欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2853-2865.doi: 10.3724/SP.J.1006.2022.11099

• 耕作栽培·生理生化 • 上一篇    下一篇

我国主要麦区小麦籽粒微量元素含量及营养评价

褚宏欣1(), 牟文燕1, 党海燕1, 王涛1, 孙蕊卿1, 侯赛宾1, 黄婷苗1,3, 黄倩楠1,4, 石美1, 王朝辉1,2,*()   

  1. 1西北农林科技大学资源环境学院 / 农业农村部西北植物营养与农业环境重点实验室, 陕西杨凌 712100
    2西北农林科技大学 / 旱区作物逆境生物学国家重点实验室, 陕西杨凌 712100
    3山西农业大学农学院, 山西太谷 030801
    4伊犁州农业科学研究所, 新疆伊宁 835000
  • 收稿日期:2021-11-12 接受日期:2022-02-25 出版日期:2022-11-12 网络出版日期:2022-03-16
  • 通讯作者: 王朝辉
  • 作者简介:第一作者联系方式: E-mail: 1447993659@qq.com
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-3);国家重点研发计划项目(2018YFD0200400)

Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China

CHU Hong-Xin1(), MU Wen-Yan1, DANG Hai-Yan1, WANG Tao1, SUN Rui-Qing1, HOU Sai-Bin1, HUANG Ting-Miao1,3, HUANG Qian-Nan1,4, SHI Mei1, WANG Zhao-Hui1,2,*()   

  1. 1College of Natural Resources and Environment, Northwest A&F University / Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
    2State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
    3College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    4Yili Institute of Agricultural Science, Yining 835000, Xinjiang, China
  • Received:2021-11-12 Accepted:2022-02-25 Published:2022-11-12 Published online:2022-03-16
  • Contact: WANG Zhao-Hui
  • Supported by:
    The China Agriculture Research System of MOF and MARA(CARS-3);The National Key Research and Development Program of China(2018YFD0200400)

摘要:

小麦是重要的粮食作物, 其微量元素含量高低直接影响人体健康。明确我国主要麦区小麦籽粒微量元素含量水平, 对优化小麦微量元素营养品质, 保障居民营养健康有重要意义。于2016—2020年, 在我国17个小麦主产省区采集分析了1112份小麦及土壤样品, 参考《中国营养学会人体微量元素摄入标准》和美国环境保护署健康风险评估方法, 结合我国居民饮食特点, 推荐了小麦籽粒微量元素适宜含量范围, 并以此评价了我国小麦的微量元素营养状况。研究发现, 我国小麦籽粒铁含量平均为43.8 mg kg-1, 72.9%样本低于铁的推荐量下限50 mg kg-1, 所有样本铁含量均低于推荐量上限140 mg kg-1; 籽粒锰含量平均为43.0 mg kg-1, 仅4.1%样本低于推荐锰含量下限22 mg kg-1, 但23.7%样本高于推荐上限值50 mg kg-1; 籽粒铜含量平均为4.6 mg kg-1, 7.6%样本低于推荐量下限3 mg kg-1, 所有样本铜含量均低于推荐量上限10 mg kg-1; 籽粒锌含量平均为31.4 mg kg-1, 85.8%的样本低于推荐量下限40 mg kg-1, 仅4.1%样本高于50 mg kg-1的推荐量上限; 籽粒硼含量平均为1.2 mg kg-1, 低于推荐量下限0.8 mg kg-1的样本占29.2%, 所有样本均低于推荐值上限10 mg kg-1; 籽粒钼含量平均为0.5 mg kg-1, 18.8%的样本钼含量低于推荐量下限0.2 mg kg-1, 仅有0.4%样本钼含量高于推荐值上限2 mg kg-1。我国小麦籽粒微量元素含量也存在区域间变异, 其中, 铁、锌含量普遍偏低, 部分地区硼、钼含量不足, 而锰含量偏高, 铜含量基本在推荐范围内。

关键词: 小麦, 微量元素, 铁含量, 锌含量, 营养

Abstract:

Wheat is a kind of staple food crop, and an important source for carbohydrates and microelement for human health. Therefore, it is of great significance to clarify the micronutrient concentration and nutritional status of wheat grain in the major wheat production regions in China, for the purpose of optimizing wheat micronutrient management and maintaining human health. Totally, 1112 wheat and soil samples were collected from 17 major wheat production provinces in China during 2016 to 2020. Microelement concentrations of the samples were determined and nutritional status was evaluated by comparison with the acceptable daily intake value (ADI) according to the human micronutrient intake standard of Chinese Nutrition Society and health risk assessment method of United States Environmental Protection Agency, as well as the dietary habit of Chinese residents. Results showed that the average grain iron (Fe) concentration of wheat in China was 43.8 mg kg-1 when 72.9% of the samples of Fe concentration was under the lower Fe limit of 50 mg kg-1, and all the samples were under the upper limit of 140 mg kg-1. The average grain manganese (Mn) concentration was 43.0 mg kg-1 when only 4.1% of samples were under the lower limit of 22 mg kg-1 and 23.7% of samples were above the upper limit of 50 mg kg-1. The average grain copper (Cu) concentration was 4.6 mg kg-1 when 7.6% of samples were under the lower limit of 3 mg kg-1 and no sample was above the upper limit of 10 mg kg-1. The average grain zinc (Zn) concentration was 31.4 mg kg-1 when 85.8% of samples were under the lower limit of 40 mg kg-1 and only 4.1% was above the upper limit of 50 mg kg-1. The average grain boron (B) concentration was 1.2 mg kg-1 when 29.2% of samples was under the lower limit of 0.8 mg kg-1 and no sample was above the upper limit of 10 mg kg-1. The average grain molybdenum (Mo) concentration was 0.5 mg kg-1 when 18.8% of samples were under the lower limit of 0.2 mg kg-1 and only 0.4% of samples was above the upper limit of 2 mg kg-1. There were regional variations in the contents of wheat grain micronutrient in major wheat production regions in China, among which the contents of Fe and Zn were generally low in most regions, and the contents of B and Mo were insufficient in some areas, while the content of Mn was high, and the content of Cu was basically in the recommended concentration ranges.

Key words: wheat, microelements, iron concentration, zinc concentration, nutrition

图1

我国主要麦区小麦籽粒铁含量频率和区域分布图(2016-2020年采样)"

表1

我国主要麦区0~20 cm土层土壤理化性质"

区域
Region
pH 有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
铵态氮
Ammonium N
(mg kg-1)
硝态氮
Nitrate N
(mg kg-1)
有效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
北部麦区NWR 8.3±0.4 a 19.4±6.0 c 1.1±0.3 d 3.2±2.0 cd 29.0±44.4 a 30.9±23.1 b 189.4±96.6 b
东北麦区NEWR 6.5±0.4 d 37.7±9.9 a 1.9±0.4 a 5.4±1.8 bc 12.1±12.5 b 52.0±18.2 a 249.2±67.7 a
黄淮麦区HWR 7.5±3.3 b 20.7±7.3 c 1.2±0.4 c 5.9±9.8 b 25.5±28.7 a 35.2±25.7 b 195.3±113.4 b
西北麦区NWWR 8.3±0.3 a 14.8±3.8 d 0.9±0.2 e 2.3±1.7 d 27.8±64.6 a 23.2±17.2 d 192.3±69.5 b
西南麦区SWWR 7.1±0.9 c 24.6±13.0 b 1.4±0.6 b 5.8±5.2 b 14.4±16.9 b 24.6±27.7 cd 145.2±72.1 c
新疆麦区XWR 8.4±0.5 a 17.8±4.2 cd 1.0±0.3 de 2.7±1.8 cd 12.3±8.1 b 37.4±27.7 b 164.2±88.3 bc
长江中下游麦区YRWC 6.6±1.0 d 25.3±8.9 b 1.4±0.5 b 10.0±11.2 a 17.4±20.6 b 29.3±20.1 bc 163.1±71.6 c

表2

我国主要麦区0~20 cm土层土壤微量元素含量"

区域
Region
有效铁
Available
Fe
有效锰 Available
Mn
有效铜 Available
Cu
有效锌Available
Zn
有效硼 Available
B
有效钼 Available
Mo
北部麦区 Northern Wheat Region 7.8±3.6 d 10.0±4.3 d 1.3±0.7 d 1.6±1.1 a 0.69 0.14
东北麦区Northeastern Wheat Region 75.8±48.4 b 30.7±16.2 b 1.7±0.3 c 0.8±0.3 b 0.38 0.30
黄淮麦区Huanghuai Wheat Region 41.4±66.8 c 23.0±27.6 c 1.8±1.1 c 1.7±1.9 a 0.37 0.08
西北麦区Northwestern Wheat Region 7.3±6.6 d 7.6±3.0 d 1.1±0.6 d 0.7±0.5 b 0.63 0.20
西南麦区Southwestern Wheat Region 72.9±70.5 b 24.2±21.3 bc 2.7±2.1 b 1.6±1.5 a 0.27 0.19
新疆麦区Xinjiang Wheat Region 11.9±6.3 cd 9.4±6.3 d 1.4±0.6 cd 0.6±0.3 b 2.59 0.24
长江中下游麦区 YRWC 131.2±104.2 a 40.5±32.8 a 3.3±1.5 a 1.8±.2.2 a 0.32 0.08

图2

我国主要麦区小麦籽粒锰含量频率和区域分布图(2016-2020年采样)"

图3

我国主要小麦产区小麦籽粒铜含量频率和区域分布图(2016-2020年采样)"

图4

我国主要麦区小麦籽粒锌含量频率和区域分布图(2016-2020年采样)"

图5

我国主要麦区小麦籽粒硼含量频率和区域分布图(2016-2020年采样)"

图6

我国主要麦区小麦籽粒钼含量频率和区域分布图(2016-2020年采样)"

[1] WFP. The state of food security and nutrition in the world. 2020. https://www.wfp.org/publications/state-food-security-and-nutrition-world-sofi-report-2020.
[2] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2021. (in Chinese)
[3] Muthayya S, Rah J H, Sugimoto J D, Roos F F, Black R E. The global hidden hunger indices and maps: an advocacy tool for action. PLoS One, 2013, 8: e67860.
doi: 10.1371/journal.pone.0067860
[4] Mertz W, Underwood E J. Trace elements in human and animal nutrition. Soil Sci, 1986, 82: 287.
doi: 10.1097/00010694-195610000-00004
[5] 倪宗瓒. 卫生统计学. 北京: 人民卫生出版社, 2000. pp 128-145.
Ni Z Z. Health Statistics. Beijing: People’s Medical Publishing House, 2000. pp 128-145. (in Chinese)
[6] WHO. Guidelines on Food Fortification with Micronutrients. France: WHO Library Cataloguing-in-Publication Data, 2006. pp 139-142.
[7] Bouis H E, Welch R M. Biofortification: a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci, 2010, 50: 20-30.
[8] Liu H, Wang Z H, Li F C, Li K Y, Yang N, Yang Y E, Huang D L, Liang D L, Zhao H B, Mao H, Liu J S, Qiu W H. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Res, 2014, 156: 151-160.
doi: 10.1016/j.fcr.2013.11.011
[9] 周晓雨. 我国铁营养强化小麦的适宜强化水平研究. 中国农业科学院研究生院硕士学位论文, 北京 2019.
Zhou X Y. Study on the Appropriate Fortification Level of Iron-biofortificad wheat in China. MS Thesis of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2009. (in Chinese with English abstract)
[10] Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil, 2007, 302: 1-17.
doi: 10.1007/s11104-007-9466-3
[11] Shi M, Hou S B, Sun Y Y, Dang H Y, Song Q, Jiang L G, Cao W, Wang H L, He X H, Wang Z H. Regional wheat grain manganese and its potential risks affected by soil pH and precipitation. J Clean Prod, 2020, 264: 121677.
doi: 10.1016/j.jclepro.2020.121677
[12] USEPA. Environmental Protection Agency, Region 9, Preliminary remediation goals, 2012. http://www.epa.gov/region9/superfund/prg/.
[13] 刘慧, 王朝辉, 李富翠, 李可懿, 杨宁, 杨月娥. 不同麦区小麦籽粒蛋白质与氨基酸含量及评价. 作物学报, 2016, 42: 768-777.
doi: 10.3724/SP.J.1006.2016.00768
Liu H, Wang Z H, Li F C, Li K Y, Yang N, Yang Y E. Contents of protein and amino acids of wheat grain in different wheat pro-duction regions and their evaluation. Acta Agron Sin, 2016, 42: 768-777. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00768
[14] 刘铮. 中国土壤微量元素. 南京: 江苏科学技术出版社, 1996. pp 25-298.
Liu Z. Microelements in Soils of China. Nanjing: Phoenix Science Press, 1996. pp 25-298. (in Chinese)
[15] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. pp 945-970.
Nationwide Soil Survey Office. Chinese Soil. Beijing: China Agriculture Press, 1998. pp 945-970. (in Chinese)
[16] 邹春琴, 张福锁. 中国土壤-作物中微量元素研究现状和展望. 北京: 中国农业大学出版社, 2009. pp 156-186.
Zou C Q, Zhang F S. Current Status and Prospects of Research on Trace Elements in Soils and Crops in China. Beijing: China Agricultural University Press, 2009. pp 156-186. (in Chinese)
[17] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53: 81-93.
Huang N, Wang Z H, Wang L, Ma Q X, Zhang Y Y, Zhang X X, Wang R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Sci Agric Sin, 2020, 53: 81-93. (in Chinese with English abstract)
[18] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. (in Chinese)
[19] FAO. Date-Faostat-Food Supply-Crops Primary Equivalent, 2013. .
[20] USEPA.Electronic code of federal regulations, title 40-protection of environment, Part 423d steam electric power generating point source category. Appendix a to Part423-126. Priority Pollution, 2013. .
[21] Liu Y M, Liu D Y, Zhang W, Chen X X, Zhao Q Y, Chen X P, Zou C Q. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, as and Cr) in wheat grain receiving repeated Zn fertilizers. Environ Pollut, 2019, 257: 113581.
doi: 10.1016/j.envpol.2019.113581
[22] 国家卫生计生委疾病预防控制局. 中国居民营养与慢性病状况报告. 北京: 人民卫生出版社, 2015. pp 6-9.
National Health and Family Planning Commission Disease Prevention and Control Bureau. Report on the Status of Nutrition and Chronic Diseases of Chinese Residents. Beijing: People’s Medical Publishing House, 2015. pp 6-9. (in Chinese)
[23] USEPA. Environmental protection agency, region 3, Risk-Based concentration table: technical background information. Unites states environmental protection agency. Washington, DC, 2006. https://www.epa.gov/iris.
[24] 王晓曦, 贾爱霞, 于中利. 不同出粉率小麦粉的品质特性及营养组分研究. 中国粮油学报, 2012, 27(1): 6-9.
Wang X X, Jia A X, Yu Z L. Study on wheatmeal quality characteristic and nutritive composition of different flour yield. J Chin Cer Oils Associa, 2012, 27(1): 6-9 (in Chinese with English abstract).
[25] Ma G S, Ying J, Jin Y, Li Y P, Zhai F Y, Kok F J, Jacobsen E, Yang X G. Iron and zinc deficiencies in China: what is a feasible and cost-effective strategy? Public Health Nutr, 2008, 11: 632-638.
doi: 10.1017/S1368980007001085
[26] Zhang Y, Song Q C, Yan J, Tang J, Zhao R, Zhang Y, He Z, Zou C. Ortiz-monasterio: I. Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica, 2010, 174: 303-313.
doi: 10.1007/s10681-009-0082-6
[27] 钟立人. 食品科学与工艺原理. 北京: 中国轻工业出版社, 1999. pp 66-75.
Zhong L R. Principles of Food Science and Technology. Beijing: China Light Industry Press, 1999. pp 66-75. (in Chinese)
[28] Du S S, Wu X Y, Han T S, Duan W, Liu L, Qi J Y, Niu Y C, Na L X, Sun C H. Dietary manganese and type 2 diabetes mellitus: two prospective cohort studies in China. Diabetologia, 2018, 61:1985-1995.
doi: 10.1007/s00125-018-4674-3
[29] Zhou B, Su X, Su D, Zeng F, Wang M H, Huang L, Huang E, Zhu Y, Zhao D, He D. Dietary intake of manganese and the risk of the metabolic syndrome in a Chinese population. Brut J Nutr, 2016, 116: 853-863.
[30] 王建武, 刘新花, 杨永亮. 麦麸中微量元素特征. 微量元素与健康研究, 2013, 30: 32-33.
Wang J W, Liu X H, Yang Y L. Analysis of trace elements in several flours. Stud Trace Elem Heath, 2013, 30: 32-33. (in Chinese with English abstract)
[31] 张磊. 中国不同性别-年龄组人群铅、镉、砷、铜的膳食摄入量研究. 中国疾病预防控制中心硕士学位论文, 北京, 2003.
Zhang L. Study on Dietary Intake of Lead, Cadmium, Arsenic, and Copper Among Different Sex-Age Groups in China. MS Thesis of Graduate School of Chinese Center for Disease Control and Prevention, Beijing, China, 2003. (in Chinese with English abstract)
[32] Eagling T, Neal A L, Mcgrath S P, Fairweathertait S, Shewry P R, Zhao F. Distribution and speciation of iron and zinc in grain of two wheat genotypes. J Agric Food Chem, 2014, 62: 708-716.
doi: 10.1021/jf403331p
[33] Liu D, Liu Y, Zhang W, Chen X, Zou C. Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients, 2017, 9: 465.
doi: 10.3390/nu9050465
[34] 宋筱瑜, 李凤琴, 刘兆平, 张磊, 朱江辉, 严卫星, 李宁, 陈君石. 中国12省市部分食品中硼本底含量调查及居民摄入量初估. 卫生研究, 2011, 40: 431-433.
Song X Y, Li F Q, Liu Z P, Zhang L, Zhu J H, Yan W X, Li N, Chen J S. Boron background value survey of some foodstuffs in 12 provinces of China and boron primary intake estimation of Chinese. J Hygiene Rese, 2011, 40: 431-433. (in Chinese with English abstract)
[35] 杨俊, 汤璐, 张琳琳, 刘芳芳, 赖晓芳. 食品中钼的测定和深圳居民钼摄入量评估. 食品工业, 2016, 37(10): 278-280.
Yang J, Tang L, Zhang L L, Liu F F, Lai X F. Determination of molybdenum content in food and assessment of dietary molybdenum intake of inhabitant in Shenzhen. Food Ind, 2016, 37(10): 278-280. (in Chinese with English abstract)
[36] 张勇, 王德森, 张艳, 何中虎. 北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析. 中国农业科学, 2007, 9: 1871-1876.
Zhang Y, Wang D S, He Z H, Variation of major mineral elements concentration and their relationships in grain of Chinese wheat. Sci Agric Sin, 2007, 9: 1871-1876 (in Chinese with English abstract).
[37] Mahin K, Majid A, Hossin K A, Andreas P, Rainer S. Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables. J Agric Food Chem, 2009, 57: 10876-10882.
doi: 10.1021/jf902074f
[38] Graham R D, Senadhira D, Ortiz-monasterio I. A strategy for breeding staple-food crops with high micronutrient density. Soil Sci Plant Nutr, 1997, 43: 1153-1157.
doi: 10.1080/00380768.1997.11863734
[39] Ida J, Inara K, Kantāne, Sanita Z, Inga J, Vadims B, Macro-elements and trace elements in cereal grains cultivated in Latvia. Pro Latvian Aca Sci, 2015, 69: 152-157.
[40] Szira F, Monostori I, Galiba G, Rakszegi M, Balint A F. Micronutrient contents and nutritional values of commercial wheat flours and flours of field-grown wheat varieties- a survey in hungary. Cereal Res Commun, 2014, 42: 293-302.
doi: 10.1556/CRC.2013.0059
[41] Li B Y, Huang S M, Wei M B, Zhang H L, Shen A L, Xu J M, Ruan X L. Dynamics of soil and grain micronutrients as affected by long-term fertilization in an aquic inceptisol. Pedosphere, 2010, 20: 725-735.
doi: 10.1016/S1002-0160(10)60063-X
[42] Oury F X, Leenhardt F, Remesy C, Chanliaud E, Duperrier B, Balfourier F, Charmet G. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur J Agron, 2006, 25: 177-185.
doi: 10.1016/j.eja.2006.04.011
[43] Karami M, Afyuni M, Khoshgoftarmanesh A H, Papritz A, Schulin R. Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables. J Agric Food Chem, 2009, 57: 10876-10882.
doi: 10.1021/jf902074f
[44] Svecnjak Z, Jenel M, Bujan M, Vitali D, Dragojevic I V. Trace element concentrations in the grain of wheat cultivars as affected by nitrogen fertilization. Agric Food Sci, 2015, 22: 445-451.
[45] 丁汉凤, 谢连杰, 李娜娜, 王海云, 裴艳婷. 山东省近60年主推冬小麦微量矿质元素变化. 江苏农业科学, 2020, 48(15): 138-143.
Ding H F, Xie L J, Li N N, Wang H Y, Pei Y T. Study on trace mineral elements change of main push winter wheat in Shandong province in recent 60 years. Jiangsu Agric Sci 2020, 48(15): 138-143. (in Chinese with English abstract)
[46] 郭明慧, 裴自友, 温辉芹, 王仕稳, 辻本壽. 普通小麦品种籽粒矿质元素含量分析. 中国农学通报, 2011, 27(18): 41-44.
Guo M H, Pei Z Y, Wen H Q, Wang S W, Tsujimoto H. Mineral elements concentration analysis on major wheat cultivars. Chin Agric Sci Bull, 2011, 27(18): 41-44 (in Chinese with English abstract).
[47] 姜丽娜, 蒿宝珍, 张黛静, 邵云, 李春喜. 小麦籽粒Zn、Fe、Mn、Cu含量的基因型和环境差异及与产量关系的研究. 中国生态农业学报, 2010, 18: 982-987.
Jiang L N, Hao B Z, Zhang D J, Shao Y, Li C X. Genotypic and environmental differences in grain contents of Zn, Fe, Mn and Cu and how they relate to wheat yield. Chin J Eco-Agric, 2010, 18: 982-987. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00982
[48] Ayoubi S, Mehnatkesh A, Jalalian A, Sahrawat K L, Gheysari M. Relationships between grain protein, Zn, Cu, Fe and Mn contents in wheat and soil and topographic attributes. Arch Agron Soil Sci, 2014, 60: 625-638.
doi: 10.1080/03650340.2013.825899
[49] 刘鑫, 朱端卫, 雷宏军, 耿明建, 周文兵. 酸性土壤活性锰与pH、Eh关系及其生物反应. 植物营养与肥料学报, 2003, 9: 317-323.
Liu X, Zhu D W, Lei H J, Geng M J, Zhou W B. Dynamic relationship between soil active Mn and pH, Eh in acid soils and its biological response. Plant Nutr Fert Sci, 2003, 9: 317-323. (in Chinese with English abstract)
[50] Krauss M, Wilcke W, Kobza J, Zech W. Predicting heavy metal transfer from soil to plant: potential use of Freundlich-type functions. J Plant Nutr Soil Sci, 2015, 165: 3-8.
doi: 10.1002/1522-2624(200202)165:1<3::AID-JPLN3>3.0.CO;2-B
[51] Murphy K M, Reeves P G, Jones S S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica, 2008, 163: 381-390.
doi: 10.1007/s10681-008-9681-x
[52] 党红凯, 李瑞奇, 李雁鸣, 张馨文, 孙亚辉. 超高产冬小麦四种微量元素的积累及其与产量性状的关系. 麦类作物学报, 2012, 32: 326-332.
Dang H K, Li R Q, Li Y M, Zhang X W, Sun Y H. Accumulation of four microelements and their relationship with yield traits in super high-yield winter wheat. J Triticeae Crops, 2012, 32: 326-332. (in Chinese with English abstract)
[53] 李可懿. 黄土高原旱地与豆科绿肥轮作和施氮对小麦产量及籽粒矿质养分的影响及其土壤学机制. 西北农林科技大学硕士学位论文, 陕西杨凌, 2011.
Li K Y. Effects of Rotation with Legume and Nitrogen Application on Yield and Mineral Nutrition of Wheat Grain and Its Soil Mechanism on Dryland of the Loess Plateau. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2011. (in Chinese with English abstract)
[54] Rawashdeh H M, Sala F. Effect of some micronutrients on growth and yield of wheat and its leaves and grain content of iron and boron. Bull Univ Agric Sci Veter, 2015, 72: 503-508.
[55] Waniewski S, Kaniuczak J, Hajduk E, Nazarkiewicz M. Effect of mineral fertilization on the yield, boron content and bioaccumulation factor in grain of cereals. J Elementol, 2019, 24: 1047-1061.
[56] Irmak S, Vapur H. Correlation between boron contents of soils and wheat plants (Triticum spp.) in the Cukurova Plain in Turkey. Asian J Chem, 2009, 21: 2615-2624.
[57] Rerkasem B, Jamjod S. Boron deficiency in wheat: a review. Field Crops Res, 2004, 89: 173-186.
doi: 10.1016/j.fcr.2004.01.022
[58] 胡承孝, 王运华, 庞静, 陈浩, 魏文学. 冬小麦不同生育阶段对钼的吸收和积累. 华中农业大学学报, 2001, 20: 350-353.
Hu C X, Wang Y H, Pang J, Chen H, Wei W X, Study on molybdenum absorption and accumulation of winter wheat at different stages. J Huazhong Agric Univ, 2001, 20: 350-353. (in Chinese with English abstract)
[59] Keshavarzi B, Moore F, Ansari M, Mehr M R, Kaabi H, Kermani M. Macronutrients and trace metals in soil and food crops of Isfahan province, Iran. Environ Monit Assess, 2015, 187: 4113.
doi: 10.1007/s10661-014-4113-y pmid: 25416129
[60] Huang M, Zhou S, Bo S, Zhao Q. Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. Sci Total Environ 2008, 405: 54-61.
doi: 10.1016/j.scitotenv.2008.07.004
[61] Zeng X, Wang Z, Wang J, Guo J, Zhuang J. Health risk assessment of heavy metals via dietary intake of wheat grown in Tianjin sewage irrigation area. Ecotoxicology, 2015, 24: 2115-2124.
doi: 10.1007/s10646-015-1547-0
[62] Zhu Y E, Ye Z, Ke S, Chen Z F, Ji Y Q. Heavy metals in wheat grain and soil: assessment of the potential health risk for inhabitants in a sewage-irrigated area of Beijing, China. Fresen Environ Bull, 2011, 20: 1109-1116.
[63] Chen X X, Liu Y M, Zhao Q Y, Cao W Q, Chen X P, Zou C Q. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environ Pollut, 2020, 262: 114348.
doi: 10.1016/j.envpol.2020.114348
[64] Ahmed M K, Shaheen N, Islam M S, Habibullah-al-mamun M, Islam S, Banu U C P. Trace elements in two staple cereals (rice and wheat) and associated health risk implications in Bangladesh. Environ Monit Assess, 2015, 187: 326.
doi: 10.1007/s10661-015-4576-5
[65] Yang W X, Wang G D, Wang M K, Zhou F, Huang J, Xue M Y, Dinh Q T, Liang D L. Heavy metals and associated health risk of wheat grain in a traditional cultivation area of Baoji, Shaanxi, China. Environ Monit Assess, 2019, 191: 428.
doi: 10.1007/s10661-019-7534-9
[66] 王彩霞, 郭蓉, 程国霞, 聂晓玲, 刘宇. 陕西省谷物中重金属污染状况及健康风险评估. 卫生研究, 2016, 45: 35-38.
Wang C X, Guo R, Cheng G X, Nie X L, Liu Y. Dietary exposure and health risk assessment of heavy metal in grains of Shaanxi province. J Hygiene Res, 2016, 45: 35-38. (in Chinese with English abstract)
[67] 朱昊, 吴春发, 陈宜. 苏中地区小麦籽粒重金属含量水平及健康风险. 环境监测管理与技术, 2017, 29(1): 35-38.
Zhu H, Wu C F, Chen Y. Concentrations of heavy metals in wheat grains and their potential health risk in the central region of Jiangsu. Admin Tech Environl Mon, 2017, 29(1): 35-38. (in Chinese with English abstract)
[68] 青平, 曾晶, 李剑, 游良志. 中国作物营养强化的现状与展望. 农业经济问题, 2019, (8): 83-93.
Qing P, Zeng J, Li J, You L Z. The current situations and prospects of biofortification in China. Issues Agric Econ, 2019, (8): 83-93. (in Chinese with English abstract)
[69] 张金磊, 李路平. 中国生物强化富铁小麦营养干预居民缺铁性贫血疾病负担分析. 中国农业科技导报, 2014, 16(6): 132-142.
Zhang J L, Li L P. The analysis on China's biofortified iron-rich wheat nutrition intervening Chinese people's disease burden of iron deficiency anemia. J Agric Sci Tech, 2014, 16(6): 132-142. (in Chinese with English abstract)
[70] Eide D J. Zinc transporters and the cellular trafficking of zinc. BBA-Mol Cell Res, 2006, 1763: 711-722.
[71] Aciksoz S B, Yazici A, Ozturk L, Cakmak I. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil, 2011, 349: 215-225.
doi: 10.1007/s11104-011-0863-2
[1] 张一铎, 李国强, 孔忠新, 王玉泉, 李小利, 茹振钢, 贾海燕, 马正强. 基因聚合选育抗赤霉病小麦新品系百农4299[J]. 作物学报, 2022, 48(9): 2221-2227.
[2] 谭照国, 苑少华, 李艳梅, 白建芳, 岳洁茹, 刘子涵, 张天豹, 赵福永, 赵昌平, 许本波, 张胜全, 庞斌双, 张立平. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析[J]. 作物学报, 2022, 48(9): 2242-2254.
[3] 冯子恒, 李晓, 段剑钊, 高飞, 贺利, 杨天聪, 戎亚思, 宋莉, 尹飞, 冯伟. 基于特征波段选择和机器学习的小麦白粉病高光谱遥感监测[J]. 作物学报, 2022, 48(9): 2300-2314.
[4] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[5] 李永波, 崔德周, 黄琛, 隋新霞, 樊庆琦, 楚秀生. 高度特异性小麦ATG8抗体的研制及其在细胞自噬检测中的应用[J]. 作物学报, 2022, 48(9): 2390-2399.
[6] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[7] 杜启迪, 郭会君, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 宋希云, 刘录祥. 小麦顶端小穗退化突变体asd1基因定位[J]. 作物学报, 2022, 48(8): 1905-1913.
[8] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[9] 冯亚娟, 李廷轩, 蒲勇, 张锡洲. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 2022, 48(7): 1761-1770.
[10] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响[J]. 作物学报, 2022, 48(7): 1771-1786.
[11] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[12] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[13] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[14] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[15] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .