欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 187-198.doi: 10.3724/SP.J.1006.2024.34046

• 耕作栽培·生理生化 • 上一篇    下一篇

低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制

孙尚文1,2(), 束红梅2, 杨长琴2, 张国伟2, 王晓婧2, 孟亚利1, 王友华1, 刘瑞显2,*()   

  1. 1南京农业大学农学院, 江苏南京 210095
    2江苏省农业科学院经济作物研究所 / 农业农村部长江下游棉花与油菜重点实验室, 江苏南京210014
  • 收稿日期:2023-03-08 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-19
  • 通讯作者: *刘瑞显, E-mail: liuruixian2008@163.com
  • 作者简介:E-mail: 2331164738@qq.com
  • 基金资助:
    国家自然科学基金项目(32071968);江苏省农业科技自主创新资金项目(CX(22)2015);江苏省现代作物协同创新中心项目(JCIC-MCP)

Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress

SUN Shang-Wen1,2(), SHU Hong-Mei2, YANG Chang-Qin2, ZHANG Guo-Wei2, WANG Xiao-Jing2, MENG Ya-Li1, WANG You-Hua1, LIU Rui-Xian2,*()   

  1. 1College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed in the Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, Jiangsu, China
  • Received:2023-03-08 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-19
  • Contact: *E-mail: liuruixian2008@163.com
  • Supported by:
    National Natural Science Foundation of China(32071968);Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)2015);Jiangsu Collaborative Center for Modern Crop Production(JCIC-MCP)

摘要:

脱叶催熟是棉花机械采收的前提, 但遇低温可导致噻苯隆(TDZ)脱叶效果下降, 不能满足机械化采收的要求, 本实验室发现环丙酸酰胺(CYC)可显著提高低温下TDZ的脱叶效果, 但CYC促进低温下棉花化学脱叶的机制尚不清楚。为此, 以中棉425品种为材料, 设置2个温度水平(25℃和15℃), 清水(CK)、TDZ单剂(T)和TDZ+CYC复配(TC)3种处理方式, 分析棉叶脱落过程中离层中内源激素含量变化及相关基因的表达情况。结果表明: 低温(15℃)下处理后240 h, T处理棉花脱叶率仅为53.0%, 但TC处理的棉叶脱落开始时间较T处理提前24 h且脱落率升高至79.6%。低温下, 相较于T处理, TC处理棉叶离层生长素(IAA)运输相关基因(LAX2PIN1)、IAA响应基因(IAA9ARF3)表达量显著下降, 离层中IAA含量降低; 离层乙烯(ET)合成基因(ACSACO)表达量升高, ET合成前体ACC含量增加, ET下游信号基因(ERF1B)显著上调表达; 茉莉酸(JA)合成相关基因(AOC4)上调表达, 离层中JA含量增加。综上, 低温下CYC和TDZ复配抑制棉叶离层中IAA运输与信号传导, 促进ET、JA合成与ET信号转导, 是CYC提高低温下TDZ脱叶效果的主要原因。

关键词: 棉花脱叶, 低温, 噻苯隆, 环丙酸酰胺, 内源激素含量, 基因表达

Abstract:

The technology of cotton leaf removal is an important prerequisite for realizing the mechanical harvesting of cotton, but low temperature affect the efficiency of TDZ-induced leaf abscission, which cannot meet the requirements of mechanized harvesting. In our laboratory, we found that cyclanilide (CYC) could improve the defoliation efficiency of TDZ at low temperature, but the mechanism of CYC promoting chemical defoliation (TDZ) under low temperature is unknown. Therefore, the content of plant hormones and the relative expression level of related genes in the abscission zone of cotton leaves were analyzed using Zhongmian 425 as the experimental material, setting two temperature levels (25℃ and 15℃) and three treatments [water (CK), single TDZ (T), and the compound of TDZ+CYC (TC)]. At 240 h after treatment under low temperature (15℃), the abscission rate of cotton leaves treated by T was only 53.0%, while the start time of cotton leaves abscission treated by TC was 24 h ahead of that treated by T and the abscission rate of cotton leaves treated by TC increased to 79.6%. At low temperature, compared with T, the relative expression level of auxin (IAA) transport genes (LAX2, PIN1), IAA response genes (IAA9, ARF3) and the content of IAA in the abscission zone of cotton leaves treated with TC were reduced significantly; the relative expression level of ethylene (ET) synthesis genes (ACS, ACO), and the content of ET synthesis precursor ACC were increased, the relative expression level of ET downstream signal gene(ERF1B) was up-regulated significantly in the abscission zone treated with TC. The jasmonate acid (JA) synthesis-related gene (AOC4) was up-regulated, and the content of JA was increased in abscission zone treated by TC. The inhibition of the IAA transport and signal transduction and the promotion of ET and JA synthesis and ET signal transduction caused by TC treatment in the abscission zones of cotton leaves could be the key reason that CYC could promote cotton leaves abscission effect of TDZ at low temperature.

Key words: cotton defoliation, low temperature, thiadiazuron, cyclanilide, plant hormone content, gene relative expression

表1

引物及其序列"

基因
Gene name
上游引物
Forward primer sequence (5°-3°)
下游引物
Reverse primer sequence (5°-3°)
IAA9(Gh_A05G3764) CCAGAAGGTGGTAAAGGAC AAACGATCTAATAGGAGGC
ARF3(Gh_A05G1337) TGTCCTCACCGTCTTCAGT GCTTCCTAGATACCTCCTAC
LAX2(Gh_A01G1955) GCCTTCAACTGTACTTTCC TAGGTCCATGTCCTCTTGT
PIN1(Gh_D12G2556) GCCATAAACAGACCAAGAC TCAGGTGGAATGTGGAAAT
ACS(Gh_D12G2746) GGGTGATTGAGGTATGGGAGA TGCATAAGCACAACGAGGC
ACO(Gh_D11G1565) CCACCAGCATCTGTATGAG CTGCGAGAATCTTGGACTA
ERF1B(Gh_Sca115107G01) GGGAAATTCAGGATAGCGG GGAGATAAGGGATTCAACGAG
CYP707A4(Gh_D02G2083) CGGAAATGAACTGGCGAAGC TTGTTGAGGCACTGGGAAT
PP2C77(Gh_A08G2192) ATTGACCGTGCTCCGTATA ACATCGTCCTCACCTCCTT
AOC4(Gh_A08G0314) GCCAGACCCACCAGTAATA TTTGGAGAAACGGATAGGA
TIFY9(Gh_D01G0196) TTCCGAGGTATTCAAGGTG AAATCGTCAACGGTGCTGT

图1

不同处理棉花叶片脱落率 (a) 棉花叶片脱落照片; (b) 棉花叶片脱落率。CK: 对照处理; T: TDZ处理; TC: TDZ+CYC处理; N: 常温; L: 低温。"

图2

不同处理棉叶离层IAA含量变化 (a) 常温条件下棉叶离层中IAA含量; (b) 低温条件下棉叶离层中IAA含量。同一时间点不同小写字母代表在0.05概率水平差异显著。处理同图1。"

图3

不同处理棉叶离层ACC含量变化 (a) 常温条件下棉叶离层中ACC含量; (b) 低温条件下棉叶离层中ACC含量。同一时间点不同小写字母代表在0.05概率水平差异显著, ns代表在0.05概率水平无显著差异。处理同图1。"

图4

不同处理棉叶离层ABA含量变化 (a) 常温条件下棉叶离层中ABA含量; (b) 低温条件下棉叶离层中ABA含量。同一时间点不同小写字母代表在0.05概率水平差异显著。处理同图1。"

图5

不同处理棉叶离层JA含量变化 (a) 常温条件下棉叶离层中JA含量; (b) 低温条件下棉叶离层中JA含量。同一时间点不同小写字母代表在0.05概率水平差异显著, ns代表在0.05概率水平无显著差异。处理同图1。"

图6

不同处理棉叶离层中IAA相关基因表达量 (a) 常温下棉叶离层中IAA相关基因的表达量; (b) 低温下棉叶离层中IAA相关基因的表达量。同一时间点不同小写字母代表在0.05概率水平差异显著。处理同图1。"

图7

不同处理棉叶离层中ET相关基因表达量 (a) 常温下棉叶离层中ET相关基因的表达量; (b) 低温下离层中ET相关基因的表达量。同一时间点不同小写字母代表在0.05概率水平差异显著, ns代表在0.05概率水平无显著差异。处理同图1。"

图8

不同处理棉叶离层中ABA相关基因表达量 (a) 常温下离层中ABA相关基因的表达量; (b) 低温下离层中ABA相关基因的表达量。同一时间点不同小写字母代表在0.05概率水平差异显著, ns代表在0.05概率水平无显著差异。处理同图1。"

图9

不同处理棉叶离层中JA相关基因相对表达量 (a) 常温下离层中JA相关基因的表达量; (b) 低温下离层中JA相关基因的表达量。同一时间点不同小写字母代表在0.05概率水平差异显著, ns代表在0.05概率水平无显著差异。处理同图1。"

[1] Brar Z R, Sekhon K S, Deol J S. Effect of defoliants on growth and yield of timely and late sown cotton (Gossypium hirustum L.). J Cotton Res Dev, 1995, 9: 227-230.
[2] 过兴先, 曾伟. 新疆棉区的气温和棉铃发育关系的研究. 作物学报, 1989, 15: 202-212.
Guo X X, Zeng W. A study on relationship between temperature and cotton boll development in Xinjiang. Acta Agron Sin, 1989, 15: 202-212. (in Chinese with English abstract)
[3] DB65/T 3980-2017. 机采棉脱叶剂喷施技术规范. 新疆维吾尔自治区, 新疆维吾尔自治区质量技术监督局, 2017-03-20.
DB65/T 3980-2017. Technical specification for application of machine-picked cotton defoliant. Xinjiang Uygur Autonomous Region, Xinjiang Uygur Autonomous Region Bureau of Quality and Technical Supervision, 2017-03-20. (in Chinese)
[4] 王桂盛, 田中午, 陈发. 机采棉化学脱叶催熟技术的应用研究. 中国棉花, 1997, 24(10): 25-26.
Wang G S, Tian Z W, Chen F. Study on the application of chemical defoliation and ripening technology for mechanically harvested cotton. China Cotton, 1997, 24(10): 25-26. (in Chinese with English abstract)
[5] Tucker M L, Kim J. Abscission research: what we know and what we still need to study. S Postharvest Rev, 2015, 2: 1.
[6] Shu H M, Sun S W, Wang X J, Zhang G W, Yang C Q, Meng Y L, Wang Y H, Hu W, Liu R X. Low temperature inhibits the defoliation efficiency of thidiazuron in cotton by regulating plant hormone synthesis and the signaling pathway. Int J Mol Sci, 2022, 23: 14208.
doi: 10.3390/ijms232214208
[7] Meir S, Hunter D A, Chen J C, Halaly V, Reid M S. Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa. Plant Physiol, 2006, 141: 1604-1616.
[8] Li F, Wu Q, Liao B, Yu K K, Huo Y N, Meng L, Wang S M, Wang B M, Du M W, Tian X L, Li Z H. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. Int J Mol Sci, 2022, 23: 2696.
doi: 10.3390/ijms23052696
[9] 高丽丽, 李淦, 康正华, 李健伟, 王蜜蜂, 马云珍, 张巨松. 脱叶剂对棉花抗氧化酶及内源激素的影响. 农药学学报, 2016, 18: 439-446.
Gao L L, Li G, Kang Z H, Li J W, Wang M F, Ma Y Z, Zhang J S. Effect of defoliants on antioxidative enzyme activity and endogenous hormone contents of cotton. Chin J Pestic Sci, 2016, 18: 439-446. (in Chinese with English abstract)
[10] Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj V, Burd S, Ophir R, Kochanek B, Reid M S, Jiang C J, Lers A. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol, 2010, 154: 1929-1956.
doi: 10.1104/pp.110.160697 pmid: 20947671
[11] 靳丁沙.噻苯隆调控棉花叶片脱落的机制研究. 华中农业大学博士学位论文, 湖北武汉, 2021.
Jin D S.The Mechanism of Thidiazuron Regulating Cotton Leaf Abscission. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract).
[12] Wang R, Li R, Cheng L, Wang X Y, Fu X, Dong X F, Qi M F, Jiang C Z, Xu T, Li T L. SlERF52 regulates SlTIP1;1 expression to accelerate tomato pedicel abscission. Plant Physiol, 2021, 185: 1829-1846.
doi: 10.1093/plphys/kiab026
[13] 高欣欣, 刘少春, 张跃彬, 邓军, 樊仙, 夏红明, 刀静梅. 植物器官脱落相关激素和酶的研究进展. 中国农学通报, 2013, 29(33): 17-21.
Gao X X, Liu S C, Zhang Y B, Deng J, Fan X, Xia H M, Dao J M. Progress in researches on the mechanism of abscission of plant organs. Chin Agric Sci Bull, 2013, 29(33): 17-21. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.2012-3528
[14] Gao Y, Liu Y, Liang Y, Lu L J, Jiang C Y, Fei Z J, Jiang C Z, Ma C, Gao J P. Rose hybrida RhERF1and RhERF4 mediate ethylene- and auxin-regulated petal abscission by influencing pectin degradation. Plant J, 2019, 99: 1159-1171.
doi: 10.1111/tpj.v99.6
[15] Lee Y, Do V G, Kim S, Kweon H, McGhie T K. Cold stress triggers premature fruit abscission through ABA-dependent signal transduction in early developing apple. PLoS One, 2021, 16: e0249975.
doi: 10.1371/journal.pone.0249975
[16] Kućko A, Florkiewicz A B, Wolska M, Miętki J, Kapusta M, Domagalski K, Wilmowicz E. Jasmonate-dependent response of the flower abscission zone cells to drought in yellow lupine. Plants, 2022, 11: 527.
doi: 10.3390/plants11040527
[17] Elfving D C, Visser D B. Cyclanilide induces lateral branching in sweet cherry trees. HortScience, 2006, 41: 149-153.
doi: 10.21273/HORTSCI.41.1.149
[18] Pedersen M K, Burton J D, Coble H D. Effect of cyclanilide, ethephon, auxin transport inhibitors, and temperature on whole plant defoliation. Crop Sci, 2006, 46: 1666-1672.
doi: 10.2135/cropsci2005.07-0189
[19] 刘瑞显, 张国伟, 杨长琴, 王晓婧.一种用于脱叶的组合物、棉花脱叶剂及其制备方法. 中国专利: 201910383480. 7, 2021-06-08.
Liu R X, Zhang G W, Yang C Q, Wang X J.A composition for defoliation, cotton defoliating agent, and the preparation methods. Chinese Patent: 201910383480. 7, 2021-06-08. (in Chinese)
[20] 史自航.生长素运输载体SlPIN在调控番茄花柄脱落中的作用机制. 沈阳农业大学博士学位论文, 辽宁沈阳, 2018.
Shi Z H.Effects of Auxin Transport Facilitator SlPIN on Tomato Pedicel Abscission. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018. (in Chinese with English abstract)
[21] Dong X F, Ma C, Xu T, Reid M S, Jiang C J, Li T L. Auxin response and transport during induction of pedicel abscission in tomato. Hortic Res, 2021, 8: 192-201.
doi: 10.1038/s41438-021-00626-8
[22] Zažímalová E, Murphy A S, Yang H, Hoyerová K, Hošek P. Auxin transporters: why so many? Cold Spring Harb Perspect Biol, 2010, 2: a001552.
[23] Kühn N, Serrano A, Abello C, Arce A, Espinoza C, Gouthu S, Deluc L, Arce-Johnson P. Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission. BMC Plant Biol, 2016, 16: 234.
doi: 10.1186/s12870-016-0914-1
[24] Shi Z, Jiang Y, Han X, Liu X, Cao R S, Qi M F, Xu T, Li T L. SlPIN1 regulates auxin efflux to affect flower abscission process. Sci Rep, 2017, 7: 1-13.
doi: 10.1038/s41598-016-0028-x
[25] Kućko A, Wilmowicz E, Pokora W, Alché J. Disruption of the auxin gradient in the abscission zone area evokes asymmetrical changes leading to flower separation in yellow lupine. Int J Mol Sci, 2020, 21: 3815.
doi: 10.3390/ijms21113815
[26] Gao Y, Liu C, Li X, Xu H Q, Liang Y, Ma N, Fei Z J, Gao J P, Jiang C Z, Ma C. Transcriptome profiling of petal abscission zone and functional analysis of an Aux/IAA family gene RhIAA16 involved in petal shedding in rose. Front Plant Sci, 2016, 7: 1375.
[27] Guilfoyle T J, Hagen G. Auxin response factors. Curr Opin Plant Biol, 2007, 10: 453-460.
doi: 10.1016/j.pbi.2007.08.014 pmid: 17900969
[28] Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J, Reed J.AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005, 132: 4563-4574.
[29] Burton J D, Pedersen M K, Coble H D. Effect of cyclanilide on auxin activity. J Plant Growth Regul, 2008, 27: 342-352.
doi: 10.1007/s00344-008-9062-7
[30] Adams D O, Yang S F. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA, 1979, 76: 170-174.
doi: 10.1073/pnas.76.1.170 pmid: 16592605
[31] Oñate-Sánchez L, Anderson J P, Young J, Singh K B. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol, 2007, 143: 400-409.
doi: 10.1104/pp.106.086637 pmid: 17114278
[32] 高瑜, 徐娇, 张冰, 孙伟男, 杨细燕. 机采棉化学脱叶伴随着剧烈的乙烯及细胞分裂素信号响应. 棉花学报, 2020, 32: 491-500.
Gao Y, Xu J, Zhang B, Sun W N, Yang X Y. Chemical defoliation of machine-harvested cotton was accompanied by intense ethylene and cytokinin signal responses. Cotton Sci, 2020, 32: 491-500. (in Chinese with English abstract)
[33] Liu D, Li J, Li Z, Pei Y. Hydrogen sulfide inhibits ethylene-induced petiole abscission in tomato (Solanum lycopersicum L.). Hortic Res, 2020, 7: 14.
doi: 10.1038/s41438-019-0237-0
[34] Nakano T, Fujisawa M, Shima Y, Ito Y. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. J Exp Bot, 2014, 65: 3111-3119.
doi: 10.1093/jxb/eru154
[35] 王烁. MdERF1B介导乙烯和茉莉酸促进苹果花青苷合成的分子机制. 山东农业大学硕士学位论文, 山东泰安, 2022.
Wang S. Molecular Mechanism of MdERF1B Mediating Ethylene and Jasmonic Acid to Promote Apple Anthocyanin Synthesis. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2022. (in Chinese with English abstract)
[36] Mishra A, Khare S, Trivedi P K, Nath P. Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulase and polygalacturonase activities during cotton leaf abscission. South Afr J Bot, 2008, 74: 282-287.
doi: 10.1016/j.sajb.2007.12.001
[37] Wilmowicz E, Frankowski K, Kućko A, Świdziński M, Alché J, Nowakowska A, Kopcewicz J. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus. J Plant Physiol, 2016, 206: 49-58.
[38] 李思嘉. 温度影响棉花化学脱叶的生理机制及其应用研究. 扬州大学硕士学位论文, 江苏扬州, 2020.
Li S J. Physiology Mechanism of Temperature Affecting Chemical Defoliation and its Application in Cotton. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2020. (in Chinese with English abstract)
[39] Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8’-hydroxylase in rice. Plant Cell Physiol, 2007, 48: 287-298.
doi: 10.1093/pcp/pcm003
[40] Tosetti R, Waters A, Chope G A, Cools K, Alamar M C, McWilliam S, Thompson A J, Terry L A. New insights into the effects of ethylene on ABA catabolism, sweetening and dormancy in stored potato tubers. Postharv Biol Technol, 2021, 173: 111420.
doi: 10.1016/j.postharvbio.2020.111420
[41] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005, 56: 165-185.
pmid: 15862093
[42] Kamiya Y. Plant hormones: versatile regulators of plant growth and development. Annu Rev Plant Biol, 2010, 60: 1-2.
doi: 10.1146/arplant.2009.60.issue-1
[43] Ueda J, Miyamoto K, Hashimoto M. Jasmonates promote abscission in bean petiole expiants: its relationship to the metabolism of cell wall polysaccharides and cellulase activity. J Plant Grow Regul, 1996, 15: 189-189.
[44] Fidelibus M W, Petracek P, McArtney S. Jasmonic acid activates the fruit-pedicel abscission zone of ‘Thompson seedless’ grapes, especially with co-application of 1-aminocyclopropane-1- carboxylic acid. Plants, 2022, 11: 1245.
doi: 10.3390/plants11091245
[45] Wang Y, Mostafa S, Zeng W, Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci, 2021, 22: 8568.
doi: 10.3390/ijms22168568
[46] 周婷婷.脱落酸和噻苯隆复配调控棉花叶片脱落的形态学研究和转录组分析. 石河子大学硕士学位论文, 新疆石河子, 2021.
Zhou T T. Morphological Study and Transcriptome Analysis of Abscisic Acid and Thidiazuron on Regulating Cotton Defoliation. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2021. (in Chinese with English abstract)
[47] 罗冬梅.菠萝乙烯催花处理及AcTIFY 10c-like基因的功能鉴定. 南京农业大学硕士学位论文, 江苏南京, 2019.
Luo D M. Ethylene on Flower Forcing andFunctional Identification of AcTIFY 10c-like Gene. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019. (in Chinese with English abstract)
[48] Song S, Huang H, Gao H, Wang J J, Wu D W, Liu X L, Yang S H, Zhai Q Z, Li C Y, Qi T C, Xie D X. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell, 2014, 26: 263-279.
doi: 10.1105/tpc.113.120394
[1] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[2] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[3] 项嘉铭, 戴茜, 刘立军. 外源水杨酸提高云麻1号(Cannabis sativa L.)对铜胁迫的耐受性[J]. 作物学报, 2023, 49(7): 1979-1993.
[4] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[5] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[6] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[7] 于超, 李国龙, 孙亚卿, 李宁宁, 张少英. 甜菜块根生长发育中呼吸代谢的特性研究[J]. 作物学报, 2023, 49(12): 3377-3386.
[8] 朱继杰, 王士杰, 赵红霞, 贾晓昀, 李妙, 王国印. 田间条件下不同棉花品种叶片响应化学脱叶剂噻苯隆的转录组分析[J]. 作物学报, 2023, 49(10): 2705-2716.
[9] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
[10] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[11] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[12] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[13] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[14] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[15] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .