欢迎访问作物学报,今天是

作物学报

• •    

绿洲灌区增密对水氮减量玉米产量的补偿机制

王菲儿1,郭瑶2,李盼1,韦金贵1,樊志龙1,胡发龙1,范虹1,何蔚1,殷文1,*,陈桂平1,*   

  1. 1省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学农学院,甘肃兰州730070;2西北师范大学生命科学学院,甘肃兰州730070
  • 收稿日期:2023-09-28 修回日期:2024-01-30 接受日期:2024-01-30 网络出版日期:2024-02-20
  • 基金资助:
    本研究由国家自然科学基金项目(32101857, U21A20218, 32372238),甘肃省科技计划项目(23JRRA704, 23JRRA1407)和甘肃农业大学伏羲青年人才项目(Gaufx-03Y10)资助。

Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas

WANG Fei-Er1, GUO Yao2, LI Pan1, WEI Jin-Gui1, FAN Zhi-Long1, HU Fa-Long1, FAN Hong1, HE Wei1, YIN Wen1,*, CHEN Gui-Ping1,*   

  1. 1State Key Laboratory of Arid Land Crop Science, College of Agronomy Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2College of Life Sciences Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2023-09-28 Revised:2024-01-30 Accepted:2024-01-30 Published online:2024-02-20
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32101857, U21A20218, 32372238), the Science and Technology Program of Gansu Province (23JRRA704, 23JRRA1407), and the Fuxi Young Talents Fund of Gansu Agricultural University (Gaufx-03Y10).

摘要:

针对河西绿洲灌区水资源短缺、玉米田氮肥施用量高等生产生态问题,在节水减氮条件下,分析增加种植密度补偿水氮减量导致玉米减产的效应,为水氮节约型玉米高效生产提供理论依据与技术支撑。基于2016年布设的裂裂区田间试验,主区为2种灌水定额:灌水减量20% (W13240 m3 hm-2)和传统灌水(W24050 m3 hm-2),裂区为2种施氮量:减量施氮25% (N1270 kg hm-2)和传统施氮(N2360 kg hm-2),裂裂区为3种玉米密度:传统种植密度(D17.50万株 hm-2)、增密30% (D29.75万株 hm-2)和增密60% (D312.00万株 hm-2)通过测定20202021年玉米籽粒产量和生物产量,分析干物质积累及其分配、转运特征,量化产量构成因素,明确增密对水氮减量玉米产量的补偿效应及机制。研究表明,减水、减氮降低了玉米籽粒产量和生物产量,而增密30%能够补偿因水氮同步减量造成的产量负效应且维持较高的施氮量有利于玉米增产节水。W1N1D1 (减量灌水减量施氮及传统密度)W2N2D1 (对照:传统灌水传统施氮及传统密度)籽粒产量和生物产量分别降低9.1%~15.0%10.0%~11.0%,但W1N1D2 (减量灌水减量施氮及增密30%)W2N2D1差异不显著。W1N2D2 (减量灌水传统施氮及增密30%)W2N2D1籽粒和生物产量分别提高12.9%~15.4%6.4%~12.0%。增密30%能够补偿水氮同步减量造成玉米减产的主要原因是W1N1D2能增加玉米穗数,进而提高玉米灌浆初期至成熟期干物质积累量和苗期到大喇叭口期群体生长速率花前转运率增密30%在灌水减量和传统施氮条件下促进玉米增产的主要原因是W1N2D2可增加玉米穗数,提高玉米生育期干物质积累量与群体生长速率,促进穗部干物质分配,提高花前转运量、转运率及转运贡献率。因此,增密30%是绿洲灌区水氮同步减量玉米稳产高产的可行措施,是氮肥不减但减水20%玉米节水增产有效举措。

关键词: 水氮减量, 密植, 玉米, 产量构成, 干物质积累, 干物质分配与转运

Abstract:

Aiming at the production and ecological problems of the lack of water resources and excessive chemical nitrogen fertilizer input in arid oasis irrigation areas, the effect of increased planting density to compensate for the loss of maize yield caused by reducing water and nitrogen inputs was analyzed under reduced water and nitrogen inputs, which could provide theoretical and technical support for the efficient production of maize with water and nitrogen reduction. Based on a split-plot field experiment conducted in 2016, the main plot was divided into two irrigation quotas: reduced irrigation by 20% (W1, 3240 m3 hm-2) and traditional irrigation (W2, 4050 m3 hm-2), and the split-plot was divided into two nitrogen application rates: reduced nitrogen (N1, 270 kg hm-2) by 25% and traditional nitrogen (N2, 360 kg hm-2) were applied, and the sub-split plot was divided into three maize densities: traditional planting density (D1, 7500 hm-2 plants), increased density by 30% (D2, 97,500 hm-2 plants) and increased density by 60% (D3, 12.00 hm-2 plants). We measured grain yield and biological yield of maize in 2020 and 2021, analyzed the characteristics of dry matter accumulation, distribution, and transport characteristics, quantified the yield composition factors, and clarified the compensation effect and mechanism of densification on maize yield with water and nitrogen reduction. The study showed that water and nitrogen reduction inputs decreased the grain yield and biological yield in maize, but the increased density by 30% can compensate for the loss of yield due to reducing water and nitrogen inputs and improve maize yield under reduced water while maintaining traditional nitrogen. The grain yield and biological yield of W1N1D1 (reduced water and nitrogen and traditional density) was 9.1%–15.0% and 10.0%–11.0% lower than W2N2D1 (comparison: traditional irrigation, traditional nitrogen application, and traditional density), but there was no significant difference in W1N1D2 (reduced irrigation, reduced nitrogen, and increased density by 30%) compared with W2N2D1. Compared with W2N2D1, W1N2D2 (reduced irrigation, traditional nitrogen, and increased density by 30%) increased grain yield and biological yield by 12.9%–15.4% and 6.4%–12.0%, respectively. Increased density by 30% compensated for the negative effect of water and nitrogen reduction mainly attributed to improving spike number of W1N1D2, which further increased dry matter accumulation from the early-filling stage to the maturity stage in maize, population growth rate and dry matter remobilization at pre-anthesis from seeding stage to the flare opening stage. Increasing spike number of W1N2D2 improved dry matter accumulation and population growth rate, promoted dry matter distribution in the ear, and increased dry matter remobilization. In addition, the dry matter remobilization efficiency and contribution of dry matter remobilization to grain at pre-anthesis were the main reasons for increasing maize yield with the increased density by 30% under water and nitrogen reduction inputs. Therefore, increasing density by 30% was a feasible measure for simultaneous reduction of water and nitrogen in oasis irrigation area to stabilize and increase maize yield.

Key words: water-nitrogen reduction, dense planting, maize, yield components, dry matter accumulation, dry matter distribution and transportation

[1] Davis K F, Gephart J A, Emery K A, Leach A M, Galloway J N, D Odorico P. Meeting future food demand with current agricultural resources. Glob Environ Change, 2016, 39: 125–132.

[2] Davis K F, Rulli M C, Seveso A, D Odorico P. Increased food production and reduced water use through optimized crop distribution. Nat Geosci, 2017, 10: 919–924.

[3] Lu J S, Geng C M, Cui X L, Li M Y, Chen S H, Hu T T. Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts. Agric Water Manage, 2021, 258: 107220.

[4] Li Y, Huang G H, Chen Z J, Xiong Y W, Huang Q Z, Xu X, Huo Z L. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of northwest China. Agric Water Manage, 2022, 260: 107277.

[5] 殷文, 郭瑶, 范虹, 樊志龙, 胡发龙, 于爱忠, 赵财, 柴强. 西北干旱灌区不同地膜覆盖利用方式对玉米水分利用的影响. 中国农业科学, 2021, 54: 4750–4760.

Yin W, Guo Y, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q. Effects of different plastic film mulching and using patterns on soil water use of maize in the arid irrigated area of northwestern China. Sci Agric Sin, 2021, 54: 4750–4760 (in Chinese with English abstract).

[6] 张喜军, 魏廷邦, 樊志龙, 柴强. 绿洲灌区水氮减施密植玉米的光合源动态和产量表现. 核农学报, 2020, 34: 1302–1310.

Zhang X J, Wei T B, Fan Z L, Chai Q. Photosynthetic source dynamics and yield performance of high density maize with reduced amount of water and nitrogen in oasis irrigation region. Acta Agric Nucl Sin, 2020, 34: 1302–1310 (in Chinese with English abstract).

[7] Meng Q F, Yue S C, Hou P, Cui Z L, Chen X P. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: a review. Pedosphere, 2016, 26: 137–147.

[8] 李嘉, 吕慎强, 杨泽宇, 李惠通, 王吕, 阳婷, 王筱斐, 王林权. 氮肥运筹对黄土塬区春玉米产量、效益和氮肥利用率的综合效应. 植物营养与肥料学报, 2020, 26: 32–41.

Li J, Lyu S Q, Yang Z Y, Li H T, Wang L, Yang T, Wang X F, Wang L Q. Comprehensive effects of nitrogen fertilizer management on yield, economic performance and nitrogen use efficiency of spring maize in Loess Plateau, China. Plant Nutr Fert Sci, 2020, 26: 32–41 (in Chinese with English abstract).

[9] Wang Z Q, Zhang W Y, Beebout S S, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crop Res, 2016, 193: 54–69.

[10] 魏廷邦, 柴强, 王伟民, 王军强. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应. 中国农业科学, 2019, 52: 428–444.

Wei T B, Chai Q, Wang W M, Wang J Q. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas. Sci Agric Sin, 2019, 52: 428–444 (in Chinese with English abstract).

[11] 殷文, 柴强, 于爱忠, 赵财, 樊志龙, 胡发龙, 范虹, 郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响. 中国农业科学, 2020, 53: 4764-4776.

Yin W, Chai Q, Yu A Z, Zhao C, Fan Z L, Hu F L, Fan H, Guo Y. Effects of intercropped wheat straw retention on canopy temperature and photosynthetic physiological characteristics of intercropped maize mulched with plastic during grain filling stage. Sci Agric Sin, 2020, 53: 4764-4776 (in Chinese with English abstract).

[12] 赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响. 作物学报, 2018, 44: 1694–1703.

Zhao C, Wang Q M, Guo Y, Yin W, Fan Z L, Hu F L, Yu A Z, Chai Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under no-tillage with previous plastic mulched maize. Acta Agron Sin, 2018, 44: 1694–1703 (in Chinese with English abstract).

[13] Kodur S, Shrestha U B, Maraseni T N, Deo R C. Environmental and economic impacts and trade-offs from simultaneous management of soil constraints, nitrogen and water. J Clean Prod, 2019, 222: 960–970.

[14] 陈磊, 宋书会, 云鹏, 周磊, 高翔, 卢昌艾, 刘荣乐, 汪洪. 连续三年减施氮肥对潮土玉米生长及根际土壤氮素供应的影响. 植物营养与肥料学报, 2019, 25: 1482–1494.

Chen L, Song S H, Yun P, Zhou L, Gao X, Lu C A, Liu R L, Wang H. Effects of reduced nitrogen fertilizer for three consecutive years on maize growth and rhizosphere nitrogen supply in fluvo-aquic soil. Plant Nutr Fert Sci, 2019, 25: 14821494 (in Chinese with English abstract).

[15] 郭瑶, 柴强, 殷文, 冯福学, 赵财, 于爱忠. 绿洲灌区小麦免耕秸秆还田对后作玉米产量性能指标的影响. 中国生态农业学报, 2017, 25: 69–77.

Guo Y, Chai Q, Yin W, Feng F X, Zhao C, Yu A Z. Effect of wheat straw return to soil with zero-tillage on maize yield in irrigated oases. Chin J Eco-Agric, 2017, 25: 69–77 (in Chinese with English abstract).

[16] 杨明达, 关小康, 刘影, 崔静宇, 丁超明, 王静丽, 韩静丽, 王怀苹, 康海平, 王同朝. 滴灌模式和水分调控对夏玉米干物质和氮素积累与分配及水分利用的影响. 作物学报, 2019, 45: 443–459.

Yang M D, Guan X K, Liu Y, Cui J Y, Ding C M, Wang J L, Han J L, Wang H P, Kang H P, Wang T C. Effects of drip irrigation pattern and water regulation on the accumulation and allocation of dry matter and nitrogen, and water use efficiency in summer maize. Acta Agron Sin, 2019, 45: 443–459 (in Chinese with English abstract).

[17] 王宜伦, 李潮海, 谭金芳, 韩燕来, 张许. 超高产夏玉米植株氮素积累特征及一次性施肥效果研究. 中国农业科学, 2010, 43: 3151–3158.

Wang Y L, Li C H, Tan J F, Han Y L, Zhang X. Studies on plant nitrogen accumulation characteristics and the effect of single application of base fertilizer on super-high-yield summer maize. Sci Agric Sin, 2010, 43: 3151–3158 (in Chinese with English abstract).

[18] 薛吉全, 张仁和, 马国胜, 路海东, 张兴华, 李凤艳, 郝引川, 邰书静. 种植密度、氮肥和水分胁迫对玉米产量形成的影响. 作物学报, 2010, 36: 1022–1029.

Xue J Q, Zhang R H, Ma G S, Lu H D, Zhang X H, Li F Y, Hao Y C, Tai S J. Effects of plant density, nitrogen application, and water stress on yield formation of maize. Acta Agron Sin, 2010, 36: 1022–1029 (in Chinese with English abstract).

[19] Yan W M, Zhong Y Q, Liu W Z, Shangguan Z P. Asymmetric response of ecosystem carbon components and soil water consumption to nitrogen fertilization in farmland. Agric Ecosyst Environ, 2021, 305: 107166.

[20] Zhang Y H, Yin J D, Guo Z H, L J, W R. Simulation of soil water balance and crop productivity of long-term continuous maize cropping under high planting density in rainfed agroecosystems. Agric For Meteorol, 2022, 312: 108740.

[21] Lu J S, Hu T T, Geng C M, Cui X L, Fan J L, Zhang F C. Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in northwest China. Agric Water Manag, 2021, 255: 107034.

[22] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017, 43: 754–762.

Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agron Sin, 2017, 43: 754–762 (in Chinese with English abstract).

[23] 王旭敏, 雒文鹤, 刘朋召, 张琦, 王瑞, 李军. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应. 中国农业科学, 2021, 54: 3183–3197.

Wang X M, Luo W H, Liu P Z, Zhang Q, Wang R, Li J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci Agric Sin, 2021, 54: 3183–3197 (in Chinese with English abstract).

[24] 明博, 谢瑞芝, 侯鹏, 李璐璐, 王克如, 李少昆. 2005—2016年中国玉米种植密度变化分析. 中国农业科学, 2017, 50: 1960–1972.

Ming B, Xie R Z, Hou P, Li L L, Wang K R, Li S K. Analysis of maize planting density in China from 2005 to 2016. Sci Agric Sin, 2017, 50: 1960–1972 (in Chinese with English abstract).

[25] Zhang G Q, Shen D P, Xie R Z, Ming B, Hou P, Xue J, Li R F, Chen J L, Wang K R, Li S K. Optimizing planting density to improve nitrogen use of super high‐yield maize. Agron J, 2020, 112: 4147–4158.

[26] 毛圆圆, 薛军, 翟娟, 张园梦, 张国强, 明博, 谢瑞芝, 王克如, 侯鹏, 李召锋, 李少昆. 水肥一体化条件下密植高产玉米适宜追氮次数研究. 植物营养与肥料学报, 2022, 28: 2227–2238.

Mao Y Y, Xue J, Zhai J, Zhang Y M, Zhang G Q, Ming B, Xie R Z, Wang K R, Hou P, Li Z F, Li S K. Optimum times of nitrogen topdressing in high-yield maize under high plant density and fertigation. J Plant Nutr Fert, 2022, 28: 2227–2238 (in Chinese with English abstract).

[27] Sun Y, Zang H, Splettstößer T, Kumar A, Xu X L, Kuzyakov Y, Pausch J. Plant intraspecific competition and growth stage alter carbon and nitrogen mineralization in the rhizosphere. Plant Cell Environ., 2021, 44: 1231–1242.

[28] Calviño P A, Andrade F H, Sadras V O. Maize yield as affected by water availability, soil depth, and crop management. Agron J, 2003, 95: 275–281.

[29] Sheshbahreh M J, Dehnavi M M, Salehi A, Bahreininejad B. Effect of irrigation regimes and nitrogen sources on biomass production, water and nitrogen use efficiency and nutrients uptake in coneflower (Echinacea purpurea L.). Agric Water Manag, 2019, 213: 358–367.

[30] Wang F, Xie R Z, Ming B, Wang K R, Hou P, Chen J L, Liu G Z, Zhang G Q, Xue J, Li S K. Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency. Agric Water Manage, 2021, 254: 106938.

[31] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226–1233.

Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226–1233 (in Chinese with English abstract).

[32] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49: 1919–1929.

Wei J G, Guo Y, Chai Q, Yin W, Fan Z L, Hu F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agron Sin, 2023, 49: 1919–1929 (in Chinese with English abstract).

[33] Wei J G, Chai Q, Yin W, Fan H, Guo Y, Hu F L, Fan Z L, Wang Q M. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions. J Integr Agric, 2024, 23: 122–140.

[34] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38: 80–85.

Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R. Distribution, yield structure, and key cultural techniques of maize superhigh yield plots in recent years. Acta Agron Sin, 2012, 38: 80–85 (in Chinese with English abstract).

[35] Guo Y, Yin W, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q, Aziiba E A, Zhang X J. Photosynthetic physiological characteristics of water and nitrogen coupling for enhanced high-density tolerance and increased yield of maize in arid irrigation regions. Front Plant Sci, 2021, 12: 726568.

[36] Paulo E.R. Marchiori, Eduardo C. Machado, Rafael V. Ribeiro. Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crops Res, 2014, 155: 30–37.

[1] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[2] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[3] 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化, 是偶然还是与农艺性状存在关联?——以历年国审普通品种为例[J]. 作物学报, 2024, 50(3): 771-778.
[4] 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响[J]. 作物学报, 2024, 50(3): 686-694.
[5] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[6] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[7] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[8] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[9] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[10] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[11] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[12] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[13] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[14] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[15] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!