[1]刘道宏. 植物叶片的衰老. 植物生理学通讯, 1983, (2): 12–19
Liu D H. Plant leaf senescence. Plant Physiol Commun, 1983, (2): 12–19 (in Chinese)
[2]Grbic V, Bleecker A B. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J, 1995, 8: 595–602
[3]Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 1999, 284: 2148–2152
[4]Li Z H, Peng J Y, Wen X, Guo H W. ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell, 2013, 25: 3311–3328
[5]Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F, Chu C C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Acad Natl Sci USA, 2014, 111: 10013–10018
[6]Danisman S, van der Wa.l F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk A, Muino J M, Cutri L, Dornelas M C, Angenent G C, Immink R G H. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol, 2012, 159: 1511–1523
[7]Rivero R M, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA, 2007, 104: 19631–19636
[8]Morris K, MacKerness S A H, Page T, John C F, Murphy A M, Carr J P, Buchanan-Wollaston V. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J, 2000, 23: 677–685
[9]FukaoT,Yeung E, Bailey-Serres J. The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through bormonal regulation in rice. Plant Physiol, 2012, 160: 1795–1807
[10]Han M H, Kim C Y, Lee J, Lee S K, Jeon J S. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Mol Cell, 2014, 37: 532–539
[11]Rao Y C,Yang Y L, Xu J, Li X J, Leng Y J, Dai L P, Huang L C, Shao G S, Ren D Y,Hu J, Guo L B, Pan J W, Zeng D L. EARLY SENESCENCE1encodes a SCAR-LIKE PROTEIN2 that affects water loss in rice. Plant Physiol, 2015, 169: 1225–1239
[12]Gao Q S, Yang Z F, Zhou Y, Yin Z T, Qiu J, Liang G H, Xu C W. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene, 2012, 498: 155–163
[13]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasa-ki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375
[14]Park S Y, Yu J W, Park J S, Li J J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H, Koh H J, Jeon J S, Park Y, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664
[15]Yoshida S, Ito M, Nishida I, Akira W. Identification of a novel gene HYS /CPR5 that has a repressive role in the induction of leaf senescence and pathogen defence responses in Arabidopsis thaliana. Plant J, 2002, 29: 427–437
[16]Aki T, Konishi M, Kikuchi T, Fujimori T, YoneyamaT,Yanagisawa S. Distinct modulations of the hexokinase1-mediated glucose response and hexokinase1-independent processes by HYS1/CPR5 in Arabidopsis. J Exp Bot, 2007, 58: 3239–3248
[17]Lea P J, Miflin B J. Alternative route for nitrogen assimilation in higher plants. Nature, 1974, 251: 614–616
[18]Lam H M, Coschigano K T, Oliveira I C, OliveiraM, Coruzzi G M. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 569–593
[19]Somerville C R, Ogren W L. Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature, 1980, 286: 257–259
[20]Suzuki A, Rothstein S. Structure and regulation of ferredoxin-dependent glutamate synthase from Arabidopsis thaliana: cloning of cDNA, expression in different tissues of wild-type and gltS mutant strains, and light induction. Eur J Biochem, 1997, 243: 708–718
[21]Coschigano K T, Melo-Oliveira R, Lim J, Coruzzi G M. Arabidopsis gls mutants and distinct Fd-GOGAT genes: implications for photorespiration and primary nitrogen assimilation. Plant Cell, 1998, 10: 741–752
[22]Suzuki A, Vidal J, Gadal P. Glutamate synthase isoforms in rice: immunological studies of enzymes in green leaf, etiolated leaf, and root tissues. Plant Physiol, 1982, 70: 827–832
[23]Zhao X Q, Shi W M. Expresssionanalysisof the glutamine synthetase and glutamate synthase gene families in young rice (Oryza sativa) seedlings. Plant Sci, 2006, 170: 748–754
[24]卢永恩, 罗风, 杨猛, 李香花, 练兴明. 抑制表达谷氨酸合酶基因对水稻碳氮代谢的影响.生命科学, 2011, 41: 481–493
Lu Y N, Luo F, Yang M, Li X H, Lian X M. Suppression of glutamate synthase genes significantly affects carbon and nitrogenmetabolism in rice (Oryza sativa L.). Sci China Life Sci, 2011, 41: 481–493 (in Chinese)
[25]Mattana M, Biazzi E, Bertani A, Coraggio I. Characterization of the Ferredoxin-Gogat gene (OsGog2 clone) expression in rice. Biol Plant, 2006, 50:187–192
[26]Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 45: 29–40
[27]Thordal-Christensen H, Zhang Z, Wei Y, Collinge D B. Sub-cellular localization of H2O2 in plants. H2O2 accumulation in papillaeand hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997,11: 1187–1194
[28]Dietrich R A, Delaney T P, Uknes S J, Ward E R, Ryals J A, Dangl J L. Arabidopsis mutants simulating disease resistance response. Cell, 1994, 77: 565–577
[29]Dong H, Fei G L,Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L,Zhou K N, Cheng Z J,Wang J L, Jiang L, Zhang X, Guo X P,Lei C L,Su N, Wang H Y, Wan J M. A rice Virescent-yellow leaf mutant reveals new insights into the role and assenbly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162: 1867–1880
[30]孙玉莹. 水稻叶片早衰基因PSL2的图位克隆及功能初步分析.中国农业科学院硕士学位论文,北京,2013
Sun Y Y. Map-based Cloning and Basic Functional Analysis of Presenescing Leaf Gene PSL2 in Rice(Oryza sativa). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2013
[31]Liu K, Liu L L, Ren Y L,Wang Z Q, Zhou K N, Liu X,Wang D, Zheng M, Cheng Z J, Lin Q B,Wang J L,Wu F Q, Zhang X,Guo X P, Wang C M, Zhai H Q, JiangL, Wan J M. Dwarf and tiller-enhancing 1 regulates growth and development by influencing boron uptake in boron limited condition in rice. Plant Sci, 2015, 236: 18–28
[32]Tamura W, Kojima S, Toyokawa A, Watanabe H, Tabuchi K M, Hayakawa T, Yamaya T. Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Plant Sci, 2011, 2: 1–9
[33]Crawford N M, Ford B G. Molecular and developmental biology of inorganic nitrogen nutrition. The Arabidopsis Book, 2002[2016-03-07] http://www.aspb.org/publications/
[34]吴巍, 赵军. 植物对氮素吸收利用的研究进展.中国农学通报, 2010, 26(13): 75–78
Wu W, Zhao J. Advances on plants’ nitrogen assimilation and utilization. Chin Agric Sci Bull, 2010, 26(13): 75–78 (in Chinese with English abstract)
[35]Keys A J, Bird I F, Cornelius M J, Lea P J, Wallsgrove R M, Miflin B J. Photorespiratory nitrogen cycle. Nature, 1978, 275: 741–743
[36]Blackwell R D, Murray A J S, Lea P J. The isolation and characterization of photorespiratory mutants of barley and pea. In: BigginsJ eds. In Progress in Photosynthesis Research. RhodeIsland: Springer Netherlands, 1987, pp 625–628
[37]Somerville C R, Ogren W L. Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature, 1980, 286: 257–259 |