欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3399-3410.doi: 10.3724/SP.J.1006.2023.31004

• 研究简报 • 上一篇    

小麦卷叶突变体RL1的生理特性及遗传研究

刘叶1,2(), 李越1, 苑名杨1, 卫乃翠1, 关攀锋3, 赵佳佳1, 武棒棒1, 郑兴卫1, 郝宇琼1, 乔玲1,*(), 郑军1,*()   

  1. 1山西农业大学小麦研究所 / 农业农村部有机旱作农业重点实验室(部省共建), 山西临汾 041000
    2山西大学生命科学学院, 山西太原 030006
    3郑州大学农学院, 河南郑州 450001
  • 收稿日期:2023-01-09 接受日期:2023-06-29 出版日期:2023-12-12 网络出版日期:2023-08-04
  • 通讯作者: * 乔玲, E-mail: qiaolingsmile@163.com; 郑军, E-mail: sxnkyzj@126.com
  • 作者简介:刘叶, E-mail: liuye12345202@126.com**同等贡献
  • 基金资助:
    山西农业大学省部共建有机旱作农业国家重点实验室自主研发项目(202002-1);山西省科技重大专项计划“揭榜挂帅”项目(202201140601025-2-01)

Physiological characteristics and genetic research of rolled leaf mutant1 (RL1) in wheat (Triticum aestivum L.)

LIU Ye1,2(), LI Yue1, YUAN Ming-Yang1, WEI Nai-Cui1, GUAN Pan-Feng3, ZHAO Jia-Jia1, WU Bang-Bang1, ZHENG Xing-Wei1, HAO Yu-Qiong1, QIAO Ling1,*(), ZHENG Jun1,*()   

  1. 1Institute of Wheat Research, Shanxi Agriculture University / Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Linfen 041000, Shanxi, China
    2School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
    3School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2023-01-09 Accepted:2023-06-29 Published:2023-12-12 Published online:2023-08-04
  • Contact: * E-mail: qiaolingsmile@163.com; E-mail: sxnkyzj@126.com
  • About author:**Contributed equally to this work
  • Supported by:
    Research Program Sponsored by State Key Laboratory of Integrative Sustainable Dryland Agriculture, Shanxi Agricultural University(202002-1);Science and Technology Major Special Plan Project “Reveal the Title” of Shanxi Province(202201140601025-2-01)

摘要:

小麦叶片在逆境下会发生可逆的折叠或卷曲, 通过脱水回避的形态学变化降低非生物胁迫的损害。目前小麦叶片卷曲的生理和遗传调控机制尚不清楚。本文利用EMS诱变晋麦47获得了卷叶突变体RL1 (Rolled Leaf 1), RL1在整个生育期叶片呈现卷曲, 初生叶片沿中轴脉向近轴面微卷, 随着叶片生长加速卷曲, 直至为筒状。与野生型相比, RL1株高降低、穗长变短、旗叶变窄和千粒重降低。氯化三苯基四氮唑(TTC)染色结果表明RL1种子活力低, 且种子发芽率降低了22%。抽穗10 d后, RL1的叶绿素含量与野生型基本一致, 净光合速率、蒸腾速率、气孔导度、细胞间隙CO2浓度差异不显著, 但水分利用率降低。低温、高温和干旱促进RL1的叶片卷曲; 石蜡切片观察表明, RL1的大叶脉和小叶脉偏少, 在中脉区域远轴面厚壁细胞和近轴面薄壁细胞数目减少, 且维管束间泡状细胞的面积和数量均明显低于野生型; RL1叶片不同部位泡状细胞缩小以及维管束减少导致整个叶片向近轴面极度卷曲。遗传分析表明该性状受1对不完全显性的核基因控制, 位于1D染色体短臂上, 精细定位将目标区间锁定在9.42 Mb范围内。

关键词: 小麦, 卷叶突变体, 细胞学分析, 生理特性, 遗传分析

Abstract:

Wheat leaves tend to fold or curl when exposure to stresses, the dehydration avoidance in morphology can reduce the damage of abiotic stress. At present, the physiological and genetic regulation mechanism associated with leaf curling is not clear in wheat. This study reported a novel rolled leaf mutant (RL1) from the ethyl methyl sulphonate (EMS) mutagenesis cultivar Jinmai 47. The leaves of the mutant RL1 were curled during the growth period, and the primary leaves were slightly curled along axial vein to paraxial plane. Leaf curling was accelerated with the growth until the leaf was tubular. Compared to wild type (WT), plant height, ear length, flag leaf narrowing, and 1000-grain weight were decreased in mutant RL1. Triphenyltetrazolium Chloride (TTC) staining showed that seed vigor of RL1 was low, together with the decreased germination rate by 22%. Additionally, there was no significant differences in chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentration between RL1 and WT, while water utilization rate was decreased in RL1 after heading for 10 days. Low temperature, high temperature, and drought led to the leaf rolling in RL1. RL1 showed fewer leaf/lobular veins via paraffin section assay, and the number of abaxial sclerenchyma and adaxial parenchyma cells were reduced in midrib region of RL1. Moreover, the area and counts of vesicular cells between the vascular bundles were significantly reduced in RL1, together with the vesicular cells at the midvein region of leaves compared with WT. Vesicular cells and vascular bundles shrunk and decreased, respectively, resulting in the situation that the entire blade was extremely crimped to the adaxial plane. Genetic analysis demonstrated that the mutant trait was localized on the short arm of chromosome 1D, regulated by a pair of nuclear genes with incomplete dominance and fine mapping analysis further locked the target interval at 9.42 Mb.

Key words: wheat, rolled leaf mutant, cytological analysis, physiological characteristics, genetic analysis

表1

KASP标记序列"

标记 Marker SNP F1 F2 R
RLB T/C CCAACCCTAGCTTGTGATCCC TCCAACCCTAGCTTGTGATCCT AGGGGCCCACAAGCCTCCTG
RLC C/G GAATCACGAAAGCACCCTCGC GAATCACGAAAGCACCCTCGG GGCAAACGTGTAGATCGTCTCCC
RLF A/C CGTAACATACAACCATGCCTACCT GTAACATACAACCATGCCTACCG CGTTCAAGGGTTCACATAAGGCTTTTG
RLH A/C GTGGCATGTCAACTCGCGATTTATA GGCATGTCAACTCGCGATTTATC CAACTGAGTGGCATATATATAGTCTGTTATA
RLI A/C CAGAATCACTTCTTGACTACCCCAA GAATCACTTCTTGACTACCCCAC CAGCCTTCTAGAGCCACATTCTAGTA
RLJ T/C GTGCTCCTAGGAAGTAGGAGC ATGTGCTCCTAGGAAGTAGGAGT CCAAAAGCAAGGACGCTTCCAGG
RLK T/C TATTTTGAGACGAAGAGAGAATCGTG ATTTATTTTGAGACGAAGAGAGAATCGTA AGGCGGGTGCTTGCCCTTACAT
RLO C/G TTATACTAAAGCTGCATCAATTAACTTGC TTATACTAAAGCTGCATCAATTAACTTGG GGGCAGTACAACAAACATCAGAAATAAC

附表1

42对SSR引物信息(国标: NY/T 2859-2015)"

引物名称
Primer name
染色体
Chr.
退火温度
Annealing temperature (℃)
引物序列
Primer sequence
(5'-3')
cwm65 1A 65 F: TCATTGGTGTCATCCCTCGTGT; R: GAATAATGCCTTGACCCTGGAC
barc80 1BL 65 F: GCGAATTAGCATCTGCATCTGTTTGAG; R: CGGTCAACCAACTACTGCACAAC
cfd72 1DL 60 F: CTCCTTGGAATCTCACCGAA; R: TCCTTGGGAATATGCCTCCT
gwm294 2AL 55 F: GGATTGGAGTTAAGAGAGAACCG; R: GCAGAGTGATCAATGCCAGA
gwm429 2BS 55 F: TTGTACATTAAGTTCCCATTA; R: TTTAAGGACCTACATGACAC
gwm261 2DS 55 F: CTCCCTGTACGCCTAAGGC; R: CTCGCGCTACTAGCCATTG
gwm155 3AL 55 F: CAATCATTTCCCCCTCCC; R: AATCATTGGAAATCCATATGCC
gwm285 3BS 65 F: ATGACCCTTCTGCCAAACAC; R: ATCGACCGGGATCTAGCC
gdm72 3DS 55 F: TGGTTTTCTCGAGCATTCAA; R: TGCAACGATGAAGACCAGAA
gwm610 4AS 65 F: CTGCCTTCTCCATGGTTTGT; R: AATGGCCAAAGGTTATGAAGG
ksum62 4B 60 F: GGAGAGGATAGGCACAGGAC; R: GAGAGCAGAGGGAGCTATGG
barc91 4DL 55 F: TTCCCATAACGCCGATAGTA; R: GCGTTTAATATTAGCTTCAAGATCAT
gwm304 5AS 55 F: AGGAAACAGAAATATCGCGG; R: AGGACTGTGGGGAATGAATG
gwm67 5BL 60 F: ACCACACAAACAAGGTAAGCG; R: CAACCCTCTTAATTTTGTTGGG
cfd29 5DL 65 F: GGTTGTCAGGCAGGATATTTG; R: TATTGATAGATCAGGGCGCA
gwm459 6AS 55 F: AATTTCAAAAAGGAGAGAGA; R: AACATGTGTTTTTAGCTATC
barc198 6BS 55 F: CGCTGAAAAGAAGTGCCGCATTATGA; R: CGCTGCCTTTTCTGGATTGCTTGTCA
cfd76 6DL 65 F: GCAATTTCACACGCGACTTA; R: CGCTCGACAACATGACACTT
cfa2028 7AS 55 F: TGGGTATGAAAGGCTGAAGG; R: ATCGCGACTATTCAACGCTT
gwm333 7BS 60 F: GCCCGGTCATGTAAAACG; R: TTTCAGTTTGCGTTAAGCTTTG
gwmn437 7DL 55 F: GATCAAGACTTTTGTATCTCTC; R: GATGTCCAACAGTTAGCTTA
wmc312 1AS 55 F: TGTGCCCGCTGGTGCGAAG; R: CCGACGCAGGTGAGCGAAG
barc240 1BL 55 F: AGAGGACGCTGAGAACTTTAGAGAA; R: GCGATCTTTGTAATGCATGGTGAAC
gdm111 1DL 55 F: CACTCACCCCAAACCAAAGT; R: GATGCAATCGGGTCGTTAGT
wmc522 2AS 55 F: AAAAATCTCACGAGTOGGGC; R: CCCGAGCAGGAGCTACAAAT
cfd51 2DS 55 F: GGAGGCTTCTCTATGGGAGG; R: TGCATCTTATCCTGTGCAGC
barc324 3AS 55 F: CCAATTCTGCCCATAGGTGA; R: GAGGAAATAAGATTCAGCCAACTG
barc164 3BS 55 F: TGCAAACTAATCACCAGCGTAA; R: CGCTTTCTAAAACTGTTCGGGATTTCTAA
cfd9 3DL 55 F: TTGCACGCACCTAAACTCTG; R: CAAGTGTGAGCGTCGG
gwm161 3DS 55 F: GATCGAGTGATGGCAGATGG; R: TGTGAATTACTTGGACGTGG
barc170 4AL 55 F: CGCTTGACTTTGAATGGCTGAACA; R: CGCCCACTTTTTACCTAATCCTTTTGAA
gwm495 4BL 55 F: GAGAGCCTCGCGAAATATAGG; R: TGCTTCTGGTGTTCCTTCG
winc720 4DS 55 F: CACCATGGTTGGCAAGAGA; R: CTGGTGATACTGCCGTGACA
gwm186 5AL 55 F: GCAGAGCCTGGTTCAAAAAG; R: CGCCTCTAGCGAGAGCTATG
cfa2155 5AL 55 F: TTTGTTACAACCCAGGGGG; R: TTGTGTGGCGAAAGAAACAG
cfd8 5DS 60 F: ACCACCGTCATGTCACTGAG; R: GTGAAGACGACAAGACGCAA
gwml69 6AL 55 F: ACCACTGCAGAGAACACATACG; R: GTGCTCTGCTCTAAGTGTGGG
barc345 6BL 55 F: CGCCAGACTGCTAGGATAATACTTT; R: GCGGCTAGTGCTCCCTCATAAT
barcl121 6DL 60 F: GCGAGCAAACTGATCCCAAAAAG; R: TATCGGTGAGTACGCCAAAAACA
cfa2123 7AS 60 F: CGGTCTTTGTTTGCTCTAAACC; R: ACCGGCCATCTATGATGAAG
wmc476 7BS 55 F: TACCAACCACACCTGCGAGT; R: CTAGATGAACCTTCGTGCGG
gwm44 7DS 65 F: GTTGAGCTTTTCAGTTCGGC; R: ACTGGCATCCACTGAGCTG

图1

野生型与突变体RL1的表型鉴定 a、b: 分别代表WT与RL1的抽穗期、苗期表型; a中, 标尺为20 cm; b中, 标尺为10 cm。c: 野生型与RL1不同时期卷曲程度的比较, 左为野生型, 右为RL1, 标尺为1 cm。"

图2

野生型与突变体RL1的株型比较 a: WT与RL1的茎秆, 标尺为 20 cm; b、c: 成熟期WT与RL1穗长及各节间长(I、II、III、IV), 标尺为10 cm; *: 在P < 0.05区间差异显著, **: 在P < 0.01差异极显著。"

表2

野生型与突变体RL1的主要农艺性状比较"

性状Trait 种子萌发15 d地上部鲜重
Aboveground fresh weight at 15 days of germination (g)
种子萌发15 d地下部鲜重
Subsurface fresh weight at 15 days of germination (g)
种子萌发15 d
根数目
Root number at 15 days of germination
种子萌发15 d
最大根长
Maximum root length at 15 days of germination (cm)
抽穗期
Heading stage (d)
成熟期
Maturity stage (d)
株高
Plant height
(cm)
旗叶面积
Flag leaf area (cm2)
旗叶长
Flag leaf length (cm)
旗叶宽
Flag leaf width (cm)
穗粒数
Grain number per spike
小穗数
Spikelet number
千粒重
1000-grain weight (g)
WT 0.22±0.01** 0.08±0.01 7±1.3 8.13±0.84 199±1 248±1 78.00±0.28** 24.62±5.14 21.02±2.65 1.51±0.12** 56.75±6.65** 19.25±1.25 52.25±0.91**
RL1 0.14±0.00 0.08±0.01 7±1.5 8.08±1.26 199±1 247±1 67.67±2.19 19.72±2.51 23.4±2.45 1.09±0.02 35.5±1.91 19.00±0.81 33.70±0.21

图3

野生型与突变体RL1成熟籽粒的TTC染色 a: 种胚着色图, 标尺为2 mm; b、c: 种胚放大图, 标尺为200 μm。"

图4

野生型与突变体RL1的光合参数与SPAD的分析 a: 蒸腾速率; b: 气孔导度; c: 净光合速率; d: 细胞间隙CO2浓度; e: 叶绿素含量; f: 水分利用率。**: P < 0.01差异极显著。"

图5

叶片横切面石蜡切片分析 a: WT和RL1的旗叶横切图, 标尺为1000 μm; b、c: 为a图的放大图, 标尺为 500 μm; d、e: 分别为b、c图的放大图, 标尺为200 μm; f: 两维管束之间的泡状细胞的数量和面积。SC: 厚壁细胞; PC: 薄壁细胞; BC: 泡状细胞; LV: 大叶脉; SV: 小叶脉; ad: 近轴面; ab: 远轴面。**: 在0.01概率水平上差异显著。"

附表2

RL1与晋麦47/临汾5064正反交F1"

杂交组合
Cross combination
F1表型及卷曲指数
Phenotype of F1 and leaf rolled index
F1株数
Number of plants in F1
RL1×晋麦47 RL1/Jinmai 47 微卷(抽穗期LRIs: 0.64-0.76) Slightly curl (Heading date LRIs: 0.64-0.76) 17
晋麦47×RL1 Jinmai 47/RL1 微卷(抽穗期LRIs: 0.66-0.78) Slightly curl (Heading date LRIs: 0.66-0.78) 18
RL1×临汾5064 RL1/Linfen 5064 微卷(抽穗期LRIs: 0.61-0.76) Slightly curl (Heading date LRIs: 0.61-0.76) 17
临汾5064×RL1 Linfen 5064/RL1 微卷(抽穗期LRIs: 0.68-0.80) Slightly curl (Heading date LRIs: 0.68-0.80) 18

表3

F2代群体材料表型分离统计"

杂交组合
Cross combination
总株数
Number of plants
平展叶
Spread leaf
轻微卷叶
Slightly coiled leaf
高度卷叶
Highly rolled leaf
理论比例
Ratio of theory
卡方
χ2
RL1/晋麦47 RL1/Jinmai 47 176 45 94 37 1:2:1 0.03
RL1/临汾5064 RL1/Linfen 5064 173 44 95 34 1:2:1 0.01

图6

RL1的精细定位"

表4

水稻叶片卷曲相关基因在小麦中的同源基因"

水稻基因
Rice gene
基因注释
Gene annotation
部分同源群
Homoeologous groups
小麦的同源基因
Wheat gene
OsACL1 Os04g33860 2 TraesCS2A01G296600 TraesCS2B01G312800 TraesCS2D01G294500
OsDEK1 Os02g47970 6 TraesCS6A01G275500 TraesCS6B01G302900 TraesCS6D01G255800
OsCFL1 Os02g31140 4 TraesCS4A01G407300 TraesCS4B01G306500 TraesCS4D01G304700
OsMYB103L Os08g05520 7 TraesCS7A01G304500 TraesCS7B01G204800 TraesCS7D01G300000
OsVIL3 Os02g05840 6 TraesCS6A02G123400 TraesCS6B02G151600 TraesCS6D02G113600
OsAGO7 Os03g33650 2 TraesCS2A01G414800 TraesCS2B01G434000 TraesCS2D01G412100
OsCOW1 Os03g06654 4 TraesCS4A01G027500 TraesCS4B01G278300 TraesCS4D01G276600
OsCSLD4 Os12g36890 5 TraesCS5A01G090500 TraesCS5B01G096200 TraesCS5D01G102600
OsHOX32 Os03g43930 5 TraesCS5A01G375800 TraesCS5B01G378000 TraesCS5D01G385300
OsYAB1 Os07g06620 5 TraesCS5A01G371500 TraesCS5B01G373600 TraesCS5D01G380900
OsZHD1 Os09g29130 5 TraesCS5A01G246500 TraesCS5B01G243800 TraesCS5D01G253100
OsPSL1 Os01g19170 1 TraesCS1A01G311100 TraesCS1B01G322500 TraesCS1D01G311000
OsREL1 Os01g64380 2 TraesCS2A01G065100 TraesCS2B01G077300 TraesCS2D01G063200
OsREL2 Os10g41310 1 TraesCS1A01G218200 TraesCS1B01G231600 TraesCS1D01G219800
Osrl14 Os10g40960 1 TraesCS1A01G221200 TraesCS1B01G234500 TraesCS1D01G222800
OsROC5 Os02g45250 6 TraesCS6A01G255800 TraesCS6B01G269700 TraesCS6D01G237000
OsRoc8 Os06g10600 6 TraesCS6A01G324500 TraesCS6B01G354900 TraesCS6D01G304300
OsSLL1 Os09g23200 5 TraesCS5A01G203200 TraesCS5B01G201900 TraesCS5D01G209600
OsSRL2 Os03g19520 4 TraesCS4A01G121600 TraesCS4B01G181700 TraesCS4D01G184300
OsSrl1 Os07g01240 2 TraesCS2A01G256400 TraesCS2B01G286100 TraesCS2D01G347200
OsOFP1 Os01g12690 3 TraesCS3A01G151800 TraesCS3B01G178800 TraesCS3D01G159700
OsMKB3 Os03g52320 4 TraesCS4A01G250600 TraesCS4B01G064000 TraesCS4D01G062900
OsLBD3-7 Os03g57670 5 TraesCS5A01G515300 TraesCS5B01G282700 TraesCS5D01G291300
OsARVL4 Os04g33580 1 TraesCS1A01G036100 TraesCS1B01G231600 TraesCS1D01G219800
OsARF18 Os06g47150 7 TraesCS7A01G446900 TraesCS7B01G346700 TraesCS7D01G436800
OsWOX3A Os12g01120 5 TraesCS5A01G157300 TraesCS5B01G156400 TraesCS5D01G162600
[1] Bogard M, Hourcade D, Piquemal B, Gouache D, Deswartes J C, Throude M, Cohan J P. Marker-based crop model-assisted ideotype design to improve avoidance of abiotic stress in bread wheat. J Exp Bot, 2021, 72: 1085-1103.
doi: 10.1093/jxb/eraa477 pmid: 33068400
[2] Merrium S, Ali Z, Tahir M H N, Habib-Ur-Rahman M, Hakeem S. Leaf rolling dynamics for atmospheric moisture harvesting in wheat plant as an adaptation to arid environments. Environ Sci Pollut Res Int, 2022, 29: 48995-49006.
doi: 10.1007/s11356-022-18936-2
[3] Sirault X R R, Condon A G, Wood J T, Farquhar G D, Rebetzke G J. ‘Rolled-upness’: phenotyping leaf rolling in cereals using computer vision and functional data analysis approaches. Plant Methods, 2015, 11: 52.
doi: 10.1186/s13007-015-0095-1 pmid: 26583042
[4] Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376: 180-183.
doi: 10.1126/science.abm0717
[5] Sun J, Cui X A, Teng S Z, Zhao K N, Wang Y W, Chen Z H, Sun X H, Wu J X, Ai P F, Quick W P, Lu T G, Zhang Z G. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice. Plant Biotechnol J, 2020, 18: 2559-2572.
doi: 10.1111/pbi.v18.12
[6] Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807-817.
doi: 10.1093/mp/ssq022
[7] Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol, 2011, 156: 1589-1602.
doi: 10.1104/pp.111.176016
[8] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT- LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719-735.
doi: 10.1105/tpc.108.061457
[9] 邹良平. 水稻卷叶突变体的细胞形成机制以及OUL1基因的克隆和功能研究. 中国农业科学院博士学位论文,北京, 2012.
Zou L P. Cytological Mechanism of Rolled-feaf Formation and Functional Analysis of OUL1 Controlling Leaf Roll in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2012. (in Chinese with English abstract)
[10] Wu R H, Li S B, He S, Wassmann F, Yu C H, Qin G J, Schreiber L, Qu L J, Gu H Y. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011, 23: 3392-3411.
doi: 10.1105/tpc.111.088625
[11] Juarez M T, Twigg R W, Timmermans M C P. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131: 4533-4544.
doi: 10.1242/dev.01328 pmid: 15342478
[12] Canales C, Grigg S, Tsiantis M. The formation and patterning of leaves: recent advances. Planta, 2005, 221: 752-756.
pmid: 15909148
[13] Zhu Z, Wang J Y, Li C N, Li L, Mao X G, Hu G, Wang J P, Chang J Z, Jing R L. A transcription factor TaMYB5 modulates leaf rolling in wheat. Front Plant Sci, 2022, 13: 897623.
doi: 10.3389/fpls.2022.897623
[14] Verma A, Niranjana M, Jha S K, Mallick N, Agarwal P, Vinod. QTL detection and putative candidate gene prediction for leaf rolling under moisture stress condition in wheat. Sci Rep, 2020, 10: 18696.
doi: 10.1038/s41598-020-75703-4 pmid: 33122772
[15] Yang X, Wang J Y, Mao X G, Li C N, Li L, Xue Y H, He L H, Jing R L. A locus controlling leaf rolling degree in wheat under drought stress identified by bulked segregant analysis. Plants, 2022, 11: 2076.
doi: 10.3390/plants11162076
[16] Bian R L, Liu N, Xu Y Z, Su Z Q, Chai L L, Bernardo A, Amand P St, Fritz A, Zhang G R, Rupp J, Akhunov E, Jordan K W, Bai G H. Quantitative trait loci for rolled leaf in a wheat EMS mutant from Jagger. Theor Appl Genet, 2023, 136: 52.
doi: 10.1007/s00122-023-04284-3
[17] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714-727.
doi: 10.3724/SP.J.1006.2021.01048
Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Seedling root characteristics and drought resistance of wheat in Shanxi province. Acta Agron Sin, 2021, 47: 714-727. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01048
[18] 李浩然, 李慧玲, 王红光, 李东晓, 李瑞奇, 李雁鸣. 冬小麦叶面积测算方法的再探讨. 麦类作物学报, 2018, 38: 455-459.
Li H R, Li H L, Wang H G, Li X D, Li R Q, Li Y M. Further study on the method of leaf area calculation in winter wheat. J Triticeae Crops, 2018, 38: 455-459. (in Chinese with English abstract)
[19] Shi Z Y, Wang J, Wan X S, Shen G Z, Wang X Q, Zhang J L. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007, 226: 99-108.
doi: 10.1007/s00425-006-0472-0
[20] Selim D A H, Zayed M, Ali M M E, Eldesouky H S, Bonfill M, El-Tahan A M, Ibrahim O M, El-Saadony M T, El-Tarabily K A, AbuQamar S F, Elokkiah S. Germination, physio-anatomical behavior, and productivity of wheat plants irrigated with magnetically treated seawater. Front Plant Sci, 2022, 13: 923872.
doi: 10.3389/fpls.2022.923872
[21] 张礼霞, 刘合芹, 于新, 王林友, 范宏环, 金庆生, 王建军. 水稻卷叶突变体rl15(t)的生理学分析及基因定位. 中国农业科学, 2014, 47: 2881-2888.
doi: 10.3864/j.issn.0578-1752.2014.14.018
Zhang L X, Liu H Q, Yu X, Wang L Y, Fan H H, Jin Q S, Wang J J. Molecular mapping and physiological characterization of a novel mutant rl15(t) in rice. Sci Agric Sin, 2014, 47: 2881-2888. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.14.018
[22] 严长杰, 严松, 张正球, 梁国华, 陆驹飞, 顾铭洪. 一个新的水稻卷叶突变体rl9(t)的遗传分析和基因定位. 科学通报, 2005, 50: 2757-2762.
Yan C J, Yan S, Zhang Z Q, Liang G H, Lu J F, Gu M H. Genetic analysis and gene fine mapping for a rice novel mutant rl9(t) with rolling leaf character. Sci Bull, 2005, 50: 2757-2762. (in Chinese with English abstract)
[23] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
doi: 10.1038/nplants.2015.203
[24] Li Y Y, Shen A, Xiong W, Sun Q L, Luo Q, Song T, Li Z L, Luan W J. Overexpression of OsHox32 results in pleiotropic effects on plant type architecture and leaf development in rice. Rice, 2016, 9: 46.
doi: 10.1186/s12284-016-0118-1
[25] Liu X F, Li M, Liu K, Tang D, Sun M F, Li Y F, Shen Y, Du G J, Cheng Z K. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot, 2016, 67: 2139-2150.
doi: 10.1093/jxb/erw029
[26] Shimano S, Hibara K I, Furuya T, Arimura S I, Tsukaya H, Itoh J I. Conserved functional control, but distinct regulation, of cell proliferation in rice and Arabidopsis leaves revealed by comparative analysis of GRF-INTERACTING FACTOR 1 orthologs. Development, 2018, 145: 159624.
[27] Jane W N, Chiang S H T. Morphology and development of bulliform cells in Arundo formosana Hack. Taiwania Int J Life Sci, 1991, 36: 85-97.
[28] Hibara K L, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J L, Nagato Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009, 334: 345-354.
doi: 10.1016/j.ydbio.2009.07.042
[29] Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, Jiang L, Wang C M, Wan J M. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239: 803-816.
doi: 10.1007/s00425-013-2009-7
[30] Li C, Zou X H, Zhang C Y, Shao Q H, Liu J, Liu B, Li H Y, Zhao T. OsLBD3-7 overexpression induced adaxially rolled leaves in rice. PLoS One, 2016, 11: e0156413.
doi: 10.1371/journal.pone.0156413
[31] Yang C H, Li D Y, Liu X, Ji C J, Hao L L, Zhao X F, Li X B, Chen C Y, Cheng Z K, Zhu L H. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol, 2014, 14: 158.
doi: 10.1186/1471-2229-14-158
[32] Kinoshita T. Gene analysis and linkage map. Tokyo: Japan Scientific Societies Press, 1984. pp 187-274.
[33] Khush G S, Kinoshita T. Rice karyotype, marker genes, and linkage groups. In: Khush G S, Toenniessen G H, eds. Rice Biology. Wallingford: CAB International and International Rice Research Institute, 1991. pp 83-108.
[34] Wang J, Hu J, Qian Q, Xue H W. LC2 and OsVIL2 promote rice flowering by photoperoid-induced epigenetic silencing of OsLF. Mol Plant, 2013, 6: 514-527.
doi: 10.1093/mp/sss096 pmid: 22973062
[35] Woo Y M, Park H J, Su'udi M, Yang J I, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007, 65: 125-136.
doi: 10.1007/s11103-007-9203-6
[36] Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G Z, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73: 283-292.
doi: 10.1007/s11103-010-9614-7
[37] Dai M Q, Zhao Y, Ma Q, Hu Y F, Hedden P, Zhang Q F, Zhou D X. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol, 2007, 144: 121-133.
[38] Zhang G H, Hou X, Wang L, Xu J, Chen J, Fu X, Shen N W, Nian J Q, Jiang Z Z, Hu J, Zhu L, Rao Y C, Shi Y F, Ren D Y, Dong G J, Gao Z Y, Guo L B, Qian Q, Luan S. PHOTO- SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. New Phytol, 2021, 229: 890-901.
doi: 10.1111/nph.v229.2
[39] Chen Q L, Xie Q J, Gao J, Wang W Y, Sun B, Liu B H, Zhu H T, Peng H F, Zhao H B, Liu C H, Wang J, Zhang J L, Zhang G Q, Zhang Z M. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot, 2015, 66: 6047-6058.
doi: 10.1093/jxb/erv319
[40] Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9: 37.
doi: 10.1186/s12284-016-0105-6
[41] Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524-532.
doi: 10.1111/pbi.2012.10.issue-5
[42] Xiang J J, Zhang G H, Qian Q, Xue H W. Semi-rolled leaf1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1488-1500.
doi: 10.1104/pp.112.199968
[43] Xiao Y H, Liu D P, Zhang G X, Tong H N, Chu C C. Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice. Front Plant Sci, 2017, 8: 1698.
doi: 10.3389/fpls.2017.01698 pmid: 29021808
[44] Wang L, Xu J, Nian J Q, Shen N W, Lai K K, Hu J, Zeng D L, Ge C W, Fang Y X, Zhu L, Qian Q, Zhang G G. Characterization and fine mapping of the rice gene OsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regul, 2016, 78: 345-356.
doi: 10.1007/s10725-015-0097-z
[45] Huang J, Li Z Y, Zhao D Z. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep, 2016, 6: 29938.
doi: 10.1038/srep29938 pmid: 27444058
[46] Cho S H, Yoo S C, Zhang H T, Pandeya D, Koh H J, Wang J Y, Kim G T, Paek N C. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol, 2013, 198: 1071-1084.
doi: 10.1111/nph.2013.198.issue-4
[1] 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31.
[2] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[3] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[4] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[5] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[6] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[7] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[8] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[9] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[10] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[11] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[12] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[13] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[14] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[15] 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .