作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3399-3410.doi: 10.3724/SP.J.1006.2023.31004
• 研究简报 • 上一篇
刘叶1,2(), 李越1, 苑名杨1, 卫乃翠1, 关攀锋3, 赵佳佳1, 武棒棒1, 郑兴卫1, 郝宇琼1, 乔玲1,*(), 郑军1,*()
LIU Ye1,2(), LI Yue1, YUAN Ming-Yang1, WEI Nai-Cui1, GUAN Pan-Feng3, ZHAO Jia-Jia1, WU Bang-Bang1, ZHENG Xing-Wei1, HAO Yu-Qiong1, QIAO Ling1,*(), ZHENG Jun1,*()
摘要:
小麦叶片在逆境下会发生可逆的折叠或卷曲, 通过脱水回避的形态学变化降低非生物胁迫的损害。目前小麦叶片卷曲的生理和遗传调控机制尚不清楚。本文利用EMS诱变晋麦47获得了卷叶突变体RL1 (Rolled Leaf 1), RL1在整个生育期叶片呈现卷曲, 初生叶片沿中轴脉向近轴面微卷, 随着叶片生长加速卷曲, 直至为筒状。与野生型相比, RL1株高降低、穗长变短、旗叶变窄和千粒重降低。氯化三苯基四氮唑(TTC)染色结果表明RL1种子活力低, 且种子发芽率降低了22%。抽穗10 d后, RL1的叶绿素含量与野生型基本一致, 净光合速率、蒸腾速率、气孔导度、细胞间隙CO2浓度差异不显著, 但水分利用率降低。低温、高温和干旱促进RL1的叶片卷曲; 石蜡切片观察表明, RL1的大叶脉和小叶脉偏少, 在中脉区域远轴面厚壁细胞和近轴面薄壁细胞数目减少, 且维管束间泡状细胞的面积和数量均明显低于野生型; RL1叶片不同部位泡状细胞缩小以及维管束减少导致整个叶片向近轴面极度卷曲。遗传分析表明该性状受1对不完全显性的核基因控制, 位于1D染色体短臂上, 精细定位将目标区间锁定在9.42 Mb范围内。
[1] |
Bogard M, Hourcade D, Piquemal B, Gouache D, Deswartes J C, Throude M, Cohan J P. Marker-based crop model-assisted ideotype design to improve avoidance of abiotic stress in bread wheat. J Exp Bot, 2021, 72: 1085-1103.
doi: 10.1093/jxb/eraa477 pmid: 33068400 |
[2] |
Merrium S, Ali Z, Tahir M H N, Habib-Ur-Rahman M, Hakeem S. Leaf rolling dynamics for atmospheric moisture harvesting in wheat plant as an adaptation to arid environments. Environ Sci Pollut Res Int, 2022, 29: 48995-49006.
doi: 10.1007/s11356-022-18936-2 |
[3] |
Sirault X R R, Condon A G, Wood J T, Farquhar G D, Rebetzke G J. ‘Rolled-upness’: phenotyping leaf rolling in cereals using computer vision and functional data analysis approaches. Plant Methods, 2015, 11: 52.
doi: 10.1186/s13007-015-0095-1 pmid: 26583042 |
[4] |
Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376: 180-183.
doi: 10.1126/science.abm0717 |
[5] |
Sun J, Cui X A, Teng S Z, Zhao K N, Wang Y W, Chen Z H, Sun X H, Wu J X, Ai P F, Quick W P, Lu T G, Zhang Z G. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice. Plant Biotechnol J, 2020, 18: 2559-2572.
doi: 10.1111/pbi.v18.12 |
[6] |
Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807-817.
doi: 10.1093/mp/ssq022 |
[7] |
Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol, 2011, 156: 1589-1602.
doi: 10.1104/pp.111.176016 |
[8] |
Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT- LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719-735.
doi: 10.1105/tpc.108.061457 |
[9] | 邹良平. 水稻卷叶突变体的细胞形成机制以及OUL1基因的克隆和功能研究. 中国农业科学院博士学位论文,北京, 2012. |
Zou L P. Cytological Mechanism of Rolled-feaf Formation and Functional Analysis of OUL1 Controlling Leaf Roll in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2012. (in Chinese with English abstract) | |
[10] |
Wu R H, Li S B, He S, Wassmann F, Yu C H, Qin G J, Schreiber L, Qu L J, Gu H Y. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011, 23: 3392-3411.
doi: 10.1105/tpc.111.088625 |
[11] |
Juarez M T, Twigg R W, Timmermans M C P. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131: 4533-4544.
doi: 10.1242/dev.01328 pmid: 15342478 |
[12] |
Canales C, Grigg S, Tsiantis M. The formation and patterning of leaves: recent advances. Planta, 2005, 221: 752-756.
pmid: 15909148 |
[13] |
Zhu Z, Wang J Y, Li C N, Li L, Mao X G, Hu G, Wang J P, Chang J Z, Jing R L. A transcription factor TaMYB5 modulates leaf rolling in wheat. Front Plant Sci, 2022, 13: 897623.
doi: 10.3389/fpls.2022.897623 |
[14] |
Verma A, Niranjana M, Jha S K, Mallick N, Agarwal P, Vinod. QTL detection and putative candidate gene prediction for leaf rolling under moisture stress condition in wheat. Sci Rep, 2020, 10: 18696.
doi: 10.1038/s41598-020-75703-4 pmid: 33122772 |
[15] |
Yang X, Wang J Y, Mao X G, Li C N, Li L, Xue Y H, He L H, Jing R L. A locus controlling leaf rolling degree in wheat under drought stress identified by bulked segregant analysis. Plants, 2022, 11: 2076.
doi: 10.3390/plants11162076 |
[16] |
Bian R L, Liu N, Xu Y Z, Su Z Q, Chai L L, Bernardo A, Amand P St, Fritz A, Zhang G R, Rupp J, Akhunov E, Jordan K W, Bai G H. Quantitative trait loci for rolled leaf in a wheat EMS mutant from Jagger. Theor Appl Genet, 2023, 136: 52.
doi: 10.1007/s00122-023-04284-3 |
[17] |
赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714-727.
doi: 10.3724/SP.J.1006.2021.01048 |
Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Seedling root characteristics and drought resistance of wheat in Shanxi province. Acta Agron Sin, 2021, 47: 714-727. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01048 |
|
[18] | 李浩然, 李慧玲, 王红光, 李东晓, 李瑞奇, 李雁鸣. 冬小麦叶面积测算方法的再探讨. 麦类作物学报, 2018, 38: 455-459. |
Li H R, Li H L, Wang H G, Li X D, Li R Q, Li Y M. Further study on the method of leaf area calculation in winter wheat. J Triticeae Crops, 2018, 38: 455-459. (in Chinese with English abstract) | |
[19] |
Shi Z Y, Wang J, Wan X S, Shen G Z, Wang X Q, Zhang J L. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007, 226: 99-108.
doi: 10.1007/s00425-006-0472-0 |
[20] |
Selim D A H, Zayed M, Ali M M E, Eldesouky H S, Bonfill M, El-Tahan A M, Ibrahim O M, El-Saadony M T, El-Tarabily K A, AbuQamar S F, Elokkiah S. Germination, physio-anatomical behavior, and productivity of wheat plants irrigated with magnetically treated seawater. Front Plant Sci, 2022, 13: 923872.
doi: 10.3389/fpls.2022.923872 |
[21] |
张礼霞, 刘合芹, 于新, 王林友, 范宏环, 金庆生, 王建军. 水稻卷叶突变体rl15(t)的生理学分析及基因定位. 中国农业科学, 2014, 47: 2881-2888.
doi: 10.3864/j.issn.0578-1752.2014.14.018 |
Zhang L X, Liu H Q, Yu X, Wang L Y, Fan H H, Jin Q S, Wang J J. Molecular mapping and physiological characterization of a novel mutant rl15(t) in rice. Sci Agric Sin, 2014, 47: 2881-2888. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.14.018 |
|
[22] | 严长杰, 严松, 张正球, 梁国华, 陆驹飞, 顾铭洪. 一个新的水稻卷叶突变体rl9(t)的遗传分析和基因定位. 科学通报, 2005, 50: 2757-2762. |
Yan C J, Yan S, Zhang Z Q, Liang G H, Lu J F, Gu M H. Genetic analysis and gene fine mapping for a rice novel mutant rl9(t) with rolling leaf character. Sci Bull, 2005, 50: 2757-2762. (in Chinese with English abstract) | |
[23] |
Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
doi: 10.1038/nplants.2015.203 |
[24] |
Li Y Y, Shen A, Xiong W, Sun Q L, Luo Q, Song T, Li Z L, Luan W J. Overexpression of OsHox32 results in pleiotropic effects on plant type architecture and leaf development in rice. Rice, 2016, 9: 46.
doi: 10.1186/s12284-016-0118-1 |
[25] |
Liu X F, Li M, Liu K, Tang D, Sun M F, Li Y F, Shen Y, Du G J, Cheng Z K. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot, 2016, 67: 2139-2150.
doi: 10.1093/jxb/erw029 |
[26] | Shimano S, Hibara K I, Furuya T, Arimura S I, Tsukaya H, Itoh J I. Conserved functional control, but distinct regulation, of cell proliferation in rice and Arabidopsis leaves revealed by comparative analysis of GRF-INTERACTING FACTOR 1 orthologs. Development, 2018, 145: 159624. |
[27] | Jane W N, Chiang S H T. Morphology and development of bulliform cells in Arundo formosana Hack. Taiwania Int J Life Sci, 1991, 36: 85-97. |
[28] |
Hibara K L, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J L, Nagato Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009, 334: 345-354.
doi: 10.1016/j.ydbio.2009.07.042 |
[29] |
Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, Jiang L, Wang C M, Wan J M. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239: 803-816.
doi: 10.1007/s00425-013-2009-7 |
[30] |
Li C, Zou X H, Zhang C Y, Shao Q H, Liu J, Liu B, Li H Y, Zhao T. OsLBD3-7 overexpression induced adaxially rolled leaves in rice. PLoS One, 2016, 11: e0156413.
doi: 10.1371/journal.pone.0156413 |
[31] |
Yang C H, Li D Y, Liu X, Ji C J, Hao L L, Zhao X F, Li X B, Chen C Y, Cheng Z K, Zhu L H. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol, 2014, 14: 158.
doi: 10.1186/1471-2229-14-158 |
[32] | Kinoshita T. Gene analysis and linkage map. Tokyo: Japan Scientific Societies Press, 1984. pp 187-274. |
[33] | Khush G S, Kinoshita T. Rice karyotype, marker genes, and linkage groups. In: Khush G S, Toenniessen G H, eds. Rice Biology. Wallingford: CAB International and International Rice Research Institute, 1991. pp 83-108. |
[34] |
Wang J, Hu J, Qian Q, Xue H W. LC2 and OsVIL2 promote rice flowering by photoperoid-induced epigenetic silencing of OsLF. Mol Plant, 2013, 6: 514-527.
doi: 10.1093/mp/sss096 pmid: 22973062 |
[35] |
Woo Y M, Park H J, Su'udi M, Yang J I, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007, 65: 125-136.
doi: 10.1007/s11103-007-9203-6 |
[36] |
Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G Z, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73: 283-292.
doi: 10.1007/s11103-010-9614-7 |
[37] | Dai M Q, Zhao Y, Ma Q, Hu Y F, Hedden P, Zhang Q F, Zhou D X. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol, 2007, 144: 121-133. |
[38] |
Zhang G H, Hou X, Wang L, Xu J, Chen J, Fu X, Shen N W, Nian J Q, Jiang Z Z, Hu J, Zhu L, Rao Y C, Shi Y F, Ren D Y, Dong G J, Gao Z Y, Guo L B, Qian Q, Luan S. PHOTO- SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. New Phytol, 2021, 229: 890-901.
doi: 10.1111/nph.v229.2 |
[39] |
Chen Q L, Xie Q J, Gao J, Wang W Y, Sun B, Liu B H, Zhu H T, Peng H F, Zhao H B, Liu C H, Wang J, Zhang J L, Zhang G Q, Zhang Z M. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot, 2015, 66: 6047-6058.
doi: 10.1093/jxb/erv319 |
[40] |
Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9: 37.
doi: 10.1186/s12284-016-0105-6 |
[41] |
Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524-532.
doi: 10.1111/pbi.2012.10.issue-5 |
[42] |
Xiang J J, Zhang G H, Qian Q, Xue H W. Semi-rolled leaf1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1488-1500.
doi: 10.1104/pp.112.199968 |
[43] |
Xiao Y H, Liu D P, Zhang G X, Tong H N, Chu C C. Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice. Front Plant Sci, 2017, 8: 1698.
doi: 10.3389/fpls.2017.01698 pmid: 29021808 |
[44] |
Wang L, Xu J, Nian J Q, Shen N W, Lai K K, Hu J, Zeng D L, Ge C W, Fang Y X, Zhu L, Qian Q, Zhang G G. Characterization and fine mapping of the rice gene OsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regul, 2016, 78: 345-356.
doi: 10.1007/s10725-015-0097-z |
[45] |
Huang J, Li Z Y, Zhao D Z. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep, 2016, 6: 29938.
doi: 10.1038/srep29938 pmid: 27444058 |
[46] |
Cho S H, Yoo S C, Zhang H T, Pandeya D, Koh H J, Wang J Y, Kim G T, Paek N C. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol, 2013, 198: 1071-1084.
doi: 10.1111/nph.2013.198.issue-4 |
[1] | 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31. |
[2] | 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551. |
[3] | 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581. |
[4] | 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132. |
[5] | 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143. |
[6] | 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209. |
[7] | 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224. |
[8] | 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258. |
[9] | 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287. |
[10] | 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307. |
[11] | 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905. |
[12] | 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918. |
[13] | 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953. |
[14] | 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817. |
[15] | 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667. |
|