欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3377-3386.doi: 10.3724/SP.J.1006.2023.34026

• 耕作栽培·生理生化 • 上一篇    下一篇

甜菜块根生长发育中呼吸代谢的特性研究

于超(), 李国龙, 孙亚卿, 李宁宁, 张少英*()   

  1. 内蒙古农业大学农学院, 内蒙古呼和浩特 010019
  • 收稿日期:2023-02-10 接受日期:2023-05-24 出版日期:2023-12-12 网络出版日期:2023-05-29
  • 通讯作者: * 张少英, E-mail: syzh36@aliyun.com
  • 作者简介:E-mail: yuchao19870618@sina.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(Sugar, CARS-170201);国家自然科学基金项目(31260347)

Characteristics of respiratory metabolism in growth and development of sugar beet taproot

YU Chao(), LI Guo-Long, SUN Ya-Qing, LI Ning-Ning, ZHANG Shao-Ying*()   

  1. Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2023-02-10 Accepted:2023-05-24 Published:2023-12-12 Published online:2023-05-29
  • Contact: * E-mail: syzh36@aliyun.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(Sugar, CARS-170201);National Natural Science Foundation of China(31260347)

摘要:

呼吸作用是作物生长发育的重要代谢基础。本研究以4个不同基因型甜菜品种为研究材料, 比较不同基因型甜菜各生育时期块根生长发育特性、呼吸速率、呼吸关键酶活性及其基因表达和能量差异, 分析各呼吸生理指标与甜菜块根增长和糖分积累的关系。研究结果表明, 不同基因型甜菜呼吸代谢水平存在显著差异, 块根呼吸速率、ATP合酶活性、ATP含量与块根重量呈极显著正相关, 表明较强的呼吸与能量代谢可促进甜菜块根的生长。联合分析呼吸代谢途径关键酶(HK、PK、IDH、SDH、6PGDH和G6PDH)活性及其基因表达和呼吸途径抑制剂效果表明, EMP-TCA是甜菜块根生长的主呼吸代谢途径, 抑制各条呼吸途径都降低甜菜的块根重量和直径, EMP、TCA和PPP途径均对甜菜块根膨大具有促进作用。研究结果为进一步深入研究甜菜块根生理机制奠定了理论基础, 为选育和鉴定高产甜菜提供了生理指标。

关键词: 甜菜, 呼吸速率, 呼吸酶活性, 基因表达, ATP

Abstract:

Respiration is an important metabolic basis for plant growth and development. The objective of this study is to compare the differences of taproot development characteristics, respiratory rate, respiratory key enzyme activity, gene expression, and energy change in different growth stages, and analyze the relationship between various respiratory physiological and sugar accumulation of sugar beet roots. In this study, four different genotypes of sugarbeet varieties were used as the experimental materials. The key enzyme activity and gene expression of respiratory metabolic pathway were determined, and respiratory pathway inhibitors were used at different growth stages. These results indicated the EMP-TCA was the main respiratory metabolic pathway during the growth process in beet taproot. No matter which respiratory pathway was inhibited, the weight and diameter of beet taproot can be reduced. Different respiratory metabolic pathways (EMP, TCA, and PPP) all played the important roles in promoting taproot expansion. In conclusions, this study laid a theoretical foundation for further research on the physiological mechanism of sugarbeet taproot, and provided physiological indicators for the breeding and identifying high-yield sugarbeet.

Key words: sugar beet, respiratory rate, respiratory enzyme activity, gene expression, ATP

表1

引物设计"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
ACTIN TGCTTGACTCTGGTGATGGT AGCAAGATCCAAACGGAGAATG
PK TTCGCTGCCTCTGCTGCTACTA AAATGAGATGTTTCACGCCTTC
HK GCGACGTTATGGTTGAGGTTAT ACTCTTCCAACTCCCTCAACAC
IDH GCAACCATCACACCAGATGAA AAGACCGTGCCATTAAGGATGT
SDH AGATCGCCTCCGATTCTCTCTAC GCCTCCATTCCAACAGCAA
G6PDH ATGGATCTCCCTACCAGTCG CTCATCAAAATAGCCACCTCT
6PGDH AGTCTGCCTAGCTATCAACTCGG TGACTGTCTCGCAATCTTGAAC

图1

不同基因型甜菜各生育时期块根形态的差异 SS、RFGS、RSGS和SAS分别代表苗期、叶丛快速生长期、块根及糖分增长期和糖分积累期。"

图2

不同基因型甜菜各生育时期块根鲜重和含糖率的差异 不同生育时期的缩写同图1。"

图3

不同基因型甜菜各生育时期块根呼吸速率的差异 不同生育时期的缩写同图1。"

表2

甜菜呼吸速率与块根重量和含糖率的相关系数"

项目
Item
呼吸速率 Respiration rate
苗期SS 叶丛快速生长期RFGS 块根及糖分增长期RSGS 糖分积累期SAS
根重Root weight 0.45 0.81** 0.84** 0.77**
含糖率Sugar content 0.25 -0.53 -0.41 -0.60*

图4

不同基因型甜菜各生育时期块根中呼吸代谢途径关键酶活性差异 误差线上不同小写字母表示在0.05概率水平的差异显著。不同生育时期的缩写同图1。"

表3

甜菜呼吸代谢途径关键酶活性与块根重量和含糖率的相关系数"

生育时期
Growth stage
项目
Item
酶活性Enzyme activity
丙酮酸激酶PK 己糖激酶HK 异柠檬酸
脱氢酶
IDH
琥珀酸
脱氢酶
SDH
葡萄糖-6-磷酸脱氢酶G6PDH 6-磷酸葡萄糖酸脱氢酶6PGDH
叶丛快速生长期RFGS 根重Taproot weight -0.67* -0.34 0.86** 0.75** -0.70* 0.83**
含糖率Sugar content 0.58 0.09 -0.67* -0.45 0.54 -0.67*
块根及糖分增长期RSGS 根重Taproot weight 0.83** 0.51 0.79** 0.62* 0.82** -0.58*
含糖率Sugar content -0.81** -0.73** -0.52 -0.64* -0.84** 0.78**
糖分积累期SAS 根重Taproot weight 0.74** -0.55 0.78** -0.14 -0.06 -0.45
含糖率Sugar content -0.86** 0.41 -0.93** -0.11 -0.01 0.17

图5

不同基因型甜菜各生育时期呼吸代谢途径关键酶基因表达量差异 误差线上不同小写字母表示在0.05概率水平差异显著。不同生育时期的缩写同图1。"

图6

呼吸抑制剂对不同基因型甜菜块根呼吸速率和表型的影响 误差线上不同小写字母表示在0.05概率水平差异显著。"

图7

不同基因型甜菜各生育时期块根能量代谢差异 误差线上不同小写字母表示在0.05概率水平差异显著。"

表4

甜菜能量代谢与块根重量和含糖率的相关系数"

项目
Item
ATPase活性 ATPase activity ATP含量 ATP content
叶丛快速
生长期
RFGS
块根及糖分
增长期
RSGS
糖分积累期
SAS
叶丛快速
生长期
RFGS
块根及糖分
增长期
RSGS
糖分积累期SAS
根重Taproot weight 0.80** 0.80** 0.81** 0.85** 0.84** 0.52
含糖率Sugar content -0.36 -0.64* -0.90** -0.64* -0.81** -0.71**
[1] 刘佳, 薛惠云, 李倩, 张志勇. 不同年代小麦品种根系形态差异性分析. 山东农业科学, 2021, 53(3): 15-21.
Liu J, Xue H Y, Li Q, Zhang Z Y. Difference analysis of root morphology of wheat varieties among different eras. Shandong Agric Sci, 2021, 53(3): 15-21. (in Chinese with English abstract)
[2] Robinson D. The responses of plants to non-uniform supplies of nutrients. New Phytol, 1994, 127: 635-674.
doi: 10.1111/j.1469-8137.1994.tb02969.x pmid: 33874383
[3] 曲梦雪, 宋杰, 孙菁, 胡旦旦, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘鹏. 镉胁迫对不同耐镉型玉米品种苗期根系生长的影响. 作物学报, 2022, 48: 2945-2952.
doi: 10.3724/SP.J.1006.2022.13077
Qu M X, Song J, Sun J, Hu D D, Wang H Z, Ren H, Zhao B, Zhang J W, Ren B Z, Liu P. Effects of cadmium stress on root growth of maize (Zea mays L.) varieties with different cadmium-tolerant at seedling stage. Acta Agron Sin, 2022, 48: 2945-2952. (in Chinese with English abstract)
[4] 张秋月. 复合胁迫对东北山樱根系生理生化特性的影响. 沈阳农业大学硕士学位论文,辽宁沈阳, 2020.
Zhang Q Y. Effects on Physiological and Biochemical Characteristics of Cerasus sachalinensis Roots under Combined Stress. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2020. (in Chinese with English abstract)
[5] Van Der Merwe M J, Osorio S, Araujo W L, Albo I, Nunes-Nesi A, Maximova E, Carrari F, Bunik V I, Persson S, Fernie A R. Tricarboxylic acid cycle activity regulates tomato root growth via effects on secondary cell wall production. Plant Physiol, 2010, 153: 611-621.
doi: 10.1104/pp.109.149047
[6] Howell P G, Levin E A, Springer A L, Kraemer S M, Phippard D J, Schief W R, Smith J D. Mapping a common interaction site used by Plasmodium falciparum Duffy binding-like domains to bind diverse host receptors. Mol Microbiol, 2008, 67: 78-87.
[7] 于乔乔. 低温胁迫下玉米幼苗光合及呼吸代谢特性的研究. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2021.
Yu Q Q. Study on the Characteristics of Photosynthesis and Respiratory Metabolism of Maize Seedlings under Low Temperature Stress. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2021. (in Chinese with English abstract)
[8] 王军可. 灌浆初期高温影响粳稻籽粒碳氮代谢变化的机理及其调控. 中国农业科学院硕士学位论文,北京, 2021.
Wang J K. Mechanism and Regulation of High Temperature at the Early Stage of Grain Filling on Changes in Carbon and Nitrogen Metabolism of Japonica Rice Grains. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[9] 任晓松, 王子沐, 焦健, 田礼欣, 刘赵月, 李晶. GA3处理对低温胁迫条件下玉米种子呼吸代谢的影响. 生态学杂志, 2020, 39: 847-854.
Ren X S, Wang Z M, Jiao J, Tian L X, Liu Z Y, Li J. Effects of GA3 treatment on respiratory metabolism of maize seeds under low temperature stress. Chin J Ecol, 2020, 39: 847-854. (in Chinese with English abstract)
[10] 刘丽杰, 苍晶, 李怀伟, 于晶, 王兴, 王健飞, 黄儒, 徐琛. 外源ABA对冬小麦越冬期呼吸代谢关键酶与糖代谢的影响. 麦类作物学报, 2013, 33: 65-72.
Liu L J, Cang J, Li H W, Yu J, Wang X, Wang J F, Huang R, Xu C. Effects of exogenous abscisic acid on key enzymes of respiratory metabolism and sugar metabolism of winter wheat in the wintering period. J Triticeae Crops, 2013, 33: 65-72. (in Chinese with English abstract)
[11] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析. 作物学报, 2022, 48: 2100-2144.
doi: 10.3724/SP.J.1006.2022.14110
Guo J X, Lu X Y, Tao Y F, Guo H J, Min W. Analysis of metabolites and pathways in cotton under salt and alkali stresses. Acta Agron Sin, 2022, 48: 2100-2144 (in Chinese with English abstract).
[12] 陈海浪, 陈喜文, 陈德富. NAD+-依赖型异柠檬酸脱氢酶的结构和功能研究进展. 生物技术通讯, 2003, 14: 304-307.
Chen H L, Chen X W, Chen D F. Advance on structure and function of NAD+-dependent isocitrate dehydrogenase. Lett Biotechnol, 2003, 14: 304-307. (in Chinese with English abstract)
[13] 陈一鸣, 王涛, 张凤姣, 庄维兵, 束晓春, 王忠, 杨清. 南方红豆杉野生种与栽培品种‘金锡杉’针叶代谢物的比较分析. 西北植物学报, 2019, 39: 801-807.
Chen Y M, Wang T, Zhang F J, Zhuang W B, Shu X C, Wang Z, Yang Q. Comparison of metabolites in the needles of Taxus wallichiana var., Mairei and Taxus wallichiana var., Mairei cv., ‘Jinxishan’. Acta Bot Boreali-Occident Sin, 2019, 39: 801-807. (in Chinese with English abstract)
[14] 张旭. 水分亏缺对小麦旗叶与穗部C3, C4光合途径关键酶及其中间产物代谢的影响. 西北农林科技大学硕士学位论文,陕西杨凌, 2019.
Zhang X. Effects of Water Deficit on C3 and C4 Photosynthesis Enzymes and Primary Carbon Metabolism in Wheat Flag Leaves and Spikes. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019. (in Chinese with English abstract)
[15] 马春媚. 一氧化氮对桃果实三羧酸循环相关酶活性及蛋白质结构的影响. 山东农业大学硕士学位论文,山东泰安, 2013.
Ma C M. Effects of Nitric Oxide on Activities and Structure of Enzymes in Tricarboxylic Acid Cycle. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2013. (in Chinese with English abstract)
[16] 李晓炜. 种子萌发过程中呼吸关键酶调控物质能量代谢规律研究. 兰州大学硕士学位论文,甘肃兰州, 2016.
Li X W. The Law of Material and Energy Metabolism Regulated by the Key Enzyme of Respiration in the Process of Seed Germination. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2016. (in Chinese with English abstract)
[17] Smiri M, Chaoui A, Ferjani E E. Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. J Plant Physiol, 2009, 166: 259-269.
doi: 10.1016/j.jplph.2008.05.006
[18] Peng Y, Niklas K J, Reich P B, Sun S. Ontogenetic shift in the scaling of dark respiration with whole-plant mass in seven shrub species. Funct Ecol, 2010, 24: 502-512.
doi: 10.1111/fec.2010.24.issue-3
[19] Zhang X, Wei X, Ali M, Rizwan H, Li B, Li H, Jia K, Yang X, Ma S, Li S. Changes in the content of organic acids and expression analysis of citric acid accumulation-related genes during fruit development of yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) passion fruits. Int J Mol Sci, 2021, 22: 5765.
doi: 10.3390/ijms22115765
[20] Bailey-Serres J, Tom J, Freeling M. Expression and distribution of cytosolic 6-phosphogluconate dehydrogenase isozymes in maize. Biochem Genet, 1992, 30: 233-246.
pmid: 1616479
[21] Hauschild R, Von Schaewen A. Differential regulation of glucose-6-phosphate dehydrogenase isoenzyme activities in potato. Plant Physiol, 2003, 133: 47-62.
doi: 10.1104/pp.103.025676 pmid: 12970474
[22] Huang J, Zhang H, Wang J, Yang J. Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stressa. Mol Biol Rep, 2003, 30: 223-227.
pmid: 14672408
[23] 王玮. BvBZR1基因调控甜菜块根发育的功能分析. 内蒙古农业大学博士学位论文,内蒙古呼和浩特, 2021.
Wang W. Functional Analysis of BvBZRl Gene in Regulating Taproot Development in Sugar Beet (Beta vulgaris L.). PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2021. (in Chinese with English abstract)
[24] 邵金旺, 蔡葆, 张家骅. 甜菜生理学. 北京: 农业出版社, 1991. pp 1-4.
Shao J W, Cai B, Zhang J H. Sugar Beet Physiology. Beijing: Agriculture Press, 1991. pp 1-4. (in Chinese)
[25] 郇町, 胡华兵, 贺碧微, 孙琳琳, 刘建雄, 刘珣, 袁团团, 丁兆斐. 不同引进甜菜品种经济性状关系分析. 中国农学通报, 2023, 39(3): 11-19.
doi: 10.11924/j.issn.1000-6850.casb2022-0021
Xun D, Hu H B, He B W, Sun L L, Liu J X, Liu X, Yuan T T, Ding Z F. Economic characters of introduced sugar beet varieties: relationship analysis. Chin Agric Sci Bull, 2023, 39(3): 11-19. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2022-0021
[26] 吴珏, 谢文华, 徐淑婷, 曹锦萍, 王岳, 孙崇德. 高压静电场处理对椪柑采后贮藏性的影响. 浙江大学学报(农业与生命科学版), 2020, 46: 64-73.
Wu J, Xie W H, Xu S T, Cao J P, Wang Y, Sun C D. Effect of high voltage electrostatic field treatment on the storability of postharvest ponkan fruit. J Zhejiang Univ (Agric Life Sci), 2020, 46: 64-73. (in Chinese with English abstract)
[27] 李志霞, 秦嗣军, 吕德国, 聂继云. 植物根系呼吸代谢及影响根系呼吸的环境因子研究进展. 植物生理学报, 2011, 47: 957-966.
Li Z X, Qin S J, Lyu D G, Nie J Y. Research progress in root respiratory metabolism of plant and the environmental influencing factors. Plant Physiol J, 2011, 47: 957-966. (in Chinese with English abstract)
[28] 郭文双. 内蒙古高寒地区甜菜品种适应性筛选与评价. 吉林农业大学硕士学位论文,吉林长春, 2020.
Guo W S. Adaptability Screening and Evaluation of Sugarbeet Varieties in Inner Mongolia. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2020 (in Chinese with English abstract).
[29] 朱芳慧. 甜菜表型特征及其与产质量关系的研究. 内蒙古农业大学硕士学位论文,内蒙古呼和浩特, 2020.
Zhu F H. Study on the Phenotypic Characteristics of Sugar Beet and Its Relationship with Yield and Quality. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2020. (in Chinese with English abstract)
[30] 陈晓晶, 徐忠山, 赵宝平, 米俊珍, 严威凯, 刘景辉. 盐胁迫对燕麦根系呼吸代谢、抗氧化酶活性及产量的影响. 生态学杂志, 2021, 40: 2773-2782.
Chen X J, Xu Z S, Zhao B P, Mi J Z, Yan W K, Liu J H. Effects of salt stress on root respiratory metabolism, antioxidant enzyme activity and yield of oat. Chin J Ecol, 2021, 40: 2773-2782. (in Chinese with English abstract)
[31] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究. 作物学报, 2022, 48: 1996-2006.
doi: 10.3724/SP.J.1006.2022.13047
Wang T B, He W X, Zhang J M, Lyu W Z, Liang Y H, Lu Y, Wang Y L, Gu F X, Song C, Chen J Y. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos. Acta Agron Sin, 2022, 48: 1996-2006. (in Chinese with English abstract)
[32] Henry M, Besnard A, Asante W A, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-Andrén L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag, 2010, 260: 1375-1388.
doi: 10.1016/j.foreco.2010.07.040
[33] Moore S, Adu-Bredu S, Duah-Gyamfi A, Addo-Danso S D, Ibrahim F, Mbou A T, Grandcourt A, Valentini R, Nicolini G, Djagbletey G, Owusu-Afriyie K, Gvozdevaite A, Oliveras I, Ruiz-Jaen M C, Malhi Y. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa. Global Change Biol, 2017, 24: 496-510.
[34] 李春萍, 王世伟, 丁俊杰, 潘存德, 马彬, 努尔夏提·克里木江, 米热丁·艾海提, 祖力皮卡尔·吐松. 施氮水平对核桃细根呼吸速率及相关酶活性的影响. 林业科学研究, 2019, 32(6): 56-62.
Li C P, Wang S W, Ding J J, Pan C D, Ma B, Nurxat K, Mihirdin A, Zulpikar T. Effects of nitrogen application level on respiration rate and related enzyme activities of walnut roots. For Res, 2019, 32(6): 56-62. (in Chinese with English abstract)
[35] 白书农, 肖翊华. 杂交水稻根系生长与呼吸强度的研究. 作物学报, 1988, 14: 53-59.
Bai S N, Xiao Y H. Studies on the root growth and respiration of hybrid rice. Acta Agron Sin, 1988, 14: 53-59. (in Chinese with English abstract)
[36] 王雪峰. 基于iTRAQ技术对甜菜块根膨大蛋白质组学的研究. 内蒙古农业大学硕士学位论文,内蒙古呼和浩特, 2016.
Wang X F. The Proteomics Research of Tap Root Inflation in Sugar Beet (Beta vulgaris L.) by iTRAQ. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2016. (in Chinese with English abstract)
[37] 时鹏涛. 转基因抗虫棉花不同发育期叶片蛋白质组的比较分析. 中国计量学院硕士学位论文,浙江杭州, 2013.
Shi P T. Comparative Proteomic Analysis of Transgenic Cotton leaves at Different Developmental Stages. MS Thesis of China Jiliang University, Hangzhou, Zhejiang, China, 2013. (in Chinese with English abstract)
[38] Scheible W R È, González F A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze E D, Stitt M. Tobacco mutants with a decreased number of functional nia genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta, 1997, 203: 304-319.
pmid: 9431679
[39] Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ, 1999, 22: 583-621.
doi: 10.1046/j.1365-3040.1999.00386.x
[40] Palomo J, Gallardo F, Suárez M F, Cánovas F M. Purification and characterization of NADP+-linked isocitrate dehydrogenase from scots pine: evidence for different physiological roles of the enzyme in primary development. Plant Physiol, 1998, 118: 617-626.
pmid: 9765548
[41] Stitt M. Nitrate regulation of metabolism and growth. Curr Opin Plant Biol, 1999, 2: 178-186.
doi: 10.1016/S1369-5266(99)80033-8 pmid: 10375569
[42] 陈喜文, 陈德富, 陈海浪. NAD-IDH亚基1基因在油菜花粉与种子发育过程中的表达规律. 作物学报, 2005, 31: 838-843.
Chen X W, Chen D F, Chen H L.The gene expression pattern of NAD-IDH subunit 1 during the development of pollen and seed in Brassica napus. Acta Agron Sin, 2005, 31: 838-843. (in Chinese with English abstract)
[43] Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol J, 2011, 9: 826-837.
doi: 10.1111/pbi.2011.9.issue-8
[44] 卢永恩. 水稻谷氨酸合酶基因和胞质异柠檬酸脱氢酶基因的功能研究以及氨基酸转运蛋白基因家族分析. 华中农业大学博士学位论文,湖北武汉, 2014.
Lu Y E. Functional Analysis of Glutamic Synthase Gene and Cytosolic Isocitrate Dehydrogenase Gene and Genome-wide Analysis of Amino Acid Transporter Gene Family in Rice. PhD Dissertation of Huazhong Agricultural University dissertation, Wuhan, Hubei, China, 2014. (in Chinese with English abstract)
[1] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[2] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[3] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[4] 项嘉铭, 戴茜, 刘立军. 外源水杨酸提高云麻1号(Cannabis sativa L.)对铜胁迫的耐受性[J]. 作物学报, 2023, 49(7): 1979-1993.
[5] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[6] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[7] 赵晓鑫, 黄烁淇, 谭文勃, 兴旺, 刘大丽. 甜菜HIPPs基因家族鉴定与镉胁迫下的表达分析[J]. 作物学报, 2023, 49(12): 3302-3314.
[8] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[9] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[10] 曹际玲, 曾青, 朱建国. 不同品种小麦灌浆期旗叶光合特性及光合基因表达对臭氧浓度升高的响应[J]. 作物学报, 2022, 48(9): 2339-2350.
[11] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[12] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[13] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[14] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[15] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .