作物学报 ›› 2023, Vol. 49 ›› Issue (10): 2845-2853.doi: 10.3724/SP.J.1006.2023.33005
黄婷苗(), 詹昕, 陆乃昆, 乔月静, 陈杰, 杨珍平(), 高志强
HUANG Ting-Miao(), ZHAN Xin, LU Nai-Kun, QIAO Yue-Jing, CHEN Jie, YANG Zhen-Ping(), GAO Zhi-Qiang
摘要:
探索黑糯玉米硒吸收利用和籽粒营养品质对叶面喷施有机硒肥的响应, 对生产中合理施用硒肥, 进而支撑山西“特” “优”农业高质量发展具有重要意义。本研究以品种晋鲜糯8号为试验材料, 于2020—2021年连续2年在山西晋中黑糯玉米典型种植区开展田间试验, 设置一次喷施不同用量有机硒0、6和12 g Se hm-2, 以及喷施量12 g Se hm-2条件下分2次喷施, 共4个处理, 研究叶喷有机硒对黑糯玉米产量、硒吸收利用、籽粒花青素和铁锰铜锌含量的影响。结果表明, 喷硒量和喷硒次数对黑糯玉米鲜食期籽粒产量和成熟期地上部各器官干物质量无影响。相比不喷硒, 喷硒可提高鲜食期籽粒和成熟期地上部各器官硒含量、硒积累。喷硒12 g Se hm-2时, 籽粒硒含量达到满足人体硒营养需求的最低目标值100 μg kg-1, 增幅最大, 介于110~181 μg kg-1。成熟期, 植株各器官硒积累从高到低依次为叶片、籽粒、茎秆、苞叶、穗轴。喷硒12 g Se hm-2, 分2次喷施的平均籽粒硒强化指数和籽粒硒回收率分别为6.95 (μg kg-1) (g hm-2) -1和2.4%, 优于1次喷施。同时, 鲜食期籽粒花青素和铁锰锌含量也最高, 2年平均值分别为209、27.9、15.9和22.8 mg kg-1, 但各处理间籽粒铜含量无差异。因此, 兼顾硒吸收利用和籽粒营养品质同步提升, 该区黑糯玉米生产中叶喷有机硒肥用量至少应不低于12 g Se hm-2, 且分2次喷施效果较优。
[1] |
Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics, 2014, 6: 25-54.
doi: 10.1039/c3mt00185g pmid: 24185753 |
[2] |
Graham L. Biofortification of cereals with foliar selenium and iodine could reduce hypothyroidism. Front Plant Sci, 2018, 9: 730.
doi: 10.3389/fpls.2018.00730 pmid: 29951072 |
[3] |
Dinh Q T, Cui Z W, Huang J, Tran T A T, Wang D, Yang W X, Zhou F, Wang M K, Yu D S, Liang D L. Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int, 2018, 112: 294-309.
doi: S0160-4120(17)31741-5 pmid: 29438838 |
[4] |
Hawkesford M J, Zhao F J. Strategies for increasing the selenium content of wheat. J Cereal Sci, 2007, 46: 282-292.
doi: 10.1016/j.jcs.2007.02.006 |
[5] |
Keskinen R, Raty M, Markku Y H. Selenium fractions in selenate-fertilized field soils of Finland. Nutr Cycl Agroecosys, 2011, 91: 17-29.
doi: 10.1007/s10705-011-9435-3 |
[6] |
Shultz C D, Bailey Ryan T, Gates T K, Heesemann B E, Morway E D. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions. J Hydrol, 2018, 560: 512-529.
doi: 10.1016/j.jhydrol.2018.02.027 |
[7] |
Haug A, Graham R D, Christophersen O A, Lyons G H. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis, 2007, 19: 209-228.
pmid: 18833333 |
[8] |
Kushwaha A, Goswami L, Lee J, Sonne C, Brown R J C, Kim K H. Selenium in soil-microbe-plant systems: Sources, distribution, toxicity, tolerance, and detoxification. Crit Rev Environ Sci Technol, 2021, 52: 2383-2420.
doi: 10.1080/10643389.2021.1883187 |
[9] |
Ros G H, van Rottredam A M D, Bussink D W, Bindraban P S. Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil, 2016, 404: 99-112.
doi: 10.1007/s11104-016-2830-4 |
[10] | 雷红量, 丛文宇, 蔡照磊, 米亚赛尔·阿布都赛买提, 赵建云, 王笑鸽, 高国英, 王云奇, 张睿. 植物根系与叶片吸收硒的关键过程及影响因素. 植物营养与肥料学报, 2021, 27: 1456-1467. |
Lei H L, Cong W Y, Cai Z L, Miyasser A, Zhao J Y, Wang X G, Gao G Y, Wang Y Q, Zhang R. Main process and factors affecting selenium absorption by plant roots and leaves. J Plant Nutr Fert, 2021, 27: 1456-1467. (in Chinese with English abstract) | |
[11] |
Yuan Z Q, Long W X, Liang T, Zhu M H, Zhu A Y, Luo X Y, Fu L, Hu Z L, Zhu R S, Wu X T. Effect of foliar spraying of organic and inorganic selenium fertilizers during different growth stages on selenium accumulation and speciation in rice. Plant Soil, 2022, 486: 87-101.
doi: 10.1007/s11104-022-05567-2 |
[12] |
Wang M K, Dinh Q T, Qi M X, Wang M, Yang W X, Zhou F, Liang D L. Radicular and foliar uptake, and xylem- and phloem- mediated transport of selenium in maize (Zea mays L.): a comparison of five Se exogenous species. Plant Soil, 2019, 446: 111-123.
doi: 10.1007/s11104-019-04346-w |
[13] |
Kikkert J, Berkelaar E. Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Con Tox, 2013, 65: 458-465.
doi: 10.1007/s00244-013-9926-0 pmid: 23793939 |
[14] |
Wang Q, Yu Y, Li J X, Wan Y N, Huang Q Q, Guo Y B, Li H F. Effects of different forms of selenium fertilizers on Se accumulation, distribution, and residual effect in winter wheat-summer maize rotation system. J Agric Food Chem, 2017, 65: 1116-1123.
doi: 10.1021/acs.jafc.6b05149 |
[15] | 孟俊文, 马海林, 王笑, 卢保红. 山西省甜糯等特用玉米研究进展及发展前景. 山西农业科学, 2020, 48: 110-113. |
Meng J W, Ma H L, Wang X, Lu B H. Research progress and development prospect of sweet and waxy maize in Shanxi province. J Shanxi Agric Sci, 2020, 48: 110-113. (in Chinese with English abstract) | |
[16] |
Liu D D, Li H, Wang Y Z, Ying Z Z, Bian Z W, Zhu W L, Liu W, Yang L F, Jiang D H. How exogenous selenium affects anthocyanin accumulation and biosynthesis-related gene expression in purple lettuce. Polish J Environ Stud, 2017, 26: 717-722.
doi: 10.15244/pjoes/66707 |
[17] | 胡莹, 黄益宗, 黄艳超, 刘云霞, 梁建宏. 硒对水稻吸收积累和转运锰、铁、磷和硒的影响. 环境科学, 2013, 34: 4119-4125. |
Hu Y, Huang Y Z, Huang Y C, Liu Y X, Liang J H. Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.). Environ Sci, 2013, 34: 4119-4125. (in Chinese with English abstract) | |
[18] |
Wang J W, Wang Z H, Mao H, Zhao H B, Huang D L. Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crops Res, 2013, 150: 83-90.
doi: 10.1016/j.fcr.2013.06.010 |
[19] |
Li Z, Liang D L, Peng Q, Cui Z W, Huang J, Lin Z Q. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review. Geoderma, 2017, 295: 69-79.
doi: 10.1016/j.geoderma.2017.02.019 |
[20] | 中华人民共和国国家卫生和计划生育委员会, 食品安全国家标准: 食品中多元素的测定: GB 5009.268-2016. 北京, 2016. |
National Health and Family Planning Commission of the People's Republic of China. National standard for food safety: determination of multiple in food:GB 5009.268-2016. Beijing, 2016. (in Chinese) | |
[21] |
褚宏欣, 牟文燕, 党海燕, 王涛, 孙蕊卿, 侯赛宾, 黄婷苗, 黄倩楠, 石美, 王朝辉. 我国主要麦区小麦籽粒微量元素含量及营养评价. 作物学报, 2022, 48: 2853-2865.
doi: 10.3724/SP.J.1006.2022.11099 |
Chu H X, Mou W Y, Dang H Y, Wang T, Sun R Q, Hou S B, Huang T M, Huang Q N, Shi M, Wang Z H. Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China. Acta Agron Sin, 2022, 48: 2853-2865. (in Chinese with English abstract) | |
[22] |
Bloem E, Haneklaus S, Haensch R, Schnug E. EDTA application on agricultural soils affects microelement uptake of plants. Sci Total Environ, 2017, 577: 166-173.
doi: 10.1016/j.scitotenv.2016.10.153 |
[23] |
李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析. 作物学报, 2022, 48: 1669-1682.
doi: 10.3724/SP.J.1006.2022.14111 |
Li J Y, Li H Y, Ye G J, Su W, Sun H H, Wang J. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period. Acta Agron Sin, 2022, 48: 1669-1682. (in Chinese with English abstract) | |
[24] | 鲍士旦, 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. |
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd. Beijing: China Agriculture Press, 2000. (in Chinese) | |
[25] |
Martens D A, Suarez D L. Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environ Sci Technol, 1997, 31: 133-139.
doi: 10.1021/es960214+ |
[26] |
刘慧, 杨月娥, 王朝辉, 李富翠, 李可懿, 杨宁, 王森, 王慧, 何刚, 戴健. 中国不同麦区小麦籽粒硒的含量及调控. 中国农业科学, 2016, 49: 1715-1728.
doi: 10.3864/j.issn.0578-1752.2016.09.008 |
Liu H, Yang Y E, Wang Z H, Li F C, Li K Y, Yang N, Wang S, Wang H, He G, Dai J. Selenium content of wheat grain and its regulation in different wheat production regions of China. Sci Agric Sin, 2016, 49: 1715-1728. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.09.008 |
|
[27] |
黄婷苗, 于荣, 王朝辉, 黄冬琳, 王森, 靳静静. 不同硒形态和施硒方式对小麦硒吸收利用的影响及残效. 作物学报, 2022, 48: 1516-1525.
doi: 10.3724/SP.J.1006.2022.11038 |
Huang T M, Yu R, Wang Z H, Huang D L, Wang S, Jin J J. Effects of different forms and application methods of selenium fertilizers on wheat selenium uptake and utilization and its residual availability. Acta Agron Sin, 2022, 48: 1516-1525. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11038 |
|
[28] |
Schiavon M, Nardi S, Dalla Vecchia F, Ertani A. Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil, 2020, 453: 245-270.
doi: 10.1007/s11104-020-04635-9 |
[29] |
Jiang Y, Zeng Z H, Bu Y, Ren C Z, Li J Z, Han J J, Tao C, Zhang K, Wang X X, Lu G X, Li Y J, Hu Y G. Effects of selenium fertilizer on grain yield, Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil Environ, 2015, 61: 371-377.
doi: 10.17221/284/2015-PSE |
[30] |
蒋曦龙, 乔月彤, 李晓靖, 王澜, 薛燕慧, 夏海勇. 叶面过量施硒对玉米产量、硒和矿质营养元素含量的影响. 核农学报, 2021, 35: 2841-2849.
doi: 10.11869/j.issn.100-8551.2021.12.2841 |
Jiang X L, Qiao Y T, Li X J, Wang L, Xue Y H, Xia H Y. Effects of foliar spraying of excessive selenium on yields and contents of selenium and mineral elements of maize. J Nucl Agric Sci, 2021, 35: 2841-2849. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2021.12.2841 |
|
[31] |
Prom-u-thai C, Rashid A, Ram H, Zou C Q, Guilherme L R G, Corguinha A P B, Guo S W, Kaur C, Naeem A, Yamuangmorn S, Ashraf M Y, Sohu V S, Zhang Y Q, Martins F A D, Jumrus S, Tutus Y, Yazici M A, Cakmak I. Simultaneous biofortification of rice with zinc, iodine, iron and selenium through foliar treatment of a micronutrient cocktail in five countries. Front Plant Sci, 2020, 11: 589835.
doi: 10.3389/fpls.2020.589835 |
[32] |
Zou C Q, Du Y F, Rashid A, Ram H, Savasli E, Pieterse P J, Ortiz-Monasterio I, Yazici A, Kaur C, Mahmood K, Singh S, Le Roux M R, Kuang W, Onder O, Kalayci M, Cakmak I. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J Agric Food Chem, 2019, 67: 8096-8106.
doi: 10.1021/acs.jafc.9b01829 |
[33] |
刘浩, 庞婕, 李欢欢, 强小嫚, 张莹莹, 宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响. 中国农业科学, 2022, 55: 4433-4444.
doi: 10.3864/j.issn.0578-1752.2022.22.009 |
Liu H, Pang J, Li H H, Qiang X M, Zhang Y Y, Song J W. Effects of Foliar-spraying exogenous selenium coupled with soil moisture on the yield and quality of tomato. Sci Agric Sin, 2022, 55: 4433-4444. (in Chinese with English abstract) | |
[34] |
Lyons G. Selenium in cereals: improving the efficiency of agronomic biofortification in the UK. Plant Soil, 2010, 332: 1-4.
doi: 10.1007/s11104-010-0282-9 |
[35] |
Newman R, Waterland N, Moon Y, Tou J C. Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention—a review. Plant Food Hum Nutr, 2019, 74: 449-460.
doi: 10.1007/s11130-019-00769-z |
[36] |
Galinha C, Sánchez-Martínez M, Pacheco, A M G, Freitas, M D C, Coutinho J, Maçãs B, Almeida A S, Pérez-Corona M T, Madrid Y, Wolterbeek H T. Characterization of selenium-enriched wheat by agronomic biofortification. J Food Sci Technol, 2015, 52: 4236-4245.
doi: 10.1007/s13197-014-1503-7 pmid: 26139888 |
[37] |
Dinh Q T, Wang M K, Tran T A T, Zhou F, Wang D, Zhai H, Peng Q, Xue M Y, Du Z K, Bañuelos G S, Lin Z Q, Liang D L. Bioavailability of selenium in soil-plant system and a regulatory approach. Crit Rev Environ Sci Technol, 2018, 49: 443-517.
doi: 10.1080/10643389.2018.1550987 |
[38] |
胡华锋, 刘太宇, 郭孝, 介晓磊, 胡承孝, 李明, 鲁剑巍, 赵京. 基施硒肥对不同生育期紫花苜蓿吸收、转化及利用硒的影响. 草地学报, 2015, 23: 101-106.
doi: 10.11733/j.issn.1007-0435.2015.01.016 |
Hu H F, Liu T Y, Guo X, Jie X L, Hu X C, Li M, Lu J W, Zhao J. Effects of Se as basal fertilizer on the selenium absorption, conversion and utilization of Alfalfa at different growth stages. Acta Agrest Sin, 2015, 23: 101-106. (in Chinese with English abstract) | |
[39] |
Pu Z E, Wei G H, Liu Z H, Chen L, Guo H, Li Y, Li Y, D S F, Wang J R, Li W, Jiang Q T, Wei Y M, Zheng Y L. Selenium and anthocyanins share the same transcription factors R2R3MYB and bHLH in wheat. Food Chem, 2021, 356: 129699.
doi: 10.1016/j.foodchem.2021.129699 |
[40] |
Zhang F J, Li X Y, Wu Q Q, Lu P, Kang Q F, Zhao M Y, Wang A P, Dong Q, Sun M, Yang Z P, Gao Z Q. Selenium application enhances the accumulation of flavones and anthocyanins in bread wheat (Triticum aestivum L.) grains. J Agric Food Chem, 2022, 70: 13431-13444.
doi: 10.1021/acs.jafc.2c04868 |
[41] |
Zhao Q Y, Xu S J, Zhang W S, Zhang Z, Yao Z, Chen X P, Zou C Q. Identifying key drivers for geospatial variation of grain micronutrient concentrations in major maize production regions of China. Environ Pollut, 2020, 266: 115114.
doi: 10.1016/j.envpol.2020.115114 |
[42] | Bouis H E, Hotz C, Mcclafferty B, Meenakshi J V, Pfeiffer W H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull, 2014, 32: 202-215. |
[43] |
Xia Q, Yang W P, Shui Y, Liu X L, Chen J, Khan S, Wang J M, Gao Z Q. Methods of selenium application differentially modulate plant growth, selenium accumulation and speciation, protein, anthocyanins and concentrations of mineral elements in purple-grained wheat. Front Plant Sci, 2020, 11: 1114.
doi: 10.3389/fpls.2020.01114 pmid: 32849686 |
[44] |
刘庆, 田侠, 史衍玺. 施硒对小麦籽粒硒富集、转化及蛋白质与矿质元素含量的影响. 作物学报, 2016, 42: 778-783.
doi: 10.3724/SP.J.1006.2016.00778 |
Liu Q, Tian X, Shi Y X. Effects of Se application on Se accumulation and transformation and content of gross protein and mineral elements in wheat grain. Acta Agron Sin, 2016, 42: 778-783. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00778 |
|
[45] |
Wang L, Gao F, Zhang L G, Zhao L, Deng Y, Guo H X, Qin L X, Wang C Y. Effects of basal selenium fertilizer application on agronomic traits, yield, quality, and Se content of dryland maize. Plants, 2022, 11: 3099.
doi: 10.3390/plants11223099 |
[46] |
Zhao Q Y, Cao W Q, Chen X P, Stomph T J, Zou C Q. Global analysis of nitrogen fertilization effects on grain zinc and iron of major cereal crops. Glob Food Secur, 2022, 33: 100631.
doi: 10.1016/j.gfs.2022.100631 |
[1] | 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 王孟, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689. |
[2] | 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995. |
[3] | 邱杰, 王泰, 蔡博伟, 段圣省, 徐林珊, 陈晓迪, 王晶, 葛贤宏, 李再云. 芸薹属同源异源六倍体(BcBcCcCcCoCo)染色体片段缺失的鉴定及其在色泽形成基因定位中的应用[J]. 作物学报, 2023, 49(11): 2902-2912. |
[4] | 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682. |
[5] | 黄婷苗, 于荣, 王朝辉, 黄冬琳, 王森, 靳静静. 不同硒形态和施硒方式对小麦硒吸收利用的影响及残效[J]. 作物学报, 2022, 48(6): 1516-1526. |
[6] | 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812. |
[7] | 马超, 冯雅岚, 吴姗薇, 张均, 郭彬彬, 熊瑛, 李春霞, 李友军. 鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响[J]. 作物学报, 2022, 48(11): 2826-2839. |
[8] | 褚宏欣, 牟文燕, 党海燕, 王涛, 孙蕊卿, 侯赛宾, 黄婷苗, 黄倩楠, 石美, 王朝辉. 我国主要麦区小麦籽粒微量元素含量及营养评价[J]. 作物学报, 2022, 48(11): 2853-2865. |
[9] | 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 . |
[10] | 徐根娣,葛淑芳,章艺,吴玉环,梅笑漫,刘鹏. 外源水杨酸对Cu胁迫下水培烟草生长及营养元素吸收利用的影响[J]. 作物学报, 2015, 41(06): 956-962. |
[11] | 张琼予,李军,赵爱春,王茜龄,金筱耘,李镇刚,余茂德. 桑树花青素合酶基因的克隆与信息学分析[J]. 作物学报, 2012, 38(07): 1253-1263. |
[12] | 王海伟, 王振林, 王平, 王树刚, 黄玮, 武玉国, 孙兰珍, 尹燕枰. 灌浆期遮光对不同粒色小麦籽粒花青素积累与相关酶活性的影响[J]. 作物学报, 2011, 37(06): 1093-1100. |
[13] | 张英华;周顺利;张凯;王志敏. 源库调节对小麦不同品种籽粒微量元素及蛋白质含量的影响[J]. 作物学报, 2008, 34(09): 1629-1636. |
[14] | 郝志;田纪春;姜小苓. 小麦主要亲缘种籽粒的Fe、Zn、Cu、Mn含量及其聚类分析[J]. 作物学报, 2007, 33(11): 1834-1839. |
[15] | 陶汉之;陶迁;程茱萸;都卫星. 外源激素和微量元素对茶籽萌发过程中酶活性影响的研究[J]. 作物学报, 1999, 25(06): 712-717. |
|