作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3162-3175.doi: 10.3724/SP.J.1006.2023.34034
李继军1(), 陈雅慧1,2, 王艺瑾1, 周志华1, 郭子越3, 张建3, 涂金星1, 姚璇1,*(), 郭亮1,*()
LI Ji-Jun1(), CHEN Ya-Hui1,2, WANG Yi-Jin1, ZHOU Zhi-Hua1, GUO Zi-Yue3, ZHANG Jian3, TU Jin-Xing1, YAO Xuan1,*(), GUO Liang1,*()
摘要:
甘蓝型油菜是我国最重要的油料作物之一, 其生产过程中具有较高的渍害发生风险。为了评价甘蓝型油菜田间耐渍性以及筛选稳定的耐渍种质资源, 本研究首先在盆栽条件下确定了苗期耐渍性鉴定的适宜渍水时间, 随后在大田试验中对505份种质资源进行了田间耐渍性的综合评价和比较, 并筛选了稳定的极端材料。盆栽试验结果表明, 甘蓝型油菜的生长在渍水超过4 d时开始受到影响, 在渍水约10 d时生长受到严重抑制。2年的田间试验中, 利用无人机表型采集平台提取到27个指标, 通过因子分析将其转化成了2个公因子, 公因子1代表了甘蓝型油菜渍水条件下的生长状态, 公因子2代表了生理状态。根据2个公因子的载荷与方差贡献率计算出的耐渍性综合评价值(D值)将甘蓝型油菜种质资源的耐渍性划分为4个类型。其中, 极端耐渍型(I型)包含99份种质资源、耐渍型(II型) 200份种质资源、敏感型(III型) 187份种质资源、极端敏感型(IV型) 19份种质资源。通过2022年的大田试验对上述结果进行进一步验证和筛选, 共鉴定到9份稳定的渍水敏感材料和9份稳定的耐渍材料。而且, 2年的试验结果显示植被指数MTVI2D、MCARI2D与耐渍性综合评价值(D值)相关性都高于0.76, 可用于对油菜耐渍性快速、高效的综合评价。总之, 本研究建立了甘蓝型油菜田间耐渍性评价体系以及耐渍性快速和综合评价方法, 解析了甘蓝型油菜种质资源的耐渍性类型, 鉴定到了稳定的耐渍和敏感材料, 为甘蓝型油菜耐渍性的研究和遗传改良提供了可靠的评价方法和重要的种质资源。
[1] | 王瑞元. 2021年我国粮油产销和进出口情况. 中国油脂, 2022, 47(6): 1-7. |
Wang R Y. Introduction of grain and oil production, marketing, import and export in 2021 in China. China Oils Fats, 2022, 47(6): 1-7. (in Chinese) | |
[2] | 李真, 蒲圆圆, 高长斌, 周广生, 涂金星, 傅廷栋. 甘蓝型油菜DH群体苗期耐湿性的评价. 中国农业科学, 2010, 43: 286-292. |
Li Z, Pu Y Y, Gao C B, Zhou G S, Tu J X, Fu T D. Evaluation of waterlogging tolerance in rapeseed (Brassica napus L.) DH lines at seedling stage. Sci Agric Sin, 2010, 43: 286-292. (in Chinese with English abstract) | |
[3] |
丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894-903.
doi: 10.19802/j.issn.1007-9084.2019046 |
Cong R H, Zhang Z, Lu J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894-903. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019046 |
|
[4] | 吴丽丽, 李谷成, 尹朝静. 生长期气候变化对我国油菜单产的影响研究. 干旱区资源与环境, 2015, 29(12): 198-203. |
Wu L L, Li G C, Yin C J. Impact of climate change in rapeseed’s growing seasons on rapeseed production in China. J Arid Land Resour Environ, 2015, 29(12): 198-203. (in Chinese with English abstract) | |
[5] |
Sasidharan R, Bailey-Serres J, Ashikari M, Atwell B J, Colmer T D, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup K H, Hill R D, Holdsworth M J, Ismail A M, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih M C, Sorrell B K, Striker G G, van Dongen J T, Whelan J, Xiao S, Visser E J W, Voesenek L. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol, 2017, 214: 1403-1407.
doi: 10.1111/nph.14519 pmid: 28277605 |
[6] |
Setter T L, Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil, 2003, 253: 1-34.
doi: 10.1023/A:1024573305997 |
[7] |
Blom C W P M, Voesenek L A C J. Flooding: the survival strategies of plants. Trends Ecol Evol, 1996, 11: 290-295.
pmid: 21237846 |
[8] |
Panozzo A, Dal Cortivo C, Ferrari M, Vicelli B, Varotto S, Vamerali T. Morphological changes and expressions of AOX1A, CYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Front Plant Sci, 2019, 10: 62.
doi: 10.3389/fpls.2019.00062 pmid: 30778365 |
[9] | Marschner H. Mechanisms of adaptation of plants to acid soils. Plant Soil, 1991, 134: 683-702. |
[10] |
Sasidharan R, Voesenek L A. Ethylene-mediated acclimations to flooding stress. Plant Physiol, 2015, 169: 3-12.
doi: 10.1104/pp.15.00387 pmid: 25897003 |
[11] |
Shabala S. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol, 2011, 190: 289-298.
doi: 10.1111/j.1469-8137.2010.03575.x pmid: 21563365 |
[12] |
Colmer T D, Greenway H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot, 2010, 62: 39-57.
doi: 10.1093/jxb/erq271 |
[13] |
Mommer L, Visser E J W. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann Bot (London), 2005, 96: 581-589.
doi: 10.1093/aob/mci212 |
[14] |
Mommer L, Pons T L, Wolters-Arts M, Venema J H, Visser E J W. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial speciesaffect gas diffusion resistance and photosynthetic performance. Plant Physiol, 2005, 139: 497-508.
doi: 10.1104/pp.105.064725 |
[15] |
Ren B Z, Zhang J W, Dong S T, Liu P, Zhao B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS One, 2016, 11: e0161424.
doi: 10.1371/journal.pone.0161424 |
[16] |
Zhou W J, Lin X Q. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Res, 1995, 44: 103-110.
doi: 10.1016/0378-4290(95)00075-5 |
[17] | 陈雅慧. 油菜萌发期耐淹性种质资源筛选与遗传机制解析. 华中农业大学硕士学位论文, 湖北武汉, 2019. |
Chen Y H. Germplasm Screening and Genetic Mechanism Analysis of Submergence Tolerance during Rapeseed Germination. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019. (in Chinese with English abstract) | |
[18] | 荆蓉蓉. 甘蓝型油菜苗期耐湿相关性状的全基因组关联分析. 西南大学硕士学位论文, 重庆, 2017. |
Jing R R. Genome-wide Association Mapping of Water Logging Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2017. (in Chinese with English abstract) | |
[19] | Jimenez J C, Cardoso J A, Leiva L F, Gil J, Forero M G, Worthington M L, Miles J W, Rao I M. Non-destructive phenotyping to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Front Plant Sci, 2017, 8: 167. |
[20] | 韩佳慧. 地块尺度冬油菜湿渍害遥感监测方法研究. 浙江大学硕士学位论文, 浙江杭州, 2017. |
Han J H. Study on Parcel Scale Winter Oilseed Rape Waterlogging Monitoring Method by Remote Sensing. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2017. (in Chinese with English abstract) | |
[21] | 胡文河, 朱容佳, 王婧瑜, 郭巍, 何文安, 谷岩. 高粱种质资源芽期耐涝性综合评价及筛选. 吉林农业大学学报, 2022, https://kns.cnki.net/kcms/detail/22.1100.s.20220926.1845.005.html. |
Hu W H, Zhu R J, Wang J Y, Guo W, He W A, Gu Y. Comprehensive evaluation and screening of waterlogging tolerance of sorghum germplasm resources at bud stage. J Jilin Agric Univ, 2022, https://kns.cnki.net/kcms/detail/22.1100.s.20220926.1845.005.html. (in Chinese with English abstract) | |
[22] | 唐章林, 王霖, 张娅茹, 朱丽, 唐钟林, 荆蓉蓉, 李阳阳. 甘蓝型油菜种质资源苗期耐湿性综合评价与筛选. 西南大学学报(自然科学版), 2022, 44(12): 20-28. |
Tang Z L, Wang L, Zhang Y R, Zhu L, Tang Z L, Jing R R, Li Y Y. Comprehensive evaluation and screening of waterlogging resistance at seedling stage of Brassica napus. J Southwest Univ (Nat Sci Edn), 2022, 44(12): 20-28. (in Chinese with English abstract) | |
[23] | 佟汉文, 高春保, 邹娟, 刘易科, 朱展望, 陈泠, 张宇庆, 吴波. 湖北稻茬小麦新品种(系)孕穗期耐渍性的鉴定与评价. 麦类作物学报, 2016, 36: 1635-1642. |
Tong H W, Gao C B, Zou J, Liu Y K, Zhu Z W, Chen L, Zhang Y Q, Wu B. Evaluation of waterlogging tolerance of wheat varieties at booting stage in Hubei rice-wheat rotation system. J Triticeae Crops, 2016, 36: 1635-1642. (in Chinese with English abstract) | |
[24] |
Tang S, Zhao H, Lu S P, Yu L Q, Zhang G F, Zhang Y T, Yang Q Y, Zhou Y M, Wang X M, Ma W, Xie W B, Guo L. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol Plant, 2021, 14: 470-487.
doi: 10.1016/j.molp.2020.12.003 |
[25] | 王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006. pp 202-283. |
Wang X K. Experimental Principles and Techniques of Plant Physiology and Biochemistry, 2nd edn. Beijing: Higher Education Press, 2006. pp 202-283. (in Chinese) | |
[26] |
Li J J, Xie T J, Chen Y H, Zhang Y T, Wang C F, Jiang Z, Yang W N, Zhou G S, Guo L, Zhang J. High-throughput UAV-based phenotyping provides insights into the dynamic process and genetic basis of rapeseed waterlogging response in the field. J Exp Bot, 2022, 73: 5264-5278.
doi: 10.1093/jxb/erac242 |
[27] | Hinton P R, McMurray I, Brownlow C. SPSS Explained, 2nd edn.London: Routledge, 2014. pp 338-350. |
[28] | Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat, 1996, 5: 299-314. |
[29] |
Moberly J G, Bernards M T, Waynant K V. Key features and updates for Origin 2018. J Cheminformatics, 2018, 10: 5.
doi: 10.1186/s13321-018-0259-x pmid: 29427195 |
[30] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[31] |
张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49: 1551-1561.
doi: 10.3724/SP.J.1006.2023.21032 |
Zhang J, Gao W B, Yan L, Zhang Z W, Zhou H T, Wu B. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.). Acta Agron Sin, 2023, 49: 1551-1561. (in Chinese with English abstract) | |
[32] |
Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by uniconazole application: effects on enzyme activity, lipid peroxidation, and membrane integrity. J Plant Growth Regul, 1999, 18: 9-14.
pmid: 10467014 |
[33] | 张学昆, 陈洁, 王汉中, 李加纳, 邹崇顺. 甘蓝型油菜耐湿性的遗传差异鉴定. 中国油料作物学报, 2007, 29: 204-208. |
Zhang X K, Chen J, Wang H Z, Li J N, Zou C S. Genetic difference of waterlogging tolerance in rapeseed (Brassica napus L.) Chin J Oil Crop Sci, 2007, 29: 204-208. (in Chinese with English abstract) | |
[34] |
Zou X L, Hu C W, Zeng L, Cheng Y, Xu M Y, Zhang X K. A comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during plant ontogeny. PLoS One, 2014, 9: e89731.
doi: 10.1371/journal.pone.0089731 |
[35] |
李阳阳, 荆蓉蓉, 吕蓉蓉, 石鹏程, 李欣, 王芹, 吴丹, 周清元, 李加纳, 唐章林. 甘蓝型油菜湿害胁迫响应性状的全基因组关联分析及候选基因. 作物学报, 2019, 45: 1806-1821.
doi: 10.3724/SP.J.1006.2019.94027 |
Li Y Y, Jing R R, Lyu R R, Shi P C, Li X, Wang Q, Wu D, Zhou Q Y, Li J N, Tang Z L. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. Acta Agron Sin, 2019, 45: 1806-1821. (in Chinese with English abstract) | |
[36] |
Li Z, Mei S F, Mei Z, Liu X L, Fu T D, Zhou G S, Tu J X. Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica, 2014, 197: 341-353.
doi: 10.1007/s10681-014-1070-z |
[37] |
Boem F H G, Lavado R S, Porcelli C A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res, 1996, 47: 175-179.
doi: 10.1016/0378-4290(96)00025-1 |
[38] | 王燕茹, 袁秉琛, 孙郁婷, 王志勇, 虞道耿. 蝴蝶豆种质资源芽期耐盐性筛选及评价. 热带作物学报, 2022, 44: 955-967. |
Wang Y R, Yuan B C, Sun Y T, Wang Z Y, Yu D G. Screening and evaluation of salt tolerance in the bud stage of Centrosema pubescens Resources. Chin J Trop Crops, 2022, 44: 955-967. (in Chinese with English abstract) | |
[39] |
Al-Tamimi N, Brien C, Oakey H, Berger B, Saade S, Ho Y S, Schmockel S M, Tester M, Negrao S. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat Commun, 2016, 7: 13342.
doi: 10.1038/ncomms13342 pmid: 27853175 |
[40] |
Duan L F, Han J W, Guo Z L, Tu H F, Yang P, Zhang D, Fan Y, Chen G X, Xiong L Z, Dai M Q, Williams K, Corke F, Doonan J H, Yang W N. Novel digital features discriminate between drought resistant and drought sensitive rice under controlled and field conditions. Front Plant Sci, 2018, 9: 492.
doi: 10.3389/fpls.2018.00492 pmid: 29719548 |
[41] |
Fisher L H, Han J, Corke F M, Akinyemi A, Didion T, Nielsen K K, Doonan J H, Mur L A, Bosch M. Linking dynamic phenotyping with metabolite analysis to study natural variation in drought responses of brachypodium distachyon. Front Plant Sci, 2016, 7: 1751.
pmid: 27965679 |
[42] |
Guo Z L, Yang W N, Chang Y, Ma X S, Tu H F, Xiong F, Jiang N, Feng H, Huang C L, Yang P, Zhao H, Chen G X, Liu H Y, Luo L J, Hu H H, Liu Q, Xiong L Z. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. Mol Plant, 2018, 11: 789-805.
doi: S1674-2052(18)30126-6 pmid: 29614319 |
[43] |
Wu D, Guo Z L, Ye J L, Feng H, Liu J X, Chen G X, Zheng J, Yan D M, Yang X Q, Xiong X, Liu Q, Niu Z Y, Gay A P, Doonan J H, Xiong L Z, Yang W N. Combining high-throughput micro- CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice. J Exp Bot, 2019, 70: 545-561.
doi: 10.1093/jxb/ery373 |
[44] |
Zhang X H, Huang C L, Wu D, Qiao F, Li W Q, Duan L F, Wang K, Xiao Y J, Chen G X, Liu Q, Xiong L Z, Yang W N, Yan J B. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol, 2017, 173: 1554-1564.
doi: 10.1104/pp.16.01516 pmid: 28153923 |
[1] | 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250. |
[2] | 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186. |
[3] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
[4] | 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531. |
[5] | 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550. |
[6] | 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561. |
[7] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[8] | 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183. |
[9] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221. |
[10] | 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261. |
[11] | 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139. |
[12] | 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027. |
[13] | 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925. |
[14] | 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905. |
[15] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 634
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 427
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|