaerobic biogeochemical cycles. Acta Microb Sin, 2022, 62: 2277-2288 (in Chinese with English abstract).
[44] 宋以萍. 稻田和湿地岸边带中硝酸盐异化还原成铵细菌群落组成的研究. 青岛理工大学硕士学位论文, 山东青岛, 2019.
Song Y P. Community Composition Dissimilatory Nitrate Reduction to Ammonium (DNRA) Bacteria in Systems of Paddy Field and the Riparian Zone of Wetland. MS Thesis of Qingdao University of Technology, Qingdao, Shandong, China, 2019 (in Chinese with English abstract).
[45] Dai T J, Wen D H, Bates C T, Wu L W, Guo X, Liu S, Su Y F, Lei J, Zhou J Z, Yang Y F. Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities. Nat Commun, 2022, 13: 175.
doi: 10.1038/s41467-021-27857-6 pmid: 35013303
[1] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
[2] 林志敏, 秦贤金, 吴红淼, 庞孜钦, 林文雄. 不同太子参品种对连作胁迫差异响应及种内间作效应分析[J]. 作物学报, 2022, 48(9): 2351-2365.
[3] 黄福灯, 黄妍, 金泽艳, 贺焕焕, 李春寿, 程方民, 潘刚. 水稻叶片早衰突变体ospls7的生理特性及其基因定位[J]. 作物学报, 2022, 48(7): 1832-1842.
[4] 袁珅, 彭少兵. 再生稻头季和再生季稻米重金属含量的比较研究[J]. 作物学报, 2022, 48(7): 1822-1831.
[5] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[10] 夏赛赛,崔玉,李凤菲,谭佳,谢园华,桑贤春,凌英华. 水稻类病斑早衰突变体lmps1的表型鉴定与基因定位[J]. 作物学报, 2019, 45(1): 46-54.
[11] 吴连成,李沛,田磊,王顺喜,李明娜,王宇宇,王赛,陈彦惠. 阻断授粉诱导玉米叶片提前衰老的转录组分析[J]. 作物学报, 2018, 44(11): 1661-1672.
[12] 陈鸿飞,庞晓敏,张仁,张志兴,徐倩华,方长旬,李经勇,林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响[J]. 作物学报, 2017, 43(10): 1507-1517.
[13] 肖艳华**,陈新龙**,杜丹,邢亚迪,张天泉,祝毛迪,刘明明,朱小燕,桑贤春,何光华*. 水稻叶片淀粉积累及早衰突变体esl9的鉴定与基因定位[J]. 作物学报, 2017, 43(04): 473-482.
[14] 黄雅敏,朱杉杉,赵志超,蒲志刚,刘天珍,罗胜,张欣. 水稻早衰突变体psls1的基因定位及克隆[J]. 作物学报, 2017, 43(01): 51-62.
[15] 杨波,夏敏,张孝波,王晓雯,朱小燕,何沛龙,何光华,桑贤春*. 水稻早衰突变体esl6的鉴定与基因定位[J]. 作物学报, 2016, 42(07): 976-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李余生;朱镇;张亚东;赵凌;王才林. 水稻稻曲病抗性的主基因+多基因混合遗传模型分析[J]. 作物学报, 2008, 34(10): 1728 -1733 .
[2] 赖仲铭; 杨克诚. 全姊妹轮回选择与混合选择对玉米群体改良效果的初步研究[J]. 作物学报, 1983, 9(01): 7 -16 .
[3] 徐孟亮;陈良碧. 4个水稻高产品种与巴西陆稻的耐旱性比较研究[J]. 作物学报, 2003, 29(06): 903 -907 .
[4] 白琪林;陈绍江;戴景瑞. 我国常用玉米自交系秸秆品质性状及其相关分析[J]. 作物学报, 2007, 33(11): 1777 -1781 .
[5] 杨振玉. 北方杂交粳稻发展的思考与展望[J]. 作物学报, 1998, 24(06): 840 -846 .
[6] 戚存扣; 盖钧镒;傅寿仲;浦惠明;张洁夫;高建琴;陈新军. 甘蓝型油菜(Brassica napus L.)千粒重性状遗传体系分析[J]. 作物学报, 2004, 30(12): 1274 -1277 .
[7] 程式华;孙宗修;斯华敏;卓丽圣. 不同纬度地区光温生态对水稻光、温敏不育性的选择压研究[J]. 作物学报, 1997, 23(06): 683 -688 .
[8] 赵广才;何中虎;田奇卓;刘利华;李振华;张文彪;张全良. 农艺措施对中优9507小麦蛋白组分和加工品质的调节效应[J]. 作物学报, 2003, 29(03): 408 -412 .
[9] 蔡一霞;王维;张祖建;夏广宏;张洪熙;杨建昌;朱庆森. 水旱种植下多个品种蒸煮品质和稻米RVA谱的比较性研究[J]. 作物学报, 2003, 29(04): 508 -513 .
[10] 李木英;石庆华;潘晓华;张荣珍;谭雪明. 两系稻结实期胚乳和茎鞘非结构碳水化合物代谢活性的研究[J]. 作物学报, 2002, 28(06): 821 -828 .