欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2845-2853.doi: 10.3724/SP.J.1006.2023.33005

• 研究简报 • 上一篇    下一篇

叶喷有机硒对黑糯玉米硒吸收及籽粒花青素和铁锰铜锌的影响

黄婷苗(), 詹昕, 陆乃昆, 乔月静, 陈杰, 杨珍平(), 高志强   

  1. 山西农业大学农学院 / 黄土高原特色作物优质高效生产省部共建协同创新中心, 山西太谷 030801
  • 收稿日期:2023-01-16 接受日期:2023-04-18 出版日期:2023-10-12 网络出版日期:2023-04-24
  • 通讯作者: 杨珍平, E-mail: yangzp.2@163.com
  • 作者简介:E-mail: huangtingmiao@126.com
  • 基金资助:
    黄土高原特色作物优质高效生产省部共建协同创新中心自主研发项目(SBGJXTZX-42);国家重点研发计划项目(2021YFD1900700);山西省高等学校科技创新项目(2021L167);山西省博士毕业生来晋工作奖励资金科研项目(SXBYKY2021030);山西农业大学科技创新基金项目(2020BQ72)

Impact of foliar organic selenium application on selenium uptake and grain anthocyanins, iron, manganese, copper, and zinc concentrations of black waxy corn

HUANG Ting-Miao(), ZHAN Xin, LU Nai-Kun, QIAO Yue-Jing, CHEN Jie, YANG Zhen-Ping(), GAO Zhi-Qiang   

  1. College of Agronomy, Shanxi Agricultural University / Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu 030801, Shanxi, China
  • Received:2023-01-16 Accepted:2023-04-18 Published:2023-10-12 Published online:2023-04-24
  • Contact: E-mail: yangzp.2@163.com
  • Supported by:
    Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau(SBGJXTZX-42);National Key Research and Development Program of China(2021YFD1900700);Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L167);Incentive Funding Research Program for Doctor Graduates Working in Shanxi Province, China(SXBYKY2021030);Science and Technology Innovation Fund Program by Shanxi Agricultural University(2020BQ72)

摘要:

探索黑糯玉米硒吸收利用和籽粒营养品质对叶面喷施有机硒肥的响应, 对生产中合理施用硒肥, 进而支撑山西“特” “优”农业高质量发展具有重要意义。本研究以品种晋鲜糯8号为试验材料, 于2020—2021年连续2年在山西晋中黑糯玉米典型种植区开展田间试验, 设置一次喷施不同用量有机硒0、6和12 g Se hm-2, 以及喷施量12 g Se hm-2条件下分2次喷施, 共4个处理, 研究叶喷有机硒对黑糯玉米产量、硒吸收利用、籽粒花青素和铁锰铜锌含量的影响。结果表明, 喷硒量和喷硒次数对黑糯玉米鲜食期籽粒产量和成熟期地上部各器官干物质量无影响。相比不喷硒, 喷硒可提高鲜食期籽粒和成熟期地上部各器官硒含量、硒积累。喷硒12 g Se hm-2时, 籽粒硒含量达到满足人体硒营养需求的最低目标值100 μg kg-1, 增幅最大, 介于110~181 μg kg-1。成熟期, 植株各器官硒积累从高到低依次为叶片、籽粒、茎秆、苞叶、穗轴。喷硒12 g Se hm-2, 分2次喷施的平均籽粒硒强化指数和籽粒硒回收率分别为6.95 (μg kg-1) (g hm-2) -1和2.4%, 优于1次喷施。同时, 鲜食期籽粒花青素和铁锰锌含量也最高, 2年平均值分别为209、27.9、15.9和22.8 mg kg-1, 但各处理间籽粒铜含量无差异。因此, 兼顾硒吸收利用和籽粒营养品质同步提升, 该区黑糯玉米生产中叶喷有机硒肥用量至少应不低于12 g Se hm-2, 且分2次喷施效果较优。

关键词: 有机硒肥, 黑糯玉米, 叶喷, 硒含量, 花青素, 微量元素

Abstract:

It is of great significance to explore the responses of selenium (Se) uptake and grain nutritional quality to foliar application of organic Se fertilizer in black waxy corn, so as to provide a scientific basis for the rational application of Se fertilizer, and then guarantee the high-quality development of ‘Special' and ‘Excellent' agriculture in Shanxi, China. A two-year field experiment was conducted at Jinzhong in Shanxi Province, located in the typical growing region of black waxy corn from 2020 to 2021. The cultivar of Jinxiannuo 8 was used as the test crop. There were four treatments of three Se spraying rates of 0, 6, and 12 g hm-2 at early filling stage, and spraying Se in twice under Se rate of 12 g hm-2. The objective of this study is to clarify the impact of spraying rates and times of organic Se fertilizer on grain yield, Se uptake, and utilization in aerial plant part, grain anthocyanins and iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) concentrations. These results showed that grain yield at fresh stage and biomass in aerial part at maturity stage were influenced by neither Se spraying rates nor spraying times. Compared with the control, foliar Se application remarkably increased both Se concentration and accumulation in grain and each organ of aerial plant part at fresh and maturity stages, respectively. Grain Se concentration at 12 g Se hm-2 was observed to be the highest with a range of 110-181 μg kg-1, which reaching the minimum recommended value of 100 μg kg-1 for better human health. At maturity stage, Se accumulation in different organ of aerial part showed the following ranking: leaf > grain > stem > bract > cob. At the rate of 12 g Se hm-2, the average grain Se biofortification index and Se recovery were 6.95 (μg kg-1) (g hm-2) -1 and 2.4% under the condition of spraying twice, respectively, which were higher than spraying one time. Also, the highest grain anthocyanin and Fe, Mn, Zn concentrations were found when spraying Se twice at 12 g hm-2, they were 209, 27.9, 15.9, and 22.8 mg kg-1, respectively, whereas there was no difference for grain Cu concentration among the treatments at fresh stage. Therefore, the organic Se rate should be at least 12 g hm-2 with spraying twice, for better promoting Se uptake and utilization and grain nutritional quality synchronously during black waxy corn production in Jinzhong of Shanxi province.

Key words: organic selenium fertilizer, black waxy corn, foliar application, Se concentration, anthocyanins, micro-element

图1

2020-2021年试验点的月降水量和平均气温"

图2

不同喷硒处理的鲜食期黑糯玉米产籽粒产量(A)和成熟期各器官干物质量(B) CK、Se1、Se2和Se2-2分别代表灌浆初期喷硒量为0、6、12 g Se hm-2和喷硒12 g Se hm-2条件下分2次喷施。同一年份的不同小写字母表示处理间在0.05概率水平差异显著。"

表1

不同喷硒处理黑糯玉米的鲜食期籽粒硒含量和成熟期地上部各器官硒含量"

年份
Year
(Y)
处理
Treatment
(T)
鲜食期
Fresh stage
成熟期
Maturity
籽粒 Grain
(μg kg-1)
籽粒 Grain
(μg kg-1)
苞叶 Bract
(μg kg-1)
穗轴 Cob
(μg kg-1)
茎秆 Stem
(μg kg-1)
叶片 Leaf
(μg kg-1)
2020 CK 67 c 73 c 88 b 56 b 118 b 172 c
Se1 89 b 99 b 93 ab 65 ab 126 ab 306 b
Se2 110 a 99 b 96 a 66 ab 135 ab 324 b
Se2-2 114 a 119 a 99 a 73 a 147 a 377 a
2021 CK 61 d 52 c 81 b 53 b 128 a 221 c
Se1 82 c 95 b 102 a 66 ab 145 a 319 ab
Se2 138 b 103 b 105 a 64 ab 149 a 370 ab
Se2-2 181 a 156 a 117 a 75 a 151 a 399 a
年份Y * NS NS ** NS NS
处理T ** ** ** ** * **
Y×T ** ** NS NS NS NS

图3

不同喷硒处理的黑糯玉米鲜食期籽粒硒积累(A)和成熟期地上部硒积累(B) 同一年份的不同小写字母表示处理间在0.05概率水平差异显著。处理同图2。"

表2

不同喷硒处理黑糯玉米的籽粒硒强化指数、籽粒硒回收率、硒肥利用率和硒肥累计利用率"

年份
Year
(Y)
处理
Treatment
(T)
籽粒硒强化指数
Grain Se biofortification index
[(μg kg-1) (g hm-2)-1]
籽粒硒回收率
Grain Se recovery
(%)
硒肥利用率
Se use efficiency
(%)
硒肥累计利用率
Accumulative Se use efficiency
(%)
2020 Se1 3.75 a 1.86 a 9.02 a
Se2 3.55 a 0.96 b 5.39 b
Se2-2 3.95 a 1.72 a 7.81 ab
2021 Se1 3.47 c 2.73 a 5.45 a 7.44 a
Se2 6.39 b 1.53 a 3.42 a 4.66 a
Se2-2 9.96 a 3.15 a 5.65 a 6.70 a
年份Y * NS *
处理T ** NS **
Y×T ** NS NS

表3

不同喷硒处理黑糯玉米鲜食期的籽粒花青素和铁锰铜锌含量"

年份
Year
(Y)
处理
Treatment
(T)
花青素
Anthocyanin
(mg kg-1)

Fe
(mg kg-1)

Mn
(mg kg-1)

Cu
(mg kg-1)

Zn
(mg kg-1)
2020 CK 117.6 a 15.76 b 9.50 c 1.52 a 15.06 c
Se1 135.3 a 15.85 b 10.24 bc 1.63 a 16.61 b
Se2 141.8 a 18.34 a 11.72 b 1.67 a 17.12 ab
Se2-2 144.6 a 19.48 a 13.80 a 1.70 a 18.10 a
2021 CK 152.8 b 22.34 b 14.65 b 3.31 a 19.88 c
Se1 174.6 b 26.77 ab 14.87 b 3.33 a 23.20 bc
Se2 196.7 b 35.56 a 16.94 ab 3.48 a 24.52 ab
Se2-2 273.0 a 36.25 a 18.14 a 4.15 a 27.41 a
年份Y NS ** ** ** **
处理T NS * ** * **
Y×T NS NS NS NS NS
[1] Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics, 2014, 6: 25-54.
doi: 10.1039/c3mt00185g pmid: 24185753
[2] Graham L. Biofortification of cereals with foliar selenium and iodine could reduce hypothyroidism. Front Plant Sci, 2018, 9: 730.
doi: 10.3389/fpls.2018.00730 pmid: 29951072
[3] Dinh Q T, Cui Z W, Huang J, Tran T A T, Wang D, Yang W X, Zhou F, Wang M K, Yu D S, Liang D L. Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int, 2018, 112: 294-309.
doi: S0160-4120(17)31741-5 pmid: 29438838
[4] Hawkesford M J, Zhao F J. Strategies for increasing the selenium content of wheat. J Cereal Sci, 2007, 46: 282-292.
doi: 10.1016/j.jcs.2007.02.006
[5] Keskinen R, Raty M, Markku Y H. Selenium fractions in selenate-fertilized field soils of Finland. Nutr Cycl Agroecosys, 2011, 91: 17-29.
doi: 10.1007/s10705-011-9435-3
[6] Shultz C D, Bailey Ryan T, Gates T K, Heesemann B E, Morway E D. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions. J Hydrol, 2018, 560: 512-529.
doi: 10.1016/j.jhydrol.2018.02.027
[7] Haug A, Graham R D, Christophersen O A, Lyons G H. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis, 2007, 19: 209-228.
pmid: 18833333
[8] Kushwaha A, Goswami L, Lee J, Sonne C, Brown R J C, Kim K H. Selenium in soil-microbe-plant systems: Sources, distribution, toxicity, tolerance, and detoxification. Crit Rev Environ Sci Technol, 2021, 52: 2383-2420.
doi: 10.1080/10643389.2021.1883187
[9] Ros G H, van Rottredam A M D, Bussink D W, Bindraban P S. Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil, 2016, 404: 99-112.
doi: 10.1007/s11104-016-2830-4
[10] 雷红量, 丛文宇, 蔡照磊, 米亚赛尔·阿布都赛买提, 赵建云, 王笑鸽, 高国英, 王云奇, 张睿. 植物根系与叶片吸收硒的关键过程及影响因素. 植物营养与肥料学报, 2021, 27: 1456-1467.
Lei H L, Cong W Y, Cai Z L, Miyasser A, Zhao J Y, Wang X G, Gao G Y, Wang Y Q, Zhang R. Main process and factors affecting selenium absorption by plant roots and leaves. J Plant Nutr Fert, 2021, 27: 1456-1467. (in Chinese with English abstract)
[11] Yuan Z Q, Long W X, Liang T, Zhu M H, Zhu A Y, Luo X Y, Fu L, Hu Z L, Zhu R S, Wu X T. Effect of foliar spraying of organic and inorganic selenium fertilizers during different growth stages on selenium accumulation and speciation in rice. Plant Soil, 2022, 486: 87-101.
doi: 10.1007/s11104-022-05567-2
[12] Wang M K, Dinh Q T, Qi M X, Wang M, Yang W X, Zhou F, Liang D L. Radicular and foliar uptake, and xylem- and phloem- mediated transport of selenium in maize (Zea mays L.): a comparison of five Se exogenous species. Plant Soil, 2019, 446: 111-123.
doi: 10.1007/s11104-019-04346-w
[13] Kikkert J, Berkelaar E. Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Con Tox, 2013, 65: 458-465.
doi: 10.1007/s00244-013-9926-0 pmid: 23793939
[14] Wang Q, Yu Y, Li J X, Wan Y N, Huang Q Q, Guo Y B, Li H F. Effects of different forms of selenium fertilizers on Se accumulation, distribution, and residual effect in winter wheat-summer maize rotation system. J Agric Food Chem, 2017, 65: 1116-1123.
doi: 10.1021/acs.jafc.6b05149
[15] 孟俊文, 马海林, 王笑, 卢保红. 山西省甜糯等特用玉米研究进展及发展前景. 山西农业科学, 2020, 48: 110-113.
Meng J W, Ma H L, Wang X, Lu B H. Research progress and development prospect of sweet and waxy maize in Shanxi province. J Shanxi Agric Sci, 2020, 48: 110-113. (in Chinese with English abstract)
[16] Liu D D, Li H, Wang Y Z, Ying Z Z, Bian Z W, Zhu W L, Liu W, Yang L F, Jiang D H. How exogenous selenium affects anthocyanin accumulation and biosynthesis-related gene expression in purple lettuce. Polish J Environ Stud, 2017, 26: 717-722.
doi: 10.15244/pjoes/66707
[17] 胡莹, 黄益宗, 黄艳超, 刘云霞, 梁建宏. 硒对水稻吸收积累和转运锰、铁、磷和硒的影响. 环境科学, 2013, 34: 4119-4125.
Hu Y, Huang Y Z, Huang Y C, Liu Y X, Liang J H. Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.). Environ Sci, 2013, 34: 4119-4125. (in Chinese with English abstract)
[18] Wang J W, Wang Z H, Mao H, Zhao H B, Huang D L. Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crops Res, 2013, 150: 83-90.
doi: 10.1016/j.fcr.2013.06.010
[19] Li Z, Liang D L, Peng Q, Cui Z W, Huang J, Lin Z Q. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review. Geoderma, 2017, 295: 69-79.
doi: 10.1016/j.geoderma.2017.02.019
[20] 中华人民共和国国家卫生和计划生育委员会, 食品安全国家标准: 食品中多元素的测定: GB 5009.268-2016. 北京, 2016.
National Health and Family Planning Commission of the People's Republic of China. National standard for food safety: determination of multiple in food:GB 5009.268-2016. Beijing, 2016. (in Chinese)
[21] 褚宏欣, 牟文燕, 党海燕, 王涛, 孙蕊卿, 侯赛宾, 黄婷苗, 黄倩楠, 石美, 王朝辉. 我国主要麦区小麦籽粒微量元素含量及营养评价. 作物学报, 2022, 48: 2853-2865.
doi: 10.3724/SP.J.1006.2022.11099
Chu H X, Mou W Y, Dang H Y, Wang T, Sun R Q, Hou S B, Huang T M, Huang Q N, Shi M, Wang Z H. Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China. Acta Agron Sin, 2022, 48: 2853-2865. (in Chinese with English abstract)
[22] Bloem E, Haneklaus S, Haensch R, Schnug E. EDTA application on agricultural soils affects microelement uptake of plants. Sci Total Environ, 2017, 577: 166-173.
doi: 10.1016/j.scitotenv.2016.10.153
[23] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析. 作物学报, 2022, 48: 1669-1682.
doi: 10.3724/SP.J.1006.2022.14111
Li J Y, Li H Y, Ye G J, Su W, Sun H H, Wang J. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period. Acta Agron Sin, 2022, 48: 1669-1682. (in Chinese with English abstract)
[24] 鲍士旦, 土壤农化分析(第3版). 北京: 中国农业出版社, 2000.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd. Beijing: China Agriculture Press, 2000. (in Chinese)
[25] Martens D A, Suarez D L. Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environ Sci Technol, 1997, 31: 133-139.
doi: 10.1021/es960214+
[26] 刘慧, 杨月娥, 王朝辉, 李富翠, 李可懿, 杨宁, 王森, 王慧, 何刚, 戴健. 中国不同麦区小麦籽粒硒的含量及调控. 中国农业科学, 2016, 49: 1715-1728.
doi: 10.3864/j.issn.0578-1752.2016.09.008
Liu H, Yang Y E, Wang Z H, Li F C, Li K Y, Yang N, Wang S, Wang H, He G, Dai J. Selenium content of wheat grain and its regulation in different wheat production regions of China. Sci Agric Sin, 2016, 49: 1715-1728. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.09.008
[27] 黄婷苗, 于荣, 王朝辉, 黄冬琳, 王森, 靳静静. 不同硒形态和施硒方式对小麦硒吸收利用的影响及残效. 作物学报, 2022, 48: 1516-1525.
doi: 10.3724/SP.J.1006.2022.11038
Huang T M, Yu R, Wang Z H, Huang D L, Wang S, Jin J J. Effects of different forms and application methods of selenium fertilizers on wheat selenium uptake and utilization and its residual availability. Acta Agron Sin, 2022, 48: 1516-1525. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11038
[28] Schiavon M, Nardi S, Dalla Vecchia F, Ertani A. Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil, 2020, 453: 245-270.
doi: 10.1007/s11104-020-04635-9
[29] Jiang Y, Zeng Z H, Bu Y, Ren C Z, Li J Z, Han J J, Tao C, Zhang K, Wang X X, Lu G X, Li Y J, Hu Y G. Effects of selenium fertilizer on grain yield, Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil Environ, 2015, 61: 371-377.
doi: 10.17221/284/2015-PSE
[30] 蒋曦龙, 乔月彤, 李晓靖, 王澜, 薛燕慧, 夏海勇. 叶面过量施硒对玉米产量、硒和矿质营养元素含量的影响. 核农学报, 2021, 35: 2841-2849.
doi: 10.11869/j.issn.100-8551.2021.12.2841
Jiang X L, Qiao Y T, Li X J, Wang L, Xue Y H, Xia H Y. Effects of foliar spraying of excessive selenium on yields and contents of selenium and mineral elements of maize. J Nucl Agric Sci, 2021, 35: 2841-2849. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2021.12.2841
[31] Prom-u-thai C, Rashid A, Ram H, Zou C Q, Guilherme L R G, Corguinha A P B, Guo S W, Kaur C, Naeem A, Yamuangmorn S, Ashraf M Y, Sohu V S, Zhang Y Q, Martins F A D, Jumrus S, Tutus Y, Yazici M A, Cakmak I. Simultaneous biofortification of rice with zinc, iodine, iron and selenium through foliar treatment of a micronutrient cocktail in five countries. Front Plant Sci, 2020, 11: 589835.
doi: 10.3389/fpls.2020.589835
[32] Zou C Q, Du Y F, Rashid A, Ram H, Savasli E, Pieterse P J, Ortiz-Monasterio I, Yazici A, Kaur C, Mahmood K, Singh S, Le Roux M R, Kuang W, Onder O, Kalayci M, Cakmak I. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J Agric Food Chem, 2019, 67: 8096-8106.
doi: 10.1021/acs.jafc.9b01829
[33] 刘浩, 庞婕, 李欢欢, 强小嫚, 张莹莹, 宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响. 中国农业科学, 2022, 55: 4433-4444.
doi: 10.3864/j.issn.0578-1752.2022.22.009
Liu H, Pang J, Li H H, Qiang X M, Zhang Y Y, Song J W. Effects of Foliar-spraying exogenous selenium coupled with soil moisture on the yield and quality of tomato. Sci Agric Sin, 2022, 55: 4433-4444. (in Chinese with English abstract)
[34] Lyons G. Selenium in cereals: improving the efficiency of agronomic biofortification in the UK. Plant Soil, 2010, 332: 1-4.
doi: 10.1007/s11104-010-0282-9
[35] Newman R, Waterland N, Moon Y, Tou J C. Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention—a review. Plant Food Hum Nutr, 2019, 74: 449-460.
doi: 10.1007/s11130-019-00769-z
[36] Galinha C, Sánchez-Martínez M, Pacheco, A M G, Freitas, M D C, Coutinho J, Maçãs B, Almeida A S, Pérez-Corona M T, Madrid Y, Wolterbeek H T. Characterization of selenium-enriched wheat by agronomic biofortification. J Food Sci Technol, 2015, 52: 4236-4245.
doi: 10.1007/s13197-014-1503-7 pmid: 26139888
[37] Dinh Q T, Wang M K, Tran T A T, Zhou F, Wang D, Zhai H, Peng Q, Xue M Y, Du Z K, Bañuelos G S, Lin Z Q, Liang D L. Bioavailability of selenium in soil-plant system and a regulatory approach. Crit Rev Environ Sci Technol, 2018, 49: 443-517.
doi: 10.1080/10643389.2018.1550987
[38] 胡华锋, 刘太宇, 郭孝, 介晓磊, 胡承孝, 李明, 鲁剑巍, 赵京. 基施硒肥对不同生育期紫花苜蓿吸收、转化及利用硒的影响. 草地学报, 2015, 23: 101-106.
doi: 10.11733/j.issn.1007-0435.2015.01.016
Hu H F, Liu T Y, Guo X, Jie X L, Hu X C, Li M, Lu J W, Zhao J. Effects of Se as basal fertilizer on the selenium absorption, conversion and utilization of Alfalfa at different growth stages. Acta Agrest Sin, 2015, 23: 101-106. (in Chinese with English abstract)
[39] Pu Z E, Wei G H, Liu Z H, Chen L, Guo H, Li Y, Li Y, D S F, Wang J R, Li W, Jiang Q T, Wei Y M, Zheng Y L. Selenium and anthocyanins share the same transcription factors R2R3MYB and bHLH in wheat. Food Chem, 2021, 356: 129699.
doi: 10.1016/j.foodchem.2021.129699
[40] Zhang F J, Li X Y, Wu Q Q, Lu P, Kang Q F, Zhao M Y, Wang A P, Dong Q, Sun M, Yang Z P, Gao Z Q. Selenium application enhances the accumulation of flavones and anthocyanins in bread wheat (Triticum aestivum L.) grains. J Agric Food Chem, 2022, 70: 13431-13444.
doi: 10.1021/acs.jafc.2c04868
[41] Zhao Q Y, Xu S J, Zhang W S, Zhang Z, Yao Z, Chen X P, Zou C Q. Identifying key drivers for geospatial variation of grain micronutrient concentrations in major maize production regions of China. Environ Pollut, 2020, 266: 115114.
doi: 10.1016/j.envpol.2020.115114
[42] Bouis H E, Hotz C, Mcclafferty B, Meenakshi J V, Pfeiffer W H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull, 2014, 32: 202-215.
[43] Xia Q, Yang W P, Shui Y, Liu X L, Chen J, Khan S, Wang J M, Gao Z Q. Methods of selenium application differentially modulate plant growth, selenium accumulation and speciation, protein, anthocyanins and concentrations of mineral elements in purple-grained wheat. Front Plant Sci, 2020, 11: 1114.
doi: 10.3389/fpls.2020.01114 pmid: 32849686
[44] 刘庆, 田侠, 史衍玺. 施硒对小麦籽粒硒富集、转化及蛋白质与矿质元素含量的影响. 作物学报, 2016, 42: 778-783.
doi: 10.3724/SP.J.1006.2016.00778
Liu Q, Tian X, Shi Y X. Effects of Se application on Se accumulation and transformation and content of gross protein and mineral elements in wheat grain. Acta Agron Sin, 2016, 42: 778-783. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00778
[45] Wang L, Gao F, Zhang L G, Zhao L, Deng Y, Guo H X, Qin L X, Wang C Y. Effects of basal selenium fertilizer application on agronomic traits, yield, quality, and Se content of dryland maize. Plants, 2022, 11: 3099.
doi: 10.3390/plants11223099
[46] Zhao Q Y, Cao W Q, Chen X P, Stomph T J, Zou C Q. Global analysis of nitrogen fertilization effects on grain zinc and iron of major cereal crops. Glob Food Secur, 2022, 33: 100631.
doi: 10.1016/j.gfs.2022.100631
[1] 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 王孟, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689.
[2] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995.
[3] 邱杰, 王泰, 蔡博伟, 段圣省, 徐林珊, 陈晓迪, 王晶, 葛贤宏, 李再云. 芸薹属同源异源六倍体(BcBcCcCcCoCo)染色体片段缺失的鉴定及其在色泽形成基因定位中的应用[J]. 作物学报, 2023, 49(11): 2902-2912.
[4] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[5] 黄婷苗, 于荣, 王朝辉, 黄冬琳, 王森, 靳静静. 不同硒形态和施硒方式对小麦硒吸收利用的影响及残效[J]. 作物学报, 2022, 48(6): 1516-1526.
[6] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
[7] 马超, 冯雅岚, 吴姗薇, 张均, 郭彬彬, 熊瑛, 李春霞, 李友军. 鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响[J]. 作物学报, 2022, 48(11): 2826-2839.
[8] 褚宏欣, 牟文燕, 党海燕, 王涛, 孙蕊卿, 侯赛宾, 黄婷苗, 黄倩楠, 石美, 王朝辉. 我国主要麦区小麦籽粒微量元素含量及营养评价[J]. 作物学报, 2022, 48(11): 2853-2865.
[9] 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 .
[10] 徐根娣,葛淑芳,章艺,吴玉环,梅笑漫,刘鹏. 外源水杨酸对Cu胁迫下水培烟草生长及营养元素吸收利用的影响[J]. 作物学报, 2015, 41(06): 956-962.
[11] 张琼予,李军,赵爱春,王茜龄,金筱耘,李镇刚,余茂德. 桑树花青素合酶基因的克隆与信息学分析[J]. 作物学报, 2012, 38(07): 1253-1263.
[12] 王海伟, 王振林, 王平, 王树刚, 黄玮, 武玉国, 孙兰珍, 尹燕枰. 灌浆期遮光对不同粒色小麦籽粒花青素积累与相关酶活性的影响[J]. 作物学报, 2011, 37(06): 1093-1100.
[13] 张英华;周顺利;张凯;王志敏. 源库调节对小麦不同品种籽粒微量元素及蛋白质含量的影响[J]. 作物学报, 2008, 34(09): 1629-1636.
[14] 郝志;田纪春;姜小苓. 小麦主要亲缘种籽粒的Fe、Zn、Cu、Mn含量及其聚类分析[J]. 作物学报, 2007, 33(11): 1834-1839.
[15] 陶汉之;陶迁;程茱萸;都卫星. 外源激素和微量元素对茶籽萌发过程中酶活性影响的研究[J]. 作物学报, 1999, 25(06): 712-717.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .