欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3387-3398.doi: 10.3724/SP.J.1006.2023.23081

• 研究简报 • 上一篇    下一篇

玉米ZmMYC2基因的克隆及功能分析

杜明1(), 陈明超3, 方玉1,2, 武健东3,*()   

  1. 1上海中科荃银分子育种技术有限公司, 上海200030
    2安徽荃银高科种业股份有限公司, 安徽合肥230088
    3安徽农业大学 / 作物抗逆育种与减灾国家地方联合工程实验室, 安徽合肥230036
  • 收稿日期:2022-12-21 接受日期:2023-07-03 出版日期:2023-12-12 网络出版日期:2023-07-13
  • 通讯作者: * 武健东, E-mail: wujiandong@ahau.edu.cn
  • 作者简介:E-mail: dm@zkwbreeding.com
  • 基金资助:
    荃银高科国家企业技术中心创新项目(2021M002);安徽省自然科学基金项目(2008085MC70);安徽省高等学校自然科学研究项目(KJ2021A0172)

Cloning and functional analysis of maize ZmMYC2 gene

DU Ming1(), CHEN Ming-Chao3, FANG Yu1,2, WU Jian-Dong3,*()   

  1. 1Shanghai ZKW Molecular Breeding Technology Co., Ltd, Shanghai 200030, China
    2Anhui Win-all Hi-tech Seed Co., Ltd., Hefei 230088, Anhui, China
    3Anhui Agricultural University / National Engineering Laboratory of Crop Stress Resistance, Heifei 230036, Anhui, China
  • Received:2022-12-21 Accepted:2023-07-03 Published:2023-12-12 Published online:2023-07-13
  • Contact: * E-mail: wujiandong@ahau.edu.cn
  • Supported by:
    National Enterprise Technology Center Innovation Project of Anhui Win-all Hi-tech Seed Co., Ltd(2021M002);Anhui Provincial Natural Science Foundation(2008085MC70);Anhui Provincial Key Research and Development Project(KJ2021A0172)

摘要:

植物在生长发育过程经常受到病原菌的侵害, 严重影响作物产量。MYC2属于bHLH家族转录因子, 在茉莉酸介导的信号途径中有着重要的调控作用。在前期工作中, 通过对MYC家族进化树分析, 找到了与拟南芥同源的玉米基因ZmMYC2。本研究克隆了ZmMYC2, 该基因全长2118 bp, 编码705个氨基酸残基, 其编码蛋白定位于细胞核。RT-qPCR分析表明, ZmMYC2在玉米各个组织中均有表达, 但在叶中的表达量最高。诱导表达模式分析表明, ZmMYC2可以响应茉莉酸(jasmonic acid, JA)、水杨酸(salicylic acid, SA)和乙烯(ethylene, ETH)的诱导。在50 μmol L-1茉莉酸处理的培养基上, 过表达拟南芥的根长显著短于野生型, 突变体拟南芥的根长显著长于野生型, 回补材料拟南芥根长与野生型无明显差异。对过表达ZmMYC2拟南芥材料接种丁香假单胞杆菌(psedumonas syrinage pv.tomato DC3000, Pst DC3000), 野生型、突变体和回补拟南芥相对于过表达表现出较好的状态, 推测ZmMYC2降低了拟南芥对病原菌侵害的防御能力。接种前, 外源施加茉莉酸激素, 过表达拟南芥叶片死亡面积和叶内含菌量均有所减少, 茉莉酸激素增强了ZmMYC2对病原菌侵害的抵抗能力。亚细胞定位显示, ZmMYC2为核定位蛋白。酵母双杂交表明ZmMYC2可以与JAZ蛋白中的JAZ1和JAZ3相互作用。茉莉酸、水杨酸和防御基因以及细胞程序性死亡基因的表达量分析表明, ZmMYC2负调控PDF1.2的表达, 正调控PR1MED25COI1以及细胞程序性死亡基因HIN1的表达。综上所述, ZmMYC2通过与JAZ1和JAZ3相互作用, 参与茉莉酸信号的转导作用, 降低了拟南芥对病原菌胁迫的抵抗能力。

关键词: 玉米, ZmMYC2, 病原菌防御, 茉莉酸

Abstract:

Plants are often harmed by pathogens during their growth and development, which seriously affect crop yield. MYC2 belongs to the bHLH family of transcription factors and plays an important role in the regulation of JA-mediated signaling pathways. In the previous work, maize gene ZmMYC2 which was homologous to Arabidopsis thaliana was detected through the analysis of the MYC family evolutionary tree. In this study, we cloned ZmMYC2, which had a total length of 2118 bp and encoded 705 amino acid residues. The encoded protein was localized in the nucleus. RT-qPCR analysis showed that ZmMYC2 was expressed in all tissues of maize, but the relative expression level was the highest in leaves. The results showed that ZmMYC2 could be induced by jasmonic acid (jasmonic acid, JA), salicylic acid (salicylic acid, SA), and ethylene (ethylene, ETH). In 50 μmol L-1 JA medium, root length of overexpressed Arabidopsis thaliana was significantly shorter than wild type, and that of mutant Arabidopsis thaliana was significantly longer than wild type. There was no significant difference in root length between Arabidopsis thaliana and wild type. Pst DC3000 (Psedumonas syrinage pv.tomato DC3000, Pst DC3000) was inoculated with ZmMYC2 Arabidopsis materials, and the wild type, mutant, and complement Arabidopsis showed better state relative to over expression. It was speculated that ZmMYC2 decreased the defense ability of Arabidopsis thaliana against pathogen. Before inoculation, the dead area of leaves and the amount of bacteria in leaves with the overexpression of Arabidopsis thaliana were reduced by exogenous JA hormone. JA hormone enhanced the resistance of ZmMYC2 to pathogens. Subcellular localization showed that ZmMYC2 was a nuclear localization protein. The yeast two-hybrid showed that ZmMYC2 could interact with JAZ1 and JAZ3 in JAZ protein. The relative expression levels of JA, SA, defense genes, and programmed cell death genes showed that ZmMYC2 negatively regulated the relative expression level of PDF1.2, and positively regulated the relative expression level of PR1, MED25, COI1, and programmed cell death gene HIN1. In conclusion, ZmMYC2 was involved in JA signal transduction by interacting with JAZ1 and JAZ3, which reduced the defense ability of Arabidopsis thaliana against pathogen stress.

Key words: maize, ZmMYC2, pathogen defense, jasmonic acid

图1

ZmMYC2的蛋白结构域分析和植物中MYC家族系统进化树 A: ZmMYC2的蛋白结构域, 采用IBS软件绘制。B: MYC家族系统进化树分析, 采用邻接法利用MEGA 6.0进行绘制。"

图2

ZmMYC2组织特异性表达模式 A: ZmMYC2在不同组织中的表达模式。红色、黄色和白色分别表示高、中和低水平的基因表达。B: ZmMYC2基因的组织特异性表达模式, R: 根; S: 茎; L: 叶; T: 雄蕊; SK: 花丝; CB: 玉米芯; ST: 苞叶; EM: 胚; EN: 胚乳。"

图3

ZmMYC2的亚细胞定位 pMDC43-35S-GFP、ZmMYC2-GFP的亚细胞定位, 标尺为20 μm。"

图4

ZmMYC2在多种激素处理下的表达模式"

图5

ZmMYC2过表达、回补和突变体株系对茉莉酸的敏感性 A: 50 μmol L-1的茉莉酸处理7 d的野生型、回补株系、突变体材料和过表达材料图片; B: 茉莉酸处理7 d后的根长统计。误差线表示3个独立试验的标准差, *表示显著性差异(0.01 < P < 0.05); **表示极显著差异(P < 0.01)。"

图6

拟南芥对Pst DC3000的抗性 A、B: Pst DC3000处理7 d后叶片表型; C、D: DAB和Evans blue染色, E、F、I、J: 叶片病变面积比例, G、H: 叶片内细菌含量。误差线表示3个独立试验的标准差, *表示显著性差异(0.01 < P < 0.05); **表示极显著差异(P < 0.01)。"

图7

茉莉酸和Pst DC3000处理后拟南芥过表达株系表型 A: 喷施JA 1 d后Pst DC3000处理7 d叶片表型; B: DAB和Evans blue染色结果; C, D: 叶片内细菌含量; E: 叶片病变面积比例。误差线表示3个独立试验的标准差, *表示显著性差异(0.01 < P < 0.05); **表示极显著差异(P < 0.01)。"

图8

病原菌胁迫相关基因表达量分析 A, B, C, D: 过表达基因表达量分析; F, G, H, I, J: 表示突变体和回补株系表达量分析。误差线表示3个独立试验的标准差, *表示显著性差异(0.01 < P < 0.05); **表示极显著差异(P < 0.01)。"

图9

ZmMYC2与JAZ蛋白的相互作用 DDO: SD/-Leu-Trp缺陷型培养基, QDO: SD/-Leu-Trp-His-Ade缺陷型培养基。"

[1] 陈斌, 韩海亮, 侯俊峰, 包斐, 谭禾平, 王桂跃, 赵福成. 玉米细菌性茎腐病研究进展. 中国植保导刊, 2021, 41(8): 25-29.
Chen B, Han H L, Hou J F, Bao F, Tan H P, Wang G Y, Zhao F C. Research progress on bacterial stalk rot of maize. China Plant Prot, 2021, 41(8): 25-29. (in Chinese with English abstract)
[2] Pel M, Pieterse C. Microbial recognition and evasion of host immunity. J Exp Bot, 2012, 64: 1237.
doi: 10.1093/jxb/ers262
[3] Perfect S E, Green J R. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol, 2010, 2: 101-108.
doi: 10.1046/j.1364-3703.2001.00055.x
[4] Felix G, Duran J D, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J, 2010, 18: 265-276.
doi: 10.1046/j.1365-313X.1999.00265.x
[5] Kumar M, Karthikeyan N, Prasanna R. Priming of plant defense and plant growth in disease-challenged crops using microbial consortia. In: Choudhary D K, Varma A, eds. Microbial-Mediated Induced Systemic Resistance in Plants. Singapore: Springer Singapore Pte. 2016. pp 39-56. https://doi.org/10.1007/978-981-10-0388-2_4.
[6] Pink C. Special Review Issue on plant-microbe interactions: genetics and utilization of pathogen resistance in plants. Plant Cell, 1996, 8: 1747-1755.
doi: 10.2307/3870227
[7] Dolan L. Origin and diversification of basic-Helix-Loop-Helix proteins in plants. Mol Biol Evol, 2010, 27: 862-874.
doi: 10.1093/molbev/msp288 pmid: 19942615
[8] 谢鹏飞, 朱蕾, 冯玲, 吴进才, 刘景澜. 转录因子MYC2介导植物抗生物胁迫的研究进展. 应用昆虫学报, 2020, 57: 781-787.
Xie P F, Zhu L, Feng L, Wu J C, Liu J L. Research progress in transcription factor MYC2 mediating plant resistance to biological stress. Chin Bull Entomol, 2020, 57: 781-787. (in Chinese with English abstract)
[9] Berger S, Bell E, Mullet J E. Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol, 1996, 111: 525-531.
pmid: 12226307
[10] 李罡, 李文龙, 许雪梅, 李成浩. MYC2转录因子参与植物发育调控的研究进展. 植物生理学报, 2019, 55: 125-132.
Li G, Li W L, Xu X M, Li C H. Research progress of MYC2 transcription factors participating in plant development and regulation. Plant Physiol J, 2019, 55: 125-132. (in Chinese with English abstract)
[11] Browse J. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol, 2009, 60: 183-205.
doi: 10.1146/annurev.arplant.043008.092007 pmid: 19025383
[12] Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico J M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla J M. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell, 2011, 23: 701-715.
doi: 10.1105/tpc.110.080788
[13] Li X, Rui Y, Chen H. The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. PLoS One, 2018, 13: e193458.
[14] Zhang C P, Lei Y T, Lu C K, Wang L, Wu J Q. MYC2, MYC3, and MYC4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism. J Integr Plant Biol, 2020, 62: 1159-1175.
doi: 10.1111/jipb.12902
[15] Kazan K, Manners J M. MYC2: the master in action. Mol Plant, 2013, 6: 686-703.
doi: 10.1093/mp/sss128 pmid: 23142764
[16] Uji Y, Taniguchi S, Tamaoki D, Shishido H, Akimitsu K, Gomi K. Over-expression of OsMYC2 Results in the up-regulation of Early JA-rresponsive genes and bacterial blight resistance in rice. Plant Cell Physiol, 2016, 57: 1814-1827.
doi: 10.1093/pcp/pcw101
[17] Hiruma K, Nishiuchi T, Kato T, Bednarek P, Okuno T, Schulze-Lefert P, Takano Y. Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. Plant J, 2011, 67: 980-992.
doi: 10.1111/tpj.2011.67.issue-6
[18] Jeong J S, Jung C, Seo J S, Kim J K, Chua N H. The deubiquitinating enzymes UBP12 and UBP13 positively regulate MYC2 levels in jasmonate responses. Plant Cell, 2017, 29: 1406-1424.
doi: 10.1105/tpc.17.00216
[19] Lorenzo O. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate regulated defense responses in Arabidopsis. Plant Cell, 2004, 16: 1938-1950.
doi: 10.1105/tpc.022319 pmid: 15208388
[20] Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot, 2013, 111: 1021-1058.
doi: 10.1093/aob/mct067
[21] Evik V, Kidd B N, Zhang P, Hill C, Kiddle S, Denby K J, Holub E B, Cahill D M, Manners J M, Schenk P M. MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol, 2012, 160: 541-555.
doi: 10.1104/pp.112.202697
[22] Nosil P, Crespi B J, Sandoval C P. Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature, 2002, 417: 440-443.
doi: 10.1038/417440a
[23] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017. (in Chinese with English abstract)
[24] 吕迪, 陈茹梅, 周晓今. ZmJAZ与ZmMYC2的BiFC互作研究. 生物技术通报, 2022, 38(1): 77-85.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0181
Lyu D, Chen R M, Zhou X J. Interactions between ZmJAZ and ZmMYC2 using bimolecular fluorescence complementation assay. Biotechnol Bull, 2022, 38(1): 77-85. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0181
[25] Fu J, Liu L, Liu Q, Shen Q, Wang C, Yang P, Zhu C, Wang Q. ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Plant Cell Rep, 2020, 39: 273-288.
doi: 10.1007/s00299-019-02490-2
[26] Fu J, Wang L, Pei W, Yan J, He L, Ma B, Wang C, Zhu C, Chen G, Shen Q, Wang Q. ZmEREB92 interacts with ZmMYC2 to activate maize terpenoid phytoalexin biosynthesis upon fusarium graminearum infection through jasmonic acid/ethylene signaling. New Phytol, 2023, 237: 1302-1319.
doi: 10.1111/nph.v237.4
[27] Ma C, Li R, Sun Y, Zhang M, Li S, Xu Y, Song J, Li J, Qi J, Wang L, Wu J. ZmMYC2s play important roles in maize responses to simulated herbivory and jasmonate. J Integr Plant Biol, 2023, 65:1041-1058.
doi: 10.1111/jipb.13404
[28] Fu J, Liu L, Liu Q, Shen Q, Wang C, Yang P, Zhu C, Wang Q. ZmMYC2 exhibits diverse functions and enhances JA signaling in transgenic Arabidopsis. Plant Cell Rep, 2020, 39: 273-288.
doi: 10.1007/s00299-019-02490-2
[29] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: aversatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565-1572.
doi: 10.1038/nprot.2007.199
[30] 李泽. 转录因子ERF114介导PevD1诱导拟南芥对Pst DC3000的抗性及分子机制. 中国农业科学院硕士学位论文,北京, 2021.
Li Z. The Transcription Factor ERF114 Mediates PevD1-Induced Arabidopsis thaliana resistance to Pst DC3000 and Molecular Mechanism. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[31] Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla J M, Pauwels L, Witters E, Puga M I, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell, 2011, 23: 701-715.
doi: 10.1105/tpc.110.080788
[32] Zhai Q Z, Deng L, Li C Y. Mediator subunit MED25: at the nexus of jasmonate signaling. Curr Opin Plant Biol, 2020, 57: 78-86.
doi: S1369-5266(20)30086-8 pmid: 32777679
[33] Devoto A, Ellis C, Magusin A, Chang H, Chilcott C, Zhu T, Turner J G. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol, 2005, 58: 497-513.
pmid: 16021335
[34] Spoel S H, Johnson J S, Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA, 2007, 104: 18842-18847.
doi: 10.1073/pnas.0708139104 pmid: 17998535
[35] Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol, 2010, 27: 862-874.
doi: 10.1093/molbev/msp288 pmid: 19942615
[36] Wang H, Ding C, Du H, Liu H, Wang Y, Yu D. Identification of soybean MYC2-like transcription factors and overexpression of GmMYC1 could stimulate defense mechanism against common cutworm in transgenic tobacco. Biotechnol Lett, 2014, 36: 1881-1892.
doi: 10.1007/s10529-014-1549-7 pmid: 24863293
[37] Uji Y, Taniguchi S, Tamaoki D, Shishido H, Akimitsu K, Gomi K. Over-expression of OsMYC2 results in the up-regulation of early JA responsive genes and bacterial blight resistance in rice. Plant Cell Physiol, 2016, 57: 1814-1827.
doi: 10.1093/pcp/pcw101
[38] Wu F M, Deng L, Zhai Q Z, Zhao J H, Chen Q, Li C Y. Mediator Subunit MED25 Couples alternative splicing of JAZ genes with fine-tuning of jasmonate signaling. Plant Cell, 2020, 32: 429-448.
doi: 10.1105/tpc.19.00583
[39] Prasad B R V, Kumar S V, Nandi A, Chattopadhyay S. Functional interconnections of HY1 with MYC2 and HY5 in Arabidopsis seedling development. BMC Plant Biol, 2012, 12: 37.
doi: 10.1186/1471-2229-12-37
[40] 吴忠义, 杨梦婷, 张春, 王作平, 邹华文. 玉米ZmbHLH161基因的克隆及功能研究. 作物学报, 2020, 46: 2008-2016.
doi: 10.3724/SP.J.1006.2020.03022
Wu Z Y, Yang M T, Zhang C, Wang Z P, Zou H W. Cloning and functional analysis of ZmbHLH161gene in maize. Acta Agron Sin, 2020, 46: 2008-2016. (in Chinese with English abstract)
[41] Qi T, Huang H, Wu D, Yan J, Qi Y, Song S, Xie D. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell, 2014, 26: 1118-1133.
doi: 10.1105/tpc.113.121731
[42] Nakata M, Mitsuda N, Herde M, Koo A, Moreno J E, Suzuki K, Howe G A, Ohme-Takagi M. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/ JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell, 2013, 25: 1641-1656.
doi: 10.1105/tpc.113.111112
[43] 冉燕子. 苗期低温胁迫对烟草JA信号途径部分关键基因表达及JA含量的影响. 西南大学硕士学位论文,重庆, 2017.
Ran Y Z. Effects of Low Temperature Stress on Expression of Part Key Gene in JA Signaling Pathway and JA Content of Tobacco at Seeding Stage. MS Thesis of Southwest University, Chongqing, China, 2017. (in Chinese with English abstract)
[44] Zhang F, Zhang J G, Wang L H, Mao D X. Effects of polygonatum sibiricum polysaccharide on learning and memory in a scopolamine-induced mouse model of dementia. Neural Regen Res, 2008, 3: 33-36.
[45] Anderson J P, Badruzsaufari E, Schenk P M, Manners J M, Desmond O J. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell, 2004, 16: 3460-3479.
doi: 10.1105/tpc.104.025833
[46] 何翔. 茉莉酸和水杨酸通过EIN 3和ORA 59相互作用调控PDF 1.2的表达量. 四川农业大学博士学位论文,四川成都, 2017.
He X. Ora59 and Ein3 Interaction Couples Jasmonate Ethylene Synergistic Action to Antagonistic Salicylic Acid Regulation of PDF1.2 Expression. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2017. (in Chinese with English abstract)
[47] Chini A, Boter M, Solano R. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J, 2010, 276: 4682-4692.
doi: 10.1111/ejb.2009.276.issue-17
[48] Dombrecht B, Xue G P, Sprague S J, Kirkegaard J A, Ross J J, Reid J B, Fitt G P, Sewelam N, Schenk P M, Manners J M, Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell, 2007, 19: 2225-2245.
doi: 10.1105/tpc.106.048017 pmid: 17616737
[49] 于玉凤. OsHIN1负调控水稻抗白叶枯病的机理初探. 浙江师范大学硕士学位论文,浙江金华, 2020.
Yu Y F. A Preliminary Study on the Mechanism of OsHIN1 Negatively Regulates Rice Resistance against Bacterial Blight. MS Thesis of Committee of Zhejiang Normal University, Jinhua, Zhejiang, China, 2020. (in Chinese with English abstract)
[1] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[2] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[3] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[4] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[5] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[6] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[7] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[8] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[9] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[10] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[11] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[12] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[13] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[14] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[15] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .