欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (01): 51-62.doi: 10.3724/SP.J.1006.2017.00051

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻早衰突变体psls1的基因定位及克隆

黄雅敏1,**,朱杉杉1,**,赵志超1,**,蒲志刚2,刘天珍1,罗胜1,张欣1,*   

  1. 1中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程,北京100081;2四川省农业科学院生物技术核技术研究所,四川成都610066
  • 收稿日期:2016-03-18 修回日期:2016-06-20 出版日期:2017-01-12 网络出版日期:2016-07-04
  • 通讯作者: 张欣,E-mail: zhangxin02@caas.cn ** 同等贡献(Contributed equally to this work)
  • 基金资助:

    本研究由国家自然科学基金项目(91535302)和国家转基因生物新品种培育重大专项(2015ZX08010-004)资助。

Gene Mapping and Cloning of a Premature Leaf Senescence Mutant psls1 in Rice

HUANG Ya-Min1,**,ZHU Shan-Shan1,**,ZHAO Zhi-Chao1,**,PU Zhi-Gang2,LIU Tian-Zhen1, LUO-Sheng1,ZHANGXin1,*   

  1. 1National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2Biotechnology Institute of Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066?, China
  • Received:2016-03-18 Revised:2016-06-20 Published:2017-01-12 Published online:2016-07-04
  • Contact: 张欣,E-mail: zhangxin02@caas.cn ** 同等贡献(Contributed equally to this work)
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (91535302) and the Major Project of China on New Varieties of GMO Cultivation (2015ZX08010-004).

摘要:

水稻叶片早衰直接影响作物的光合效率,减少产量,降低品质。因此,深入研究早衰的分子机制对控制和延缓衰老具有重要意义。本文报道了一个早衰突变体psls1 (premature senescence leaf with spots)的基因定位及克隆结果。突变体在发育到七叶期以后,叶片自下而上叶绿素含量下降,过氧化氢过量积累,突变体叶片逐渐黄化至枯萎;其他农艺性状如株高、分蘖数、主穗长、结实率和穗粒数也相应变差。电镜观察进一步发现,psls1衰老叶片中叶绿体降解、类囊体基粒片层模糊,嗜饿颗粒明显增多。遗传分析表明,psls1受1对隐性基因控制,利用psls1 × IRAT129杂交组合F2分离群体中的1690个早衰个体,将基因PSLS1定位在第7染色体分子标记ZS-3和ZS-8之间89 kb的范围内,测序研究发现,区间内一个编码铁氧还依赖的谷氨酸合酶基因LOC_Os07g46460的第2外显子末位的G被替换为A,导致转录本的错误剪切,突变体的cDNA缺失了57bp碱基片段。在突变体中该基因表达量下降,谷氨酸合酶活性降低,其产物谷氨酸含量显著下降、其他氨基酸代谢紊乱。水培低氮处理下可诱发突变体psls1早衰。研究结果表明,由于PSLS1突变使得谷氨酸合酶失活,氮代谢异常而导致突变体psls1早衰。

关键词: 水稻, 早衰, 基因定位, PSLS1基因, 谷氨酸合酶(Fd-GOGAT)

Abstract:

Leaf early senescence directly reduces its photosynthetic capacity, decreasing crop yield and grain quality. It is of great importance to identify novel mutants and characterize their molecular and physiological mechanisms. In this paper, we reported gene mapping and cloning of a psls1 mutant (premature senescence leaf with spots) in rice. The mutant showed early senescence symptoms, including decreased chlorophyll content, over-accumulated H2O2, yellow-withered leaf and increased dead cell from bottom to top of plant after the 7-leaf stage. Moreover, the plant height, tiller number, panicle length, and the number of grains per panicle were significantly lower in psls1. We observedthe degradation of chloroplast, unclean thylakoid and numerous osmiophilic granules in psls1 leavesby transmission electron microscope (TEM). Genetic analysis demonstrated that the phenotype of psls1 was determined by a single recessive gene. Using genetic population derived from psls1 × IRAT129, the psls1 locus was mapped in a 89 kb region flanked by markers zs-3 and zs-8 on chromosome 7, containing 12 putative open reading frames (ORFs). Sequence analysis revealed a single-base substitution occurred in the genomic sequence of LOC_Os07g46460, which led to a 59 bp deletion in its cDNA, and therefore, predicted LOC_Os07g46460 (PSLS1), encoding a ferredoxin-dependent glutamate synthase as the candidate gene. The mRNA expression level of mutated PSLS1 decreased sharply, resulting in reduction of glutamate synthase activity and abnormal amino acid metabolism in psls1. Under low nitrogen treatment, the senescence phenotype of psls1 could occur as early as at the 3-leaf stage. These results indicated that psls1 senescence phenotype might be associated with the loss of glutamate synthase activity and the abnormal amino acid metabolism.

Key words: Rice, Leaf senescence, Gene-mapping, PSLS1 gene, Glutamate synthase (Fd-GOGAT)

[1]刘道宏. 植物叶片的衰老. 植物生理学通讯, 1983, (2): 12–19
Liu D H. Plant leaf senescence. Plant Physiol Commun, 1983, (2): 12–19 (in Chinese)
[2]Grbic V, Bleecker A B. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J, 1995, 8: 595–602
[3]Alonso J M, Hirayama T, Roman G, Nourizadeh S, Ecker J R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 1999, 284: 2148–2152
[4]Li Z H, Peng J Y, Wen X, Guo H W. ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell, 2013, 25: 3311–3328
[5]Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F, Chu C C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Acad Natl Sci USA, 2014, 111: 10013–10018
[6]Danisman S, van der Wa.l F, Dhondt S, Waites R, de Folter S, Bimbo A, van Dijk A, Muino J M, Cutri L, Dornelas M C, Angenent G C, Immink R G H. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol, 2012, 159: 1511–1523
[7]Rivero R M, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA, 2007, 104: 19631–19636
[8]Morris K, MacKerness S A H, Page T, John C F, Murphy A M, Carr J P, Buchanan-Wollaston V. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J, 2000, 23: 677–685
[9]FukaoT,Yeung E, Bailey-Serres J. The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through bormonal regulation in rice. Plant Physiol, 2012, 160: 1795–1807
[10]Han M H, Kim C Y, Lee J, Lee S K, Jeon J S. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Mol Cell, 2014, 37: 532–539
[11]Rao Y C,Yang Y L, Xu J, Li X J, Leng Y J, Dai L P, Huang L C, Shao G S, Ren D Y,Hu J, Guo L B, Pan J W, Zeng D L. EARLY SENESCENCE1encodes a SCAR-LIKE PROTEIN2 that affects water loss in rice. Plant Physiol, 2015, 169: 1225–1239
[12]Gao Q S, Yang Z F, Zhou Y, Yin Z T, Qiu J, Liang G H, Xu C W. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene, 2012, 498: 155–163
[13]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasa-ki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375
[14]Park S Y, Yu J W, Park J S, Li J J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H, Koh H J, Jeon J S, Park Y, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664
[15]Yoshida S, Ito M, Nishida I, Akira W. Identification of a novel gene HYS /CPR5 that has a repressive role in the induction of leaf senescence and pathogen defence responses in Arabidopsis thaliana. Plant J, 2002, 29: 427–437
[16]Aki T, Konishi M, Kikuchi T, Fujimori T, YoneyamaT,Yanagisawa S. Distinct modulations of the hexokinase1-mediated glucose response and hexokinase1-independent processes by HYS1/CPR5 in Arabidopsis. J Exp Bot, 2007, 58: 3239–3248
[17]Lea P J, Miflin B J. Alternative route for nitrogen assimilation in higher plants. Nature, 1974, 251: 614–616
[18]Lam H M, Coschigano K T, Oliveira I C, OliveiraM, Coruzzi G M. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 569–593
[19]Somerville C R, Ogren W L. Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature, 1980, 286: 257–259
[20]Suzuki A, Rothstein S. Structure and regulation of ferredoxin-dependent glutamate synthase from Arabidopsis thaliana: cloning of cDNA, expression in different tissues of wild-type and gltS mutant strains, and light induction. Eur J Biochem, 1997, 243: 708–718
[21]Coschigano K T, Melo-Oliveira R, Lim J, Coruzzi G M. Arabidopsis gls mutants and distinct Fd-GOGAT genes: implications for photorespiration and primary nitrogen assimilation. Plant Cell, 1998, 10: 741–752
[22]Suzuki A, Vidal J, Gadal P. Glutamate synthase isoforms in rice: immunological studies of enzymes in green leaf, etiolated leaf, and root tissues. Plant Physiol, 1982, 70: 827–832
[23]Zhao X Q, Shi W M. Expresssionanalysisof the glutamine synthetase and glutamate synthase gene families in young rice (Oryza sativa) seedlings. Plant Sci, 2006, 170: 748–754
[24]卢永恩, 罗风, 杨猛, 李香花, 练兴明. 抑制表达谷氨酸合酶基因对水稻碳氮代谢的影响.生命科学, 2011, 41: 481–493
Lu Y N, Luo F, Yang M, Li X H, Lian X M. Suppression of glutamate synthase genes significantly affects carbon and nitrogenmetabolism in rice (Oryza sativa L.). Sci China Life Sci, 2011, 41: 481–493 (in Chinese)
[25]Mattana M, Biazzi E, Bertani A, Coraggio I. Characterization of the Ferredoxin-Gogat gene (OsGog2 clone) expression in rice. Biol Plant, 2006, 50:187–192
[26]Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 45: 29–40
[27]Thordal-Christensen H, Zhang Z, Wei Y, Collinge D B. Sub-cellular localization of H2O2 in plants. H2O2 accumulation in papillaeand hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997,11: 1187–1194
[28]Dietrich R A, Delaney T P, Uknes S J, Ward E R, Ryals J A, Dangl J L. Arabidopsis mutants simulating disease resistance response. Cell, 1994, 77: 565–577
[29]Dong H, Fei G L,Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L,Zhou K N, Cheng Z J,Wang J L, Jiang L, Zhang X, Guo X P,Lei C L,Su N, Wang H Y, Wan J M. A rice Virescent-yellow leaf mutant reveals new insights into the role and assenbly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162: 1867–1880
[30]孙玉莹. 水稻叶片早衰基因PSL2的图位克隆及功能初步分析.中国农业科学院硕士学位论文,北京,2013
Sun Y Y. Map-based Cloning and Basic Functional Analysis of Presenescing Leaf Gene PSL2 in Rice(Oryza sativa). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2013
[31]Liu K, Liu L L, Ren Y L,Wang Z Q, Zhou K N, Liu X,Wang D, Zheng M, Cheng Z J, Lin Q B,Wang J L,Wu F Q, Zhang X,Guo X P, Wang C M, Zhai H Q, JiangL, Wan J M. Dwarf and tiller-enhancing 1 regulates growth and development by influencing boron uptake in boron limited condition in rice. Plant Sci, 2015, 236: 18–28
[32]Tamura W, Kojima S, Toyokawa A, Watanabe H, Tabuchi K M, Hayakawa T, Yamaya T. Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Plant Sci, 2011, 2: 1–9
[33]Crawford N M, Ford B G. Molecular and developmental biology of inorganic nitrogen nutrition. The Arabidopsis Book, 2002[2016-03-07] http://www.aspb.org/publications/
[34]吴巍, 赵军. 植物对氮素吸收利用的研究进展.中国农学通报, 2010, 26(13): 75–78
Wu W, Zhao J. Advances on plants’ nitrogen assimilation and utilization. Chin Agric Sci Bull, 2010, 26(13): 75–78 (in Chinese with English abstract)
[35]Keys A J, Bird I F, Cornelius M J, Lea P J, Wallsgrove R M, Miflin B J. Photorespiratory nitrogen cycle. Nature, 1978, 275: 741–743
[36]Blackwell R D, Murray A J S, Lea P J. The isolation and characterization of photorespiratory mutants of barley and pea. In: BigginsJ eds. In Progress in Photosynthesis Research. RhodeIsland: Springer Netherlands, 1987, pp 625–628
[37]Somerville C R, Ogren W L. Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature, 1980, 286: 257–259

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!