欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 172-186.doi: 10.3724/SP.J.1006.2024.33019

• 耕作栽培·生理生化 • 上一篇    下一篇

长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选

宋旭东1(), 朱广龙3(), 张舒钰1, 章慧敏1, 周广飞1, 张振良1, 冒宇翔1, 陆虎华1, 陈国清1,2, 石明亮1, 薛林1,2, 周桂生3, 郝德荣1,*()   

  1. 1江苏沿江地区农业科学研究所, 江苏南通226541
    2江苏省现代作物生产协同创新中心, 江苏南京210095
    3扬州大学教育部农业与农产品安全国际合作联合实验室 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2023-03-27 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-27
  • 通讯作者: *郝德荣, E-mail: drhao2008@163.com
  • 作者简介:宋旭东, E-mail: xudong.song@foxmail.com; 朱广龙, E-mail: zhuguang2007@163.com

    **同等贡献

  • 基金资助:
    江苏省种业振兴揭榜挂帅项目(JBGS[2021]054);江苏省重点研发项目(BE2021317);南通市基础科学研究项目(JC12022088);江苏省自主创新项目(CX(20)1002);江苏现代农业产业技术体系建设专项资助

Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region

SONG Xu-Dong1(), ZHU Guang-Long3(), ZHANG Shu-Yu1, ZHANG Hui-Min1, ZHOU Guang-Fei1, ZHANG Zhen-Liang1, MAO Yu-Xiang1, LU Hu-Hua1, CHEN Guo-Qing1,2, SHI Ming-Liang1, XUE Lin1,2, ZHOU Gui-Sheng3, HAO De-Rong1,*()   

  1. 1Yanjiang Institute of Agricultural Sciences, Nantong 226541, Jiangsu, China
    2Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, Jiangsu, China
    3Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University / Co-Innovation Center for Modern Production Technology in Grain Crops of Jiangsu Province, Yangzhou 225009, Jiangsu, China
  • Received:2023-03-27 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-27
  • Contact: *E-mail: drhao2008@163.com
  • About author:**Contributed equally to this study
  • Supported by:
    Open Competition Project of Seed Industry Revitalization of Jiangsu Province(JBGS[2021]054);Jiangsu Province Key Research and Development Project(BE2021317);Scientific and Technological Project of Nantong City, China(JC12022088);Jiangsu Agriculture Science and Technology Innovation Fund(CX(20)1002);Earmarked Fund for Jiangsu Agricultural Research System

摘要:

全球气候变暖趋势日趋明显, 高温热害已成为限制糯玉米丰产稳产的主要非生物胁迫之一。鉴定糯玉米的耐热性, 筛选耐高温评价指标, 可为耐热糯玉米品种的选育提供理论支撑。本研究以长江中下游地区主推品种为试验材料, 设置2种增温方式(覆膜增温处理和延迟播种处理)以及自然对照处理(CK), 测定了13个与耐热相关的指标, 采用主成分分析、隶属函数法、聚类分析和逐步回归分析相结合的方法, 对糯玉米花期耐热性进行综合评价。结果显示, 与对照相比, 除叶绿素a和光系统II最大光化学效率外, 各指标在高温处理下的降低幅度均达到显著或极显著水平。利用主成分分析将13个单项指标转换为3个相互独立的综合指标, 其贡献率分别为64.46%、15.06%和7.76%, 代表了糯玉米耐热性87.28%的原始数据信息量; 通过隶属函数计算综合耐热评价值(D值), 将10个参试糯玉米品种划分为3类, 分别为3个耐热型、4个中等耐热型和3个热敏感型。筛选出的耐热型品种为苏玉糯2号、中糯2号和苏玉糯901, 生产中应用这些品种可能在一定程度上减轻高温热害对糯玉米生长发育造成的不利影响。最后, 利用逐步回归分析建立了糯玉米耐热性评价方程预测供试材料的耐热性, 预测值(PV)与D值基本一致, 确定了产量、Fv/Fm、叶面积指数和花粉活力作为糯玉米花期耐热性评价指标。本研究筛选出的耐热品种和鉴定指标可为今后耐热糯玉米品种的选育提供理论依据。

关键词: 糯玉米, 花期耐热性, 综合评价, 鉴定指标

Abstract:

Heat stress has acknowledged as one of the major threats to waxy maize production as a result of global warming gradually seriously. Heat resistance identification and indices screening could provide the theoretical basis in breeding heat-resistant cultivars. In the present study, 13 heat-related parameters of 10 waxy maize cultivars from the middle and lower reaches of Yangtze River area were measured under normal temperature treatment (CK) and two heat stress treatments (artificial warming treatment and delayed sowing treatment). Principal component analysis, membership function method, cluster analysis, and stepwise regression analysis were used to comprehensively evaluate the heat resistance of waxy maize at flowering stage. The results showed that most indices under heat stress decreased significantly compared with CK, except for chlorophyll a and PS II primary light energy conversion efficiency. Three independent comprehensive components were obtained from 13 single traits using a principal component analysis, and their contribution rates respectively were 64.46%, 15.06%, and 7.76%, which represented 87.28% information of the original data. Ten testing cultivars were divided into three heat-tolerance types that were heat tolerance category, medium heat tolerance category, and high temperature sensitive category based on comprehensive heat tolerance values (D) calculating by membership function methods. SYN2, ZN2, and SYN901 were identified as the heat-resistant cultivars, and planting these cultivars could partly alleviate the negative effects of heat stress on waxy maize production. Finally, stepwise regression method was used to establish a predictive equation to evaluate heat tolerance, which indicating that predictive values (PV) calculated by the predictive equation were basically consistent with D value. The results showed that yield, Fv/Fm, leaf area index, and pollen viability could be used to identify heat-resistant cultivars of waxy maize. The heat tolerant cultivars and identification index selected in the study could serve as a basis for subsequent breeding heat tolerant cultivars of waxy maize.

Key words: waxy maize, heat-tolerance at flowering stage, comprehensive assessment, evaluation indexes

图1

不同处理下各糯玉米品种播种时间 A: 对照和覆膜增温处理; B: 延迟播种处理。SYN802: 苏玉糯802; ZN2: 中糯2号; SYN2: 苏玉糯 2号; SYN11: 苏玉糯11; SYN901: 苏玉糯901; SYN639: 苏玉糯639; JDN517: 焦点糯517; SYN1803: 苏玉糯1803; SYN1502: 苏玉糯1502; SYN1704: 苏玉糯1704。"

图2

高温处理期增温棚内(H1)、延迟播种田间高温(H2)与对照处理(CK)日最高温度, 其中虚线代表不同处理的平均温度"

图3

花期不同处理对糯玉米主要农艺性状的影响 LAI: 叶面积指数(cm2 m-2); DB: 地上部干物重(g m-2); ERN: 穗行数; KNR: 行粒数; SR: 结实率(%); Fv/Fm: PSII最大光化学效率; Fv/Fo: PSII潜在活性; Chl a: 叶绿素a (mg g-1); Chl b: 叶绿素b (mg g-1); Chl (a+b): 叶绿素a+b (mg g-1); PV: 花粉活力(%); Yield: 产量(kg hm-2); ETB: 秃尖长度(cm)。*表示P < 0.05的显著水平; **表示P < 0.01的显著水平; ns表示差异不显著。"

附表1

不同处理下10个糯玉米品种13个农艺性状的表现"

品种
Cultivar
LAI DB ERN KNR SR
CK H1 H2 CK H1 H2 CK H1 H2 CK H1 H2 CK H1 H2
苏玉糯639 SYN639 4.47 3.80 4.04 932.4 843.7 860.5 15.1 12.9 13.3 29.67 23.61 25.08 89.65 72.51 74.28
苏玉糯2号 SYN2 3.56 3.22 3.35 892.5 827.1 860.8 14.0 12.8 12.9 27.33 25.01 25.31 90.48 82.15 84.50
苏玉糯11 SYN11 5.17 4.23 4.61 995.9 885.2 917.7 13.9 11.7 11.9 32.67 26.84 27.24 86.91 68.88 69.90
中糯2号ZN2 4.28 3.91 4.03 878.9 789.7 853.2 13.3 12.5 12.4 27.81 25.74 26.24 92.33 84.37 86.20
苏玉糯1803 SYN1803 4.40 3.89 3.99 949.0 831.4 895.2 14.0 12.8 12.7 34.48 29.26 30.48 90.20 73.20 74.80
焦点糯517 JDN517 5.38 4.43 4.97 1090.4 974.1 1045.5 15.6 13.2 13.2 35.67 28.53 29.87 87.08 69.61 70.99
苏玉糯1502 SYN1502 4.62 4.19 4.21 1154.5 998.1 1035.3 15.6 13.3 13.7 29.33 25.39 26.27 88.08 78.59 79.98
苏玉糯1704 SYN1704 4.54 4.13 4.30 903.5 794.9 821.3 13.8 11.5 11.7 33.33 29.33 30.45 85.60 73.11 76.20
苏玉糯901 SYN901 4.37 4.01 4.11 1096.7 1021.2 1032.7 15.0 12.9 13.1 30.67 28.2 28.74 89.35 79.38 81.50
苏玉糯802 SYN802 5.69 5.09 5.37 1143.7 1016.7 1072.9 14.6 13.2 13.2 30.63 26.67 26.84 87.70 75.25 76.10
品种
Cultivar
Fv/Fm Fv/Fo Chl a Chl b Chl a+b
CK H1 H2 CK H1 H2 CK H1 H2 CK H1 H2 CK H1 H2
苏玉糯639 SYN639 0.75 0.68 0.68 2.94 2.60 2.64 0.76 0.69 0.71 1.33 1.14 1.13 2.11 1.79 1.81
苏玉糯2号 SYN2 0.76 0.71 0.73 3.20 2.82 2.97 0.76 0.70 0.70 1.35 1.24 1.25 2.18 2.03 2.01
苏玉糯11 SYN11 0.74 0.67 0.70 3.05 2.56 2.8 0.75 0.65 0.66 1.26 1.07 1.09 2.02 1.77 1.74
中糯2号ZN2 0.76 0.70 0.73 3.21 2.86 2.93 0.73 0.69 0.67 1.28 1.15 1.19 2.04 1.81 1.95
苏玉糯1803 SYN1803 0.76 0.70 0.71 3.12 2.70 2.67 0.76 0.70 0.71 1.45 1.32 1.24 2.17 1.89 1.91
焦点糯517 JDN517 0.78 0.71 0.73 3.50 2.98 3.00 0.77 0.70 0.70 1.37 1.16 1.17 2.15 1.86 1.9
苏玉糯1502 SYN1502 0.75 0.69 0.70 3.19 2.73 2.70 0.76 0.71 0.72 1.21 1.10 1.06 2.05 1.88 1.91
苏玉糯1704 SYN1704 0.78 0.71 0.73 3.48 2.99 3.15 0.78 0.72 0.73 1.12 0.95 1.00 1.99 1.79 1.82
苏玉糯901 SYN901 0.76 0.71 0.72 3.25 2.72 2.97 0.72 0.66 0.68 1.43 1.29 1.30 2.14 1.96 2.03
苏玉糯802 SYN802 0.77 0.68 0.69 3.31 2.82 2.94 0.7 0.63 0.64 1.48 1.31 1.31 2.2 1.94 1.99
品种
Cultivar
PV ETB Yield
CK H1 H2 CK H1 H2 CK H1 H2
苏玉糯639 SYN639 CK H1 H2 CK H1 H2 10030.5 8158.5 8462.9
苏玉糯2号 SYN2 90.3 71.5 74.1 1.54 2.30 2.40 9518.0 8649.5 8779.5
苏玉糯11 SYN11 88.8 76.3 80.5 1.10 1.29 1.21 10627.5 8382.0 8801.5
中糯2号ZN2 87.2 64.7 71.5 1.67 2.90 2.68 9432.0 8527.5 8911.5
苏玉糯1803 SYN1803 91.2 80.1 82.4 0.73 0.81 0.78 10519.5 8896.5 9021.0
焦点糯517 JDN517 90.3 75.5 77.2 1.10 1.53 1.49 10631.0 8469.0 8736.0
苏玉糯1502 SYN1502 91.1 71.9 74.5 1.43 2.72 2.23 9679.5 8163.5 8371.5
苏玉糯1704 SYN1704 89.5 71.6 77.2 1.50 2.45 2.32 10773.0 9064.5 9360.5
苏玉糯901 SYN901 87.1 70.8 73.3 1.33 2.07 2.00 10242.0 9001.0 9191.0
苏玉糯802 SYN802 91.1 76.9 79.7 1.27 2.09 2.14 10123.5 8542.0 8763.0

表1

不同糯玉米品种各单项指标的耐热系数"

品种 Cultivar X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
苏玉糯639 SYN639 0.877 0.914 0.870 0.821 0.819 0.913 0.892 0.908 0.852 0.855 0.806 0.829 1.500
苏玉糯2号 SYN2 0.922 0.946 0.924 0.921 0.921 0.943 0.905 0.928 0.919 0.918 0.880 0.917 1.138
苏玉糯11 SYN11 0.856 0.906 0.855 0.828 0.799 0.927 0.879 0.882 0.868 0.869 0.781 0.808 1.676
中糯2号 ZN2 0.928 0.940 0.931 0.935 0.924 0.936 0.903 0.927 0.915 0.923 0.891 0.925 1.089
苏玉糯1803 SYN1803 0.906 0.920 0.910 0.870 0.821 0.929 0.861 0.926 0.884 0.872 0.846 0.842 1.379
焦点糯517 JDN517 0.874 0.930 0.847 0.819 0.808 0.925 0.853 0.905 0.855 0.877 0.804 0.809 1.728
苏玉糯1502 SYN1502 0.909 0.886 0.867 0.881 0.906 0.925 0.851 0.938 0.895 0.922 0.831 0.850 1.593
苏玉糯1704 SYN1704 0.928 0.895 0.842 0.900 0.873 0.921 0.880 0.923 0.869 0.909 0.827 0.854 1.529
苏玉糯901 SYN901 0.930 0.937 0.870 0.929 0.904 0.941 0.878 0.936 0.903 0.932 0.859 0.881 1.676
苏玉糯802 SYN802 0.918 0.916 0.905 0.887 0.864 0.893 0.871 0.905 0.881 0.884 0.839 0.855 1.627
平均值 Mean 0.905 0.919 0.882 0.879 0.864 0.925 0.877 0.918 0.884 0.896 0.836 0.857 1.494
标准差 SD 0.027 0.020 0.033 0.044 0.049 0.014 0.019 0.017 0.024 0.027 0.034 0.040 0.225
变异系数 CV (%) 2.935 2.125 3.698 5.028 5.680 1.563 2.168 1.900 2.673 3.062 4.112 4.700 15.038

表2

高温处理下各指标耐热系数相关分析"

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
X1 1.000
X2 0.142 1.000
X3 0.435 0.498 1.000
X4 0.896** 0.065 0.304 1.000
X5 0.862** 0.199 0.579* 0.903** 1.000
X6 0.010 0.448 0.307 0.282 0.275 1.000
X7 0.344 0.631* 0.603* 0.205 0.313 0.341 1.000
X8 0.678* 0.296 0.256 0.859** 0.737* 0.614* 0.484 1.000
X9 0.743* 0.459 0.317 0.841** 0.795** 0.460 0.556 0.942** 1.000
X10 0.717* 0.270 0.373 0.889** 0.834** 0.560* 0.360 0.912** 0.881** 1.000
X11 0.867** 0.344 0.536 0.902** 0.869** 0.485 0.559 0.912** 0.896** 0.884** 1.000
X12 0.861** 0.238 0.530 0.884** 0.914** 0.316 0.581 0.861** 0.895** 0.873** 0.936** 1.000
X13 -0.412 0.002 -0.372 -0.424 -0.501 -0.220 -0.659* -0.568 -0.543 -0.383 -0.573* -0.700* 1.000

表3

各性状主成分的特征向量及贡献率"

主成分 Principle factor CI1 CI2 CI3
特征值 Eigen value 8.38 1.96 1.01
贡献率 Contribution ratio 64.46 15.06 7.76
累计贡献率 Cumulative contribution ratio (%) 64.46 79.52 87.28
特征向量 Eigen vector X1 0.84 0.36 -0.03
X2 0.53 -0.59 0.28
X3 0.71 -0.49 -0.34
X4 0.94 0.21 -0.09
X5 0.91 0.29 -0.07
X6 0.55 -0.05 0.81
X7 0.55 -0.61 0.00
X8 0.75 0.49 0.06
X9 0.94 0.03 0.07
X10 0.82 0.49 0.19
X11 0.97 -0.07 -0.11
X12 0.98 -0.12 -0.06
X13 -0.75 0.49 0.09

表4

各参试材料综合指标值、权重、u(Xj)、D值及综合评价"

品种
Cultivar
CI(1) CI(2) CI(3) u(X1) u(X2) u(X3) D
D-value
排序
Rank
综合评价
Comprehensive valuation
苏玉糯639 SYN639 2.42 0.46 0.59 0.22 0.61 0.41 0.303 8 高温敏感型 Heat sensitive type
苏玉糯2号 SYN2 2.71 0.36 0.55 0.91 1.00 1.00 0.932 2 耐热型 Heat tolerance type
苏玉糯11 SYN11 2.34 0.53 0.63 0.13 0.43 0.67 0.228 10 高温敏感型 Heat sensitive type
中糯2号 ZN2 2.74 0.35 0.53 0.95 0.98 0.86 0.950 1 耐热型 Heat tolerance type
苏玉糯1803 SYN1803 2.52 0.44 0.57 0.52 0.38 0.72 0.512 6 中等耐热型Medium heat tolerance type
焦点糯517 JDN517 2.34 0.56 0.64 0.20 0.39 0.63 0.269 9 高温敏感型 Heat sensitive type
苏玉糯1502 SYN1502 2.49 0.59 0.59 0.63 0.00 0.64 0.523 5 中等耐热型Medium heat tolerance type
苏玉糯1704 SYN1704 2.50 0.55 0.59 0.57 0.35 0.57 0.533 4 中等耐热型Medium heat tolerance type
苏玉糯901 SYN901 2.54 0.60 0.61 0.79 0.67 0.95 0.787 3 耐热型 Heat tolerance type
苏玉糯802 SYN802 2.47 0.54 0.55 0.43 0.44 0.00 0.393 7 中等耐热型Medium heat tolerance type
权重Weight 0.739 0.173 0.089

图4

基于D值的鲜食糯玉米品种耐热性系统聚类分析图 缩写同图1。"

表5

回归方程的精度分析"

品种
Cultivar
预测值
Predicted value
原始值
Primary value
差值
Difference
估计精度
Evaluation accuracy (%)
苏玉糯639 SYN639 0.299 0.303 -0.004 98.68
苏玉糯2号 SYN2 0.935 0.932 0.003 99.68
苏玉糯11 SYN11 0.228 0.228 0.000 100.00
中糯2号 ZN2 0.951 0.950 0.001 99.89
苏玉糯1803 SYN1803 0.516 0.512 0.004 99.22
焦点糯517 JDN517 0.272 0.269 0.003 98.88
苏玉糯1502 SYN1502 0.512 0.523 -0.011 97.90
苏玉糯1704 SYN1704 0.542 0.533 0.000 100.00
苏玉糯901 SYN901 0.778 0.787 0.009 98.31
苏玉糯802 SYN802 0.392 0.393 -0.009 98.86

图5

聚类结果中不同耐热型糯玉米品种各性状的表现特征 *和**分别表示在0.05和0.01概率水平差异显著, ns表示在0.05概率水平无显著差异。"

表6

高温处理对不同耐热型糯玉米品种产量的影响"

耐热类型
Tolerance type
品种
Cultivar
对照产量
Control yield
(kg hm-2)
高温产量
High temperature yield (kg hm-2)
产量下降比例
Relative yield reduction (%)
H1 H2 平均值Mean H1 H2 平均值Mean
耐热型
Heat resistance
中糯2号 ZN2 628.8 568.5 594.1 581.3 9.59 5.52 7.55
苏玉糯2号 SYN2 634.5 576.6 585.3 581.0 9.12 7.76 8.44
苏玉糯901 SYN901 682.8 600.1 612.7 606.4 12.12 10.26 11.19
高温敏感型
Heat sensitive
苏玉糯639 SYN639 668.7 543.9 564.2 554.0 18.66 15.63 17.15
焦点糯517 JDN517 708.7 564.6 582.4 573.5 20.34 17.83 19.08
苏玉糯11 SYN11 708.5 558.8 586.8 572.8 21.13 17.18 19.16
中等耐热型
Medium resistance
苏玉糯1803 SYN1803 701.3 593.1 601.4 597.3 15.43 14.24 14.84
苏玉糯1502 SYN1502 645.3 544.2 558.1 551.2 15.66 13.51 14.59
苏玉糯1704 SYN1704 718.2 604.3 624.0 614.2 15.86 13.11 14.49
苏玉糯802 SYN802 674.9 569.5 584.2 576.8 15.62 13.44 14.53
[1] 赵久然, 卢柏山, 史亚兴, 徐丽. 我国糯玉米育种及产业发展动态. 玉米科学, 2016, 24(4): 67-71.
Zhao J R, Lu B S, Shi Y X, Xu L. Development trends of waxy corn breeding and industry in China. J Maize Sci, 2016, 24(4): 67-71. (in Chinese with English abstract)
[2] 瞿玲玲, 严旖旎, 李广浩, 杨欢, 陆卫平, 陆大雷. 105个鲜食糯玉米品种籽粒糊化特性的评价. 扬州大学学报(农业与生命科学版), 2022, 43(1): 82-87.
Qu L L, Yan Y N, Li G H, Yang H, Lu W P, Lu D L. Evaluation of pasting properties of 105 fresh waxy maize hybrids. J Yangzhou Univ (Agric Life Sci Edn), 2022, 43(1): 82-87. (in Chinese with English abstract)
[3] 史亚兴, 徐丽, 赵久然, 卢柏山, 樊艳丽. 中国糯玉米产业优势及在“一带一路”发展中的机遇. 作物杂志, 2019, (2): 15-19.
Shi Y X, Xu L, Zhao J R, Lu B S, Fan Y L. Waxy maize industry advantages in China and opportunities in the development of the belt and road. Crops, 2019, (2): 15-19. (in Chinese with English abstract)
[4] Intergovernmental Panel on Climate Change. IPCC-SR15, Global Warming of 1.5℃. [2021-03-03]. http://www.ipcc.ch/report/sr15/.
[5] 中国气象局气候变化中心. 中国气候变化蓝皮书 (2021). 北京: 科学出版社, 2021. pp 11-12.
Climate Change Center of China Meteorological Administration. China Blue Book on Climate Change (2021). Beijing: Science Press, 2021. pp 11-12. (in Chinese)
[6] 第三次气候变化国家评估报告编写委员会. 第三次气候变化国家评估报告. 北京: 科学出版社, 2015. pp 10-18.
Preparation Committee for the Third National Assessment Report on Climate Change. The Third National Assessment of Climate Change. Beijing: Science Press, 2015. pp 10-18. (in Chinese)
[7] 中国气象局气候变化中心. 中国气候变化蓝皮书 (2022). 北京: 科学出版社, 2022. pp 12-14.
Climate Change Center of China Meteorological Administration. China Blue Book on Climate Change (2022). Beijing: Science Press, 2022. pp 12-14. (in Chinese)
[8] 赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40: 1839-1845.
doi: 10.3724/SP.J.1006.2014.01839
Zhao L X, Zhang P, Wang R N, Wang P, Tao H W. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agron Sin, 2014, 40: 1839-1845. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01839
[9] Liu M Y, Dong X, Zhang Y J, Gu M Q, Yu Y H, Xie H J, Yang H, Yu X Y, Huang S B. Heat stress on maize with contrasting genetic background: differences in flowering and yield formation. Agric For Meter, 2022, 319: 108934.
[10] Gabaldón-Leal H, Webber M E, Otegui G A, Slafer R A, Ordóñez T, Gaiser I J, Lorite M, Ruiz-Ramos F. Modelling the impact of heat stress on maize yield formation. Fie Crops Res, 2016, 198: 226-237.
[11] 徐欣莹, 邵长秀, 孙志刚, 龙步菊, 董宛麟. 高温胁迫对玉米关键生育期生理特性和产量的影响研究进展. 玉米科学, 2021, 29(2): 81-88.
Xu X Y, Shao C X, Sun Z G, Long B J, Dong W L. Research progress on the effect of heat stress on physiological characteristics of maize at key growth stage and the yield. J Maize Sci, 2021, 29(2): 81-88. (in Chinese with English abstract)
[12] 张川, 刘栋, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘存辉, 刘鹏. 不同时期高温胁迫对夏玉米物质生产性能及籽粒产量的影响. 中国农业科学, 2022, 55: 3710-3722.
doi: 10.3864/j.issn.0578-1752.2022.19.003
Zhang C, Liu D, Wang H Z, Ren H, Zhao B, Zhang J W, Ren B Z, Liu C H, Liu P. Effects of high temperature stress in different periods on dry matter production and grain yield of summer maize. Sci Agric Sin, 2022, 55: 3710-3722.
doi: 10.3864/j.issn.0578-1752.2022.19.003
[13] Teng L I, Zhang X P, Qing L, Liu J, Chen Y Q, Sui P. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review. J Inter Agric, 2022, 21: 2465-2476.
[14] 任仰涛, 金彦刚, 李辉晖, 李珍富, 杨永乐, 赵其兵, 常东伟, 满锡玉, 宋红芳, 夏中华. 江苏淮北地区29个玉米新品种耐高温胁迫筛选. 中国种业, 2019, (6): 38-42.
Ren Y T, Jin Y G, Li H H, Li Z F, Yang Y L, Zhao Q B, Chang D W, Man X Y, Song H F, Xia Z H. Screening of 29 new maize breeds with high temperature tolerance in Huaibei area of Jiangsu province. China Seed Ind, 2019, (6): 38-42. (in Chinese with English abstract)
[15] 于康珂. 玉米穗发育对高温胁迫的响应. 河南农业大学硕士学位论文, 河南郑州, 2016.
Yu K K. The Response of Heat Stress on Ear Development of Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2016. (in Chinese with English abstract)
[16] 李小凡. 高温、干旱及其复合胁迫对夏玉米产量形成的影响. 山东农业大学硕士学位论文, 山东泰安, 2022.
Li X F. Effects of High Temperature, Drought and Their Combined Stress on Yield Formation of Summer Maize. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2022. (in Chinese with English abstract)
[17] Wang X L, Yan Y, Xu C C, Wang X Y, Luo N, Wei D, Meng Q F, Wang P. Mitigating heat impacts in maize (Zea mays L.) during the reproductive stage through biochar soil amendment. Agric Ecosys Environ, 2021, 311: 107321.
doi: 10.1016/j.agee.2021.107321
[18] Ordóñez R A, Savin R, Cossani C M, Slafer G A. Yield response to heat stress as affected by nitrogen availability in maize. Field Crop Res, 2015, 183: 184-203.
doi: 10.1016/j.fcr.2015.07.010
[19] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 子粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50: 2061-2070.
doi: 10.3864/j.issn.0578-1752.2017.11.012
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Sci Agric Sin, 2017, 50: 2061-2070. (in Chinese with English abstract)
[20] 杨欢, 沈鑫, 陆大雷, 陆卫平. 籽粒建成期高温胁迫持续时间对糯玉米籽粒产量和淀粉品质的影响. 中国农业科学, 2017, 50: 2071-2082.
doi: 10.3864/j.issn.0578-1752.2017.11.013
Yang H, Shen X, Lu D L, Lu W P. Effects of heat stress durations at grain formation stage on grain yield and starch quality of waxy maize. Sci Agric Sin, 2017, 50: 2071-2082. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.013
[21] Gu X T, Zhang X Y, Lu W P, Lu D L. Starch structural and functional properties of waxy maize under different temperature regimes at grain formation stage. Food Chem: X, 2022, 16: 100463.
doi: 10.1016/j.fochx.2022.100463
[22] Tiwari Y K, Yadav S K. High temperature stress tolerance in maize (Zea mays L.): physiological and molecular mechanisms. J Plant Biol, 2019, 62: 93-102.
doi: 10.1007/s12374-018-0350-x
[23] El-Sappah A H, Rather S A, Wani S H, Elrys A S, Bilal M, Huang Q, Dar Z A, Elashtokhy M M A, Soaud N, Koul M, Mir R R, Yan K, Li J, El-Tarabily K A, Abbas M. Heat stress-mediated constraints in maize (Zea mays. L) production: challenges and solutions. Front Plant Sci, 2022, 13: 879366.
doi: 10.3389/fpls.2022.879366
[24] 李敏, 苏慧, 李阳阳, 李金鹏, 李金才, 朱玉磊, 宋有洪. 黄淮海麦区小麦耐热性分析及其鉴定指标的筛选. 中国农业科学, 2021, 54: 3381-3393.
doi: 10.3864/j.issn.0578-1752.2021.16.002
Li M, Su H, Li Y Y, Li J P, Li J C, Zhu Y L, Song Y H. Analysis of heat tolerance of wheat with different genotypes and screening of identification indexes in Huang-Huai-Hai Region. Sci Agric Sin, 2021, 54: 3381-3393. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.16.002
[25] 朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选. 作物学报, 2022, 48: 3130-3143.
doi: 10.3724/SP.J.1006.2022.13079
Zhu Y D, Wang H Q, Wang H Z, Ren H, Lyu J H, Zhao B, Zhang J W, Ren B Z, Yin F W, Liu P. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage. Acta Agron Sin, 2022, 48: 3130-3143. (in Chinese with English abstract)
[26] 于康珂, 刘源, 李亚明, 孙宁宁, 詹静, 尤东玲, 牛丽, 李潮海, 刘天学. 玉米花期耐高温品种的筛选与综合评价. 玉米科学, 2016, 24(2): 62-71.
Yu K K, Liu Y, Li Y M, Sun N N, Zhan J, You D L, Niu L, Li C H, Liu T X. Screening and comprehensive evaluation of heat- tolerance of maize hybrids in flowering stage. J Maize Sci, 2016, 24(2): 62-71. (in Chinese with English abstract)
[27] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征. 作物学报, 2023, 49: 167-176.
doi: 10.3724/SP.J.1006.2023.23007
Shang M F, Shi X Y, Zhao J C, Li S, Chu Q Q. Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agron Sin, 2023, 49: 167-176. (in Chinese with English abstract)
[28] Gu X, Huang T, Ding M, Lu W, Lu D. Effects of short-term heat stress at the grain formation stage on physicochemical properties of waxy maize starch. J Sci Food Agric, 2018, 98: 1008-1015.
doi: 10.1002/jsfa.2018.98.issue-3
[29] Yan Y N, Wang L F, Lu D L. Effects of spraying exogenous cytokinin or spermine on the starch physicochemical properties of waxy maize exposed to post-silking high temperature. J Cerel Sci, 2020, 95: 103040.
[30] Wang J, Fu P, Lu W, Lu D. Application of moderate nitrogen levels alleviates yield loss and grain quality deterioration caused by post-silking heat stress in fresh waxy maize. Crop J, 2020, 8: 1081-1092.
doi: 10.1016/j.cj.2019.11.007
[31] 侯昕芳, 王媛媛, 黄收兵, 董昕, 陶洪斌, 王璞. 花期前后高温对玉米花粉发育及结实率的影响. 中国农业大学学报, 2020, 25(3): 10-16.
Hou X F, Wang Y Y, Huang S B, Dong X, Tao H B, Wang P. Effects of high temperature during flowering on pollen development and seed setting rate of maize (Zea mays L.). J China Agric Univ, 2020, 25(3): 10-16. (in Chinese with English abstract)
[32] 宋旭东, 章慧敏, 张振良, 周广飞, 冒宇翔, 陆虎华, 陈国清, 石明亮, 黄小兰, 薛林, 郝德荣. 外源水杨酸和氯化钙对糯玉米花期高温胁迫下光合特性及产量的调控效应. 江苏农业科学, 2022, 50(7): 87-94.
Song X D, Zhang H M, Zhang Z L, Zhou G F, Mao Y X, Lu H H, Chen G Q, Shi M L, Huang X L, Xue L, Hao D R. The effects of exogenous salicylic acid and calcium chloride on photosynthetic productivity and yield of waxy maize under heat stress. Jiangsu Agric Sci, 2022, 50(7): 87-94. (in Chinese with English abstract)
[33] 翟大帅. 高温胁迫下化控剂对夏玉米生理特性及产量的影响. 河北农业大学硕士学位论文, 河北保定, 2019.
Zhai D S. Effects of Chemical Control Agents on Physiological Characteristics and Yield of Summer Maize under High Temperature Stress. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2019 (in Chinese with English abstract).
[34] 高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53: 3954-3963.
doi: 10.3864/j.issn.0578-1752.2020.19.009
Gao Y B, Zhang H, Shan J, Xue Y F, Qian X, Dai H C, Liu K C, Li Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Sci Agric Sin, 2020, 53: 3954-3963. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.19.009
[35] 文廷刚, 杜小凤, 刘京宝, 杨文飞, 顾大路, 罗玉明, 王伟中. 玉米花期耐热性评价指标及防御技术研究. 南京农业大学学报, 2021, 44(2): 232-240.
Wen T G, Du X F, Liu J B, Yang W F, Gu D L, Luo Y M, Wang W Z. Study on heat tolerance evaluation index and defense technology of maize at flowering stage. J Nanjing Agric Univ, 2021, 44(2): 232-240. (in Chinese with English abstract)
[36] 杨琴, 陈艺博, 赵文龙, 苗正言, 王晶晶, 贾绪存, 宋睿, 王群. 增温对玉米冠根形态、生长发育和产量的影响. 玉米科学, 2022, 30(6): 67-77.
Yang Q, Chen Y B, Zhao W L, Miao Z Y, Wang J J, Jia X C. Song R, Wang Q. Effects of elevated temperature on maize crown root morphological traits, growth and yield. J Maize Sci, 2022, 30(6): 67-77. (in Chinese with English abstract)
[37] Zheng Y P, Xu M, Shen R C, Qiu S. Effects of artificial warming on the structural, physiological, and biochemical changes of maize (Zea mays L.) leaves in northern China. Acta Physiol Plant, 2013, 35: 2891-2904.
doi: 10.1007/s11738-013-1320-z
[38] 穆心愿, 马智艳, 张兰薰, 付景, 刘天学, 丁勇, 夏来坤, 张凤启, 张君, 齐建双, 赵霞, 唐保军. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应. 中国生态农业学报, 2022, 30: 57-71.
Mu X Y, Ma Z Y, Zhang L X, Fu J, Liu T X, Ding Y, Xia L K, Zhang F Q, Zhang J, Qi J S, Zhao X, Tang B J. Responses of photosynthetic fluorescence characteristics, pollination, and yield components of maize cultivars to high temperature during flowering. Chin Eco-Agric, 2022, 30: 57-71. (in Chinese with English abstract)
[39] 关媛, 党冬冬, 王慧, Rani D R, 潘广磊, Paul J D, 阮燕晔, 郑洪建. 甜、糯玉米自交系耐热性鉴定研究. 上海农业学报, 2020, 36(6): 28-32.
Guan Y, Dang D D, Wang H, Rani D R, Pan G L, Paul J D, Ruan Y Y, Zheng H J. Study on the identification of heat tolerance of inbred lines in sweet corn and waxy corn. Acta Agric Shanghai, 2020, 36(6): 28-32. (in Chinese with English abstract)
[40] Wang Y, Tao H, Tian B, Sheng D, Xu C, Zhou H, Huang S, Wang P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ Exp Bot, 2019, 158: 80-88.
doi: 10.1016/j.envexpbot.2018.11.007
[1] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561.
[2] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[3] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[4] 李继军, 陈雅慧, 王艺瑾, 周志华, 郭子越, 张建, 涂金星, 姚璇, 郭亮. 甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选[J]. 作物学报, 2023, 49(12): 3162-3175.
[5] 赵朋, 陈广侠, 张宴萍, 杨晓慧, 刘芳, 董道峰. 马铃薯苗期耐碱性鉴定方法及86份种质资源耐碱性综合评价[J]. 作物学报, 2023, 49(11): 2923-2934.
[6] 黄婷苗, 詹昕, 陆乃昆, 乔月静, 陈杰, 杨珍平, 高志强. 叶喷有机硒对黑糯玉米硒吸收及籽粒花青素和铁锰铜锌的影响[J]. 作物学报, 2023, 49(10): 2845-2853.
[7] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[8] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[9] 朱亚迪, 王慧琴, 王洪章, 任昊, 吕建华, 赵斌, 张吉旺, 任佰朝, 殷复伟, 刘鹏. 不同夏玉米品种大喇叭口期耐热性评价和鉴定指标筛选[J]. 作物学报, 2022, 48(12): 3130-3143.
[10] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[13] 郜欢欢,叶桑,王倩,王刘艳,王瑞莉,陈柳依,唐章林,李加纳,周清元,崔翠. 甘蓝型油菜种子萌发期耐铝毒特性综合评价及其种质筛选[J]. 作物学报, 2019, 45(9): 1416-1430.
[14] 纪龙,申红芳,徐春春,陈中督,方福平. 基于非线性主成分分析的绿色超级稻品种综合评价[J]. 作物学报, 2019, 45(7): 982-992.
[15] 崔翠,程闯,赵愉风,郜欢欢,王瑞莉,王刘艳,周清元. 52份豌豆种质萌发期耐铝毒性的综合评价与筛选[J]. 作物学报, 2019, 45(5): 798-805.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .