欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3162-3175.doi: 10.3724/SP.J.1006.2023.34034

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选

李继军1(), 陈雅慧1,2, 王艺瑾1, 周志华1, 郭子越3, 张建3, 涂金星1, 姚璇1,*(), 郭亮1,*()   

  1. 1华中农业大学植物科学技术学院 / 作物遗传改良全国重点实验室, 湖北武汉 430070
    2承德市农林科学院, 河北承德 067000
    3华中农业大学资源与环境学院 / 宏观农业研究院, 湖北武汉 430070
  • 收稿日期:2023-02-22 接受日期:2023-05-24 出版日期:2023-12-12 网络出版日期:2023-06-13
  • 通讯作者: * 郭亮, E-mail: guoliang@mail.hzau.edu.cn; 姚璇, E-mail: xuanyao@mail.hzau.edu.cn
  • 作者简介:E-mail: liy0234@webmail.hzau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFD1200400);湖北省重点研发计划项目(2021ABA011)

Evaluation of field waterlogging tolerance and selection of waterlogging-resistant germplasm resources of Brassica napus L.

LI Ji-Jun1(), CHEN Ya-Hui1,2, WANG Yi-Jin1, ZHOU Zhi-Hua1, GUO Zi-Yue3, ZHANG Jian3, TU Jin-Xing1, YAO Xuan1,*(), GUO Liang1,*()   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, Hubei, China
    2Chengde Academy of Agricultural and Forestry Sciences, Chengde 067000, Hebei, China
    3College of Resources and Environmental Sciences, Huazhong Agricultural University / Macro Agriculture Research Institute, Wuhan 430070, Hubei, China
  • Received:2023-02-22 Accepted:2023-05-24 Published:2023-12-12 Published online:2023-06-13
  • Contact: * E-mail: guoliang@mail.hzau.edu.cn; E-mail: xuanyao@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1200400);Key Research and Development Plan of Hubei Province(2021ABA011)

摘要:

甘蓝型油菜是我国最重要的油料作物之一, 其生产过程中具有较高的渍害发生风险。为了评价甘蓝型油菜田间耐渍性以及筛选稳定的耐渍种质资源, 本研究首先在盆栽条件下确定了苗期耐渍性鉴定的适宜渍水时间, 随后在大田试验中对505份种质资源进行了田间耐渍性的综合评价和比较, 并筛选了稳定的极端材料。盆栽试验结果表明, 甘蓝型油菜的生长在渍水超过4 d时开始受到影响, 在渍水约10 d时生长受到严重抑制。2年的田间试验中, 利用无人机表型采集平台提取到27个指标, 通过因子分析将其转化成了2个公因子, 公因子1代表了甘蓝型油菜渍水条件下的生长状态, 公因子2代表了生理状态。根据2个公因子的载荷与方差贡献率计算出的耐渍性综合评价值(D值)将甘蓝型油菜种质资源的耐渍性划分为4个类型。其中, 极端耐渍型(I型)包含99份种质资源、耐渍型(II型) 200份种质资源、敏感型(III型) 187份种质资源、极端敏感型(IV型) 19份种质资源。通过2022年的大田试验对上述结果进行进一步验证和筛选, 共鉴定到9份稳定的渍水敏感材料和9份稳定的耐渍材料。而且, 2年的试验结果显示植被指数MTVI2D、MCARI2D与耐渍性综合评价值(D值)相关性都高于0.76, 可用于对油菜耐渍性快速、高效的综合评价。总之, 本研究建立了甘蓝型油菜田间耐渍性评价体系以及耐渍性快速和综合评价方法, 解析了甘蓝型油菜种质资源的耐渍性类型, 鉴定到了稳定的耐渍和敏感材料, 为甘蓝型油菜耐渍性的研究和遗传改良提供了可靠的评价方法和重要的种质资源。

关键词: 甘蓝型油菜, 种质资源, 苗期, 耐渍性, 综合评价

Abstract:

Brassica napus L. (B. napus) is one of the most important oil crops in China, and has high risk of waterlogging stress during its production. The objective of this study is to evaluate the field waterlogging tolerance and screen stable waterlogging-resistant germplasm resources. The appropriate waterlogging duration for waterlogging tolerance identification was determined under pot conditions first, and then the comprehensive evaluation and comparison of the waterlogging tolerance of 505 germplasm resources of B. napus were carried out. The stable extreme materials were screened in field experiments. The results showed that the growth of B. napus plants began to be affected after four-day-waterlogging, and severely inhibited after about 10-day-waterlogging under pot conditions. In the two-year field experiment, 27 indexes extracted using the UAV phenotype acquisition platform were converted into two common factors by factor analysis. The common factor 1 represented the growth state of B. napus under waterlogging, and the common factor 2 represented the physiological state. The comprehensive evaluation value of waterlogging resistance (D-value), which was calculated according to the load and variance contribution rate of the two common factors, divided the waterlogging resistance of B. napus germplasm resources into four types, including extremely waterlogging resistant type (Cluster I, 99 materials), waterlogging resistant type (Cluster II, 200 materials), sensitive type (Cluster III, 187 materials), and extremely sensitive type (Cluster IV, 19 materials). In the two-year field experiment, nine stable waterlogging sensitive materials and nine resistant materials were identified, and the results were confirmed by the field experiments in 2022. Moreover, in the two-year experiment, the vegetation indexes, MTVI2D, and MCARI2D had high correlations with the D-value, and the correlation coefficients were greater than 0.76, which can be used for rapid and efficient comprehensive evaluation of B. napus waterlogging resistance. In conclusion, the evaluation system and rapid and comprehensive evaluation methods for waterlogging tolerance of B. napus in the field were established, which were applied to analyze the types of waterlogging tolerance of B. napus germplasm resources and identify the stable waterlogging resistant and sensitive materials in this study, providing reliable evaluation methods and important germplasm resources for the research and genetic improvement of waterlogging resistance of B. napus.

Key words: Brassica napus L., germplasm resources, seedling stage, waterlogging tolerance, the comprehensive evaluation

表1

盆栽试验中使用的10份甘蓝型油菜自交系详单"

材料名称Material name 来源Origin 亚群Group
Santana 德国 Germany 半冬性 Semi-winter
中双9号 Zhongshuang 9 中国湖北 Hubei, China 半冬性 Semi-winter
中双11号 Zhongshuang 11 中国湖北 Hubei, China 半冬性 Semi-winter
中油821Q Zhongyou 821Q 中国湖北 Hubei, China 半冬性 Semi-winter
华双2号 Huashuang 2 中国湖北 Hubei, China 半冬性 Semi-winter
浙油18 Zheyou 18 中国浙江 Zhejiang, China 半冬性 Semi-winter
沪油19 Huyou 19 中国上海 Shanghai, China 半冬性 Semi-winter
皖油20号 Wanyou 20 中国安徽 Anhui, China 半冬性 Semi-winter
四达 Star 加拿大 Canada 春性 Spring
陇油4号 Longyou 4 中国甘肃 Gansu, China 春性 Spring

图1

不同渍水时间下甘蓝型油菜生长和生理指标的变化 A: 绿叶数; B: 株高; C: 茎鲜重; D: 可溶性糖; E: 脯氨酸; F: 相对电导率; G: 叶绿素a; H: 叶绿素b; I: 类胡萝卜素的动态变化。图中数值为平均值±标准误(n = 10), 同一图中的不同字母表示不同时间点之间存在显著性差异(P < 0.05)。"

图2

甘蓝型油菜渍水后的田间表现 A: 甘蓝型油菜渍水前后的整体生长变化情况。渍水后, 油菜出现B: 叶片衰老黄化、C: 功能叶焦枯、D: 叶片花青素积累、E: 根系腐烂、F: 植株倒伏、G: 死亡等典型的表型。"

表2

505份甘蓝型油菜种质资源在渍水胁迫下各性状描述统计"

性状
Trait
2017 2018
极小值
Min.
极大值
Max.
平均值
Mean
标准差
SD
极小值
Min.
极大值
Max.
平均值
Mean
标准差
SD
CVM (m3) 0 0.039 0.006 0.006 0.001 0.272 0.099 0.060
GCC 0.003 0.232 0.050 0.032 0.072 0.632 0.443 0.127
PCC 0.002 0.122 0.039 0.021 0 0.237 0.026 0.033
PH (m) 0.006 0.236 0.069 0.041 0.007 0.435 0.192 0.090
RGB-CIVE 0.022 0.126 0.078 0.016 18.689 18.812 18.751 0.028
RGB-ExG 0.003 0.248 0.101 0.042 -0.041 0.257 0.106 0.069
RGB-ExG-ExR -0.020 0.213 0.059 0.045 -0.255 0.230 -0.024 0.114
RGB-ExR 0.095 0.230 0.182 0.023 0.021 0.224 0.130 0.046
RGB-NDI -0.094 0.060 -0.035 0.025 -0.092 0.144 0.019 0.054
CIVE 18.756 18.796 18.777 0.006 18.732 18.778 18.755 0.008
DVI 0.195 0.558 0.334 0.059 0.093 0.442 0.277 0.067
ExG -0.068 0.439 0.161 0.082 0.214 0.914 0.595 0.150
ExG-ExR -0.350 0.511 0.030 0.143 0.118 1.314 0.770 0.261
ExR -0.072 0.283 0.131 0.064 -0.400 0.096 -0.175 0.111
GNDVI 0.498 0.834 0.671 0.056 0.324 0.742 0.607 0.072
MCARI2D 0.232 0.747 0.455 0.089 0.158 0.829 0.516 0.138
MSARI2D 0.290 0.749 0.494 0.079 0.162 0.729 0.474 0.113
MTVI2D 0.232 0.747 0.455 0.089 0.158 0.829 0.516 0.138
NDI -0.152 0.254 0.024 0.070 0.064 0.579 0.352 0.117
NDVI 0.471 0.862 0.672 0.068 0.415 0.907 0.770 0.094
NDVI705 0.350 0.721 0.540 0.068 0.397 0.837 0.698 0.087
R31 2.063 6.000 3.597 0.612 1.896 4.125 2.914 0.347
RDVI 0.297 0.680 0.468 0.064 0.198 0.629 0.455 0.083
RVI 3.221 15.680 6.621 1.981 2.575 23.930 10.989 4.539
SAVI 0.309 0.708 0.490 0.067 0.193 0.664 0.470 0.092
SQIRDR 1.750 3.813 2.473 0.349 1.595 4.779 3.167 0.688
TNDVI 0.983 1.167 1.080 0.032 0.952 1.186 1.125 0.043

图3

甘蓝型油菜各性状隶属函数值的相关性分析 缩写同表2。"

表3

甘蓝型油菜各指标的公因子方差贡献率"

年份
Year
公因子
Common factor
初始特征值
Initial eigenvalue
方差贡献率
Explained variance (%)
累计方差贡献率
Accumulative explained variance (%)
2017 1 18.5 68.4 68.4
2 5.5 20.3 88.7
3 1.1 3.9 92.6
2018 1 23.0 85.3 85.3
2 2.1 7.7 93.1

表4

公因子载荷矩阵"

性状
Trait
2017 2018
公因子1 Factor 1 公因子2 Factor 2 公因子3 Factor 3 公因子1 Factor 1 公因子2 Factor 2
CVM (m3) 0.821 0.001 0.476 0.919 -0.050
GCC 0.848 -0.034 0.377 0.975 -0.032
PCC -0.283 0.822 0.081 -0.590 0.573
PH (m) 0.835 0.192 0.308 0.878 -0.005
RGB-CIVE -0.538 0.770 0.109 -0.955 0.185
RGB-ExG 0.834 -0.478 0.078 0.951 -0.195
RGB-ExG-ExR 0.725 -0.338 0.273 0.965 -0.137
RGB-ExR -0.905 0.035 -0.339 -0.964 0.049
RGB-NDI 0.920 -0.149 0.293 0.968 -0.070
CIVE -0.629 0.713 0.215 -0.765 0.505
DVI 0.903 0.313 -0.115 0.954 0.129
ExG 0.762 -0.589 -0.162 0.950 -0.249
ExG-ExR 0.790 -0.579 -0.135 0.961 -0.224
ExR -0.786 0.539 0.094 -0.970 0.189
GNDVI 0.678 0.710 -0.051 0.830 0.526
MCARI2D 0.971 0.172 -0.121 0.985 0.058
MSARI2D 0.932 0.306 -0.126 0.971 0.136
MTVI2D 0.971 0.172 -0.121 0.985 0.058
NDI 0.791 -0.549 -0.103 0.972 -0.181
NDVI 0.937 0.289 -0.134 0.965 0.192
NDVI705 0.919 0.297 -0.182 0.971 0.173
R31 0.415 0.854 -0.088 0.424 0.851
RDVI 0.929 0.310 -0.132 0.972 0.153
RVI 0.923 0.203 0.019 0.958 0.104
SAVI 0.927 0.310 -0.139 0.969 0.150
SQIRDR 0.949 0.237 -0.016 0.976 0.126
TNDVI 0.933 0.292 -0.146 0.960 0.198

图4

505份甘蓝型油菜种质资源耐渍性 A: 甘蓝型油菜自然群体渍水胁迫下综合评价值的频数分布图。B: 不同亚群种质资源的耐渍性。C: 不同类群种质资源的综合耐渍性。D: 甘蓝型油菜自然群体耐渍性的聚类分析。I: 极端耐渍型; II: 较耐渍型; III: 较敏感型; IV: 极端敏感型。E: 在2022年的田间试验中再次验证2年试验共同鉴定的极端耐渍种质资源的表型。F: 在2022年的田间试验中再次验证2年试验共同鉴定的极端敏感种质资源的表型。同一图中的不同字母表示数据集之间存在显著差异(P < 0.05)。"

表5

极端耐渍和敏感材料的聚类情况和综合表现"

材料类型 Material type 材料名称
Material name
来源
Origin
亚群
Group
类群 Cluster DD-value
2017 2018
耐渍
Resistant
1281 中国湖南 Hunan, China 半冬性 Semi-winter I 1.17 1.11
2012-3546 中国湖北 Hubei, China 半冬性 Semi-winter I 0.90 1.03
华双2号 Huashuang 2 中国湖北 Hubei, China 半冬性 Semi-winter I 0.82 1.15
崇23 Chong 23 中国湖北 Hubei, China 半冬性 Semi-winter I 0.87 1.09
Swu64 中国重庆 Chongqing, China 半冬性 Semi-winter I 0.77 1.15
Swu89 中国重庆 Chongqing, China 半冬性 Semi-winter I 1.03 1.13
Swu104 中国重庆 Chongqing, China 半冬性 Semi-winter I 1.23 1.09
Swu110 中国重庆 Chongqing, China 半冬性 Semi-winter I 0.89 1.32
Swu113 中国重庆 Chongqing, China 半冬性 Semi-winter I 0.91 1.08
敏感
Sensitive
Nca 中国湖北 Hubei, China 半冬性 Semi-winter III -0.80 -1.20
11-育7-125 11-yu 7-125 中国湖北 Hubei, China 半冬性 Semi-winter III -0.90 -0.95
华双128 Huashuang 128 中国湖北 Hubei, China 半冬性 Semi-winter III -0.79 -0.95
甲922 Jia 922 中国湖北 Hubei, China 半冬性 Semi-winter III -0.91 -1.03
Swu100 中国重庆 Chongqing, China 半冬性 Semi-winter III -1.03 -1.12
B431 丹麦 Denmark 春性 Spring IV -1.40 -1.64
964 中国甘肃 Gansu, China 冬性 Winter IV -1.12 -1.48
Swu95 中国重庆 Chongqing, China 半冬性 Semi-winter IV -1.33 -1.15
Swu96 中国重庆 Chongqing, China 半冬性 Semi-winter IV -1.05 -1.31

图5

甘蓝型油菜种质资源耐渍性的评价方法和关键指标 A: 2017年甘蓝型油菜种质资源综合评价值(D)与预测值(D')之间的相关性。B: 2018年甘蓝型油菜种质资源综合评价值(D)与预测值(D')之间的相关性。C: 27个指标与D值之间的相关性。"

[1] 王瑞元. 2021年我国粮油产销和进出口情况. 中国油脂, 2022, 47(6): 1-7.
Wang R Y. Introduction of grain and oil production, marketing, import and export in 2021 in China. China Oils Fats, 2022, 47(6): 1-7. (in Chinese)
[2] 李真, 蒲圆圆, 高长斌, 周广生, 涂金星, 傅廷栋. 甘蓝型油菜DH群体苗期耐湿性的评价. 中国农业科学, 2010, 43: 286-292.
Li Z, Pu Y Y, Gao C B, Zhou G S, Tu J X, Fu T D. Evaluation of waterlogging tolerance in rapeseed (Brassica napus L.) DH lines at seedling stage. Sci Agric Sin, 2010, 43: 286-292. (in Chinese with English abstract)
[3] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894-903.
doi: 10.19802/j.issn.1007-9084.2019046
Cong R H, Zhang Z, Lu J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894-903. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019046
[4] 吴丽丽, 李谷成, 尹朝静. 生长期气候变化对我国油菜单产的影响研究. 干旱区资源与环境, 2015, 29(12): 198-203.
Wu L L, Li G C, Yin C J. Impact of climate change in rapeseed’s growing seasons on rapeseed production in China. J Arid Land Resour Environ, 2015, 29(12): 198-203. (in Chinese with English abstract)
[5] Sasidharan R, Bailey-Serres J, Ashikari M, Atwell B J, Colmer T D, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup K H, Hill R D, Holdsworth M J, Ismail A M, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih M C, Sorrell B K, Striker G G, van Dongen J T, Whelan J, Xiao S, Visser E J W, Voesenek L. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol, 2017, 214: 1403-1407.
doi: 10.1111/nph.14519 pmid: 28277605
[6] Setter T L, Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil, 2003, 253: 1-34.
doi: 10.1023/A:1024573305997
[7] Blom C W P M, Voesenek L A C J. Flooding: the survival strategies of plants. Trends Ecol Evol, 1996, 11: 290-295.
pmid: 21237846
[8] Panozzo A, Dal Cortivo C, Ferrari M, Vicelli B, Varotto S, Vamerali T. Morphological changes and expressions of AOX1A, CYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Front Plant Sci, 2019, 10: 62.
doi: 10.3389/fpls.2019.00062 pmid: 30778365
[9] Marschner H. Mechanisms of adaptation of plants to acid soils. Plant Soil, 1991, 134: 683-702.
[10] Sasidharan R, Voesenek L A. Ethylene-mediated acclimations to flooding stress. Plant Physiol, 2015, 169: 3-12.
doi: 10.1104/pp.15.00387 pmid: 25897003
[11] Shabala S. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol, 2011, 190: 289-298.
doi: 10.1111/j.1469-8137.2010.03575.x pmid: 21563365
[12] Colmer T D, Greenway H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot, 2010, 62: 39-57.
doi: 10.1093/jxb/erq271
[13] Mommer L, Visser E J W. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann Bot (London), 2005, 96: 581-589.
doi: 10.1093/aob/mci212
[14] Mommer L, Pons T L, Wolters-Arts M, Venema J H, Visser E J W. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial speciesaffect gas diffusion resistance and photosynthetic performance. Plant Physiol, 2005, 139: 497-508.
doi: 10.1104/pp.105.064725
[15] Ren B Z, Zhang J W, Dong S T, Liu P, Zhao B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS One, 2016, 11: e0161424.
doi: 10.1371/journal.pone.0161424
[16] Zhou W J, Lin X Q. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Res, 1995, 44: 103-110.
doi: 10.1016/0378-4290(95)00075-5
[17] 陈雅慧. 油菜萌发期耐淹性种质资源筛选与遗传机制解析. 华中农业大学硕士学位论文, 湖北武汉, 2019.
Chen Y H. Germplasm Screening and Genetic Mechanism Analysis of Submergence Tolerance during Rapeseed Germination. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019. (in Chinese with English abstract)
[18] 荆蓉蓉. 甘蓝型油菜苗期耐湿相关性状的全基因组关联分析. 西南大学硕士学位论文, 重庆, 2017.
Jing R R. Genome-wide Association Mapping of Water Logging Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2017. (in Chinese with English abstract)
[19] Jimenez J C, Cardoso J A, Leiva L F, Gil J, Forero M G, Worthington M L, Miles J W, Rao I M. Non-destructive phenotyping to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Front Plant Sci, 2017, 8: 167.
[20] 韩佳慧. 地块尺度冬油菜湿渍害遥感监测方法研究. 浙江大学硕士学位论文, 浙江杭州, 2017.
Han J H. Study on Parcel Scale Winter Oilseed Rape Waterlogging Monitoring Method by Remote Sensing. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2017. (in Chinese with English abstract)
[21] 胡文河, 朱容佳, 王婧瑜, 郭巍, 何文安, 谷岩. 高粱种质资源芽期耐涝性综合评价及筛选. 吉林农业大学学报, 2022, https://kns.cnki.net/kcms/detail/22.1100.s.20220926.1845.005.html.
Hu W H, Zhu R J, Wang J Y, Guo W, He W A, Gu Y. Comprehensive evaluation and screening of waterlogging tolerance of sorghum germplasm resources at bud stage. J Jilin Agric Univ, 2022, https://kns.cnki.net/kcms/detail/22.1100.s.20220926.1845.005.html. (in Chinese with English abstract)
[22] 唐章林, 王霖, 张娅茹, 朱丽, 唐钟林, 荆蓉蓉, 李阳阳. 甘蓝型油菜种质资源苗期耐湿性综合评价与筛选. 西南大学学报(自然科学版), 2022, 44(12): 20-28.
Tang Z L, Wang L, Zhang Y R, Zhu L, Tang Z L, Jing R R, Li Y Y. Comprehensive evaluation and screening of waterlogging resistance at seedling stage of Brassica napus. J Southwest Univ (Nat Sci Edn), 2022, 44(12): 20-28. (in Chinese with English abstract)
[23] 佟汉文, 高春保, 邹娟, 刘易科, 朱展望, 陈泠, 张宇庆, 吴波. 湖北稻茬小麦新品种(系)孕穗期耐渍性的鉴定与评价. 麦类作物学报, 2016, 36: 1635-1642.
Tong H W, Gao C B, Zou J, Liu Y K, Zhu Z W, Chen L, Zhang Y Q, Wu B. Evaluation of waterlogging tolerance of wheat varieties at booting stage in Hubei rice-wheat rotation system. J Triticeae Crops, 2016, 36: 1635-1642. (in Chinese with English abstract)
[24] Tang S, Zhao H, Lu S P, Yu L Q, Zhang G F, Zhang Y T, Yang Q Y, Zhou Y M, Wang X M, Ma W, Xie W B, Guo L. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol Plant, 2021, 14: 470-487.
doi: 10.1016/j.molp.2020.12.003
[25] 王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006. pp 202-283.
Wang X K. Experimental Principles and Techniques of Plant Physiology and Biochemistry, 2nd edn. Beijing: Higher Education Press, 2006. pp 202-283. (in Chinese)
[26] Li J J, Xie T J, Chen Y H, Zhang Y T, Wang C F, Jiang Z, Yang W N, Zhou G S, Guo L, Zhang J. High-throughput UAV-based phenotyping provides insights into the dynamic process and genetic basis of rapeseed waterlogging response in the field. J Exp Bot, 2022, 73: 5264-5278.
doi: 10.1093/jxb/erac242
[27] Hinton P R, McMurray I, Brownlow C. SPSS Explained, 2nd edn.London: Routledge, 2014. pp 338-350.
[28] Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat, 1996, 5: 299-314.
[29] Moberly J G, Bernards M T, Waynant K V. Key features and updates for Origin 2018. J Cheminformatics, 2018, 10: 5.
doi: 10.1186/s13321-018-0259-x pmid: 29427195
[30] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[31] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49: 1551-1561.
doi: 10.3724/SP.J.1006.2023.21032
Zhang J, Gao W B, Yan L, Zhang Z W, Zhou H T, Wu B. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.). Acta Agron Sin, 2023, 49: 1551-1561. (in Chinese with English abstract)
[32] Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by uniconazole application: effects on enzyme activity, lipid peroxidation, and membrane integrity. J Plant Growth Regul, 1999, 18: 9-14.
pmid: 10467014
[33] 张学昆, 陈洁, 王汉中, 李加纳, 邹崇顺. 甘蓝型油菜耐湿性的遗传差异鉴定. 中国油料作物学报, 2007, 29: 204-208.
Zhang X K, Chen J, Wang H Z, Li J N, Zou C S. Genetic difference of waterlogging tolerance in rapeseed (Brassica napus L.) Chin J Oil Crop Sci, 2007, 29: 204-208. (in Chinese with English abstract)
[34] Zou X L, Hu C W, Zeng L, Cheng Y, Xu M Y, Zhang X K. A comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during plant ontogeny. PLoS One, 2014, 9: e89731.
doi: 10.1371/journal.pone.0089731
[35] 李阳阳, 荆蓉蓉, 吕蓉蓉, 石鹏程, 李欣, 王芹, 吴丹, 周清元, 李加纳, 唐章林. 甘蓝型油菜湿害胁迫响应性状的全基因组关联分析及候选基因. 作物学报, 2019, 45: 1806-1821.
doi: 10.3724/SP.J.1006.2019.94027
Li Y Y, Jing R R, Lyu R R, Shi P C, Li X, Wang Q, Wu D, Zhou Q Y, Li J N, Tang Z L. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. Acta Agron Sin, 2019, 45: 1806-1821. (in Chinese with English abstract)
[36] Li Z, Mei S F, Mei Z, Liu X L, Fu T D, Zhou G S, Tu J X. Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica, 2014, 197: 341-353.
doi: 10.1007/s10681-014-1070-z
[37] Boem F H G, Lavado R S, Porcelli C A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res, 1996, 47: 175-179.
doi: 10.1016/0378-4290(96)00025-1
[38] 王燕茹, 袁秉琛, 孙郁婷, 王志勇, 虞道耿. 蝴蝶豆种质资源芽期耐盐性筛选及评价. 热带作物学报, 2022, 44: 955-967.
Wang Y R, Yuan B C, Sun Y T, Wang Z Y, Yu D G. Screening and evaluation of salt tolerance in the bud stage of Centrosema pubescens Resources. Chin J Trop Crops, 2022, 44: 955-967. (in Chinese with English abstract)
[39] Al-Tamimi N, Brien C, Oakey H, Berger B, Saade S, Ho Y S, Schmockel S M, Tester M, Negrao S. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat Commun, 2016, 7: 13342.
doi: 10.1038/ncomms13342 pmid: 27853175
[40] Duan L F, Han J W, Guo Z L, Tu H F, Yang P, Zhang D, Fan Y, Chen G X, Xiong L Z, Dai M Q, Williams K, Corke F, Doonan J H, Yang W N. Novel digital features discriminate between drought resistant and drought sensitive rice under controlled and field conditions. Front Plant Sci, 2018, 9: 492.
doi: 10.3389/fpls.2018.00492 pmid: 29719548
[41] Fisher L H, Han J, Corke F M, Akinyemi A, Didion T, Nielsen K K, Doonan J H, Mur L A, Bosch M. Linking dynamic phenotyping with metabolite analysis to study natural variation in drought responses of brachypodium distachyon. Front Plant Sci, 2016, 7: 1751.
pmid: 27965679
[42] Guo Z L, Yang W N, Chang Y, Ma X S, Tu H F, Xiong F, Jiang N, Feng H, Huang C L, Yang P, Zhao H, Chen G X, Liu H Y, Luo L J, Hu H H, Liu Q, Xiong L Z. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. Mol Plant, 2018, 11: 789-805.
doi: S1674-2052(18)30126-6 pmid: 29614319
[43] Wu D, Guo Z L, Ye J L, Feng H, Liu J X, Chen G X, Zheng J, Yan D M, Yang X Q, Xiong X, Liu Q, Niu Z Y, Gay A P, Doonan J H, Xiong L Z, Yang W N. Combining high-throughput micro- CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice. J Exp Bot, 2019, 70: 545-561.
doi: 10.1093/jxb/ery373
[44] Zhang X H, Huang C L, Wu D, Qiao F, Li W Q, Duan L F, Wang K, Xiao Y J, Chen G X, Liu Q, Xiong L Z, Yang W N, Yan J B. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol, 2017, 173: 1554-1564.
doi: 10.1104/pp.16.01516 pmid: 28153923
[1] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[2] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[3] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[4] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[5] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[6] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561.
[7] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[8] 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183.
[9] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[10] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[11] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[12] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[13] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
[14] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[15] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .