欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2310-2322.doi: 10.3724/SP.J.1006.2024.32049

• 耕作栽培·生理生化 • 上一篇    下一篇

杂交水稻不同穗萌程度种子质量差异与穗萌分级研究

贾舒涵1,3**(), 何璨1,2**, 陈敏1, 刘家欣1,3, 胡伟民1,3, 胡晋1,3, 关亚静1,3,*()   

  1. 1浙江大学农业与生物技术学院现代种业研究所种子科学中心, 浙江杭州 310058
    2中国共产党富民县委员会组织部, 云南昆明 650400
    3浙江大学海南研究院, 海南三亚 572025
  • 收稿日期:2023-11-18 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-06-05
  • 通讯作者: *关亚静, E-mail: vcguan@zju.edu.cn
  • 作者简介:贾舒涵, E-mail: 22116186@zju.edu.cn
    **同等贡献
  • 基金资助:
    海南省自然科学基金项目(322CXTD522);三亚崖州湾科技城博士研究生科研创新基金项目(HSPHDSRF-2023-04-017);浙江省“三农九方”科技协作计划(2023SNJF04302);上海市科技兴农项目(2022-02-08-00-12-F01127);现代作物生产省部共建协同创新中心(CIC-MCP)

Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice

JIA Shu-Han1,3**(), HE Can1,2**, CHEN Min1, LIU Jia-Xin1,3, HU Wei-Min1,3, HU Jin1,3, GUAN Ya-Jing1,3,*()   

  1. 1Seed Science Center, Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
    2Communist Party of China Fumin County Committee Organization Department, Kunming 650400, Yunnan, China
    3Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
  • Received:2023-11-18 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-06-05
  • Contact: *E-mail: vcguan@zju.edu.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Hainan Provincial Natural Science Foundation(322CXTD522);Sanya Yazhouwan Science and Technology City Doctoral Research and Innovation Fund(HSPHDSRF-2023-04-017);Zhejiang Province “San Nong Jiu Fang” Science and Technology Cooperation Plan(2023SNJF04302);Shanghai Science and Technology Development Project(2022-02-08-00-12-F01127);Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry(CIC-MCP)

摘要:

研究不同穗萌程度种子质量, 对科学划分穗萌级别, 优化穗萌指标计算方法至关重要。本试验以钱优0508 (Qianyou 0508, QY0508)、Y两优689 (Y Liangyou 689, YLY689)两个籼型杂交水稻品种为材料, 测定穗上不同穗萌程度种子的发芽指标, 以及可溶性糖、可溶性蛋白含量等生理指标, 以此评估不同穗萌程度水稻种子的发芽质量。同时, 采用自然晾干和38℃烘干2种方式干燥穗萌种子, 并将种子在低温和水淹2种逆境条件下发芽, 探究实际生产中不同干燥处理对已穗萌种子质量的影响, 及不同穗萌程度种子萌发抗逆能力的差异。此外, 由于水稻种子通常在蜡熟末期至完熟初期为最佳收获期, 期间均可能遭遇不良气候条件导致种子穗萌, 因此本研究对不同成熟时期的穗萌种子质量也进行了探讨。通过鉴定穗上不同萌动程度的种子质量, 提出了新的水稻穗萌分级方法, 即完整饱满未萌动种子为0级, 胚根凸起但稃壳未开裂的种子为1级, 胚根露出且可见长度不足2 mm的种子为2级, 胚根可见长度大于2 mm的种子为3级。与0级种子相比, 1~3级穗萌种子的发芽率均显著下降, 不正常幼苗率显著增加, 在低温、水淹逆境下, 该现象更明显。相对而言, 38℃烘干方式对种子质量的影响较自然晾干小, 而授粉后35 d (35 DAP)成熟度高的种子发生穗萌后对种子质量影响较授粉后25 d (25 DAP)成熟度低的种子小。本研究经过对不同穗萌程度种子质量的研究, 提出了新的穗萌分级方法, 对准确评估田间水稻穗萌水平有重要价值。

关键词: 水稻, 穗萌分级, 穗萌率, 种子质量

Abstract:

Investigating seed quality with different pre-harvest sprouting (PHS) grades is of great importance for scientifically classifying PHS levels and optimizing the calculation method for PHS parameters. In this study, we utilized two indica hybrid rice cultivars, namely Qianyou 0508 (QY0508) and Y Liangyou 689 (YLY689), to assess the germination quality of rice seeds with varying PHS grades. Additionally, we examined the contents of soluble sugar, soluble protein, and other physiological indicators. To explore the effects of different drying treatments on the quality of PHS seeds in practical production and assess the stress tolerance of different PHS seeds during germination, we employed two drying methods: air drying and 38℃ oven drying for fresh PHS seeds. Subsequently, germination tests were conducted under two adverse conditions, namely low temperature and water flooding. Furthermore, as adverse climatic conditions during the optimal harvest period (from the end of wax ripening to the beginning of full ripening) may lead to PHS, we also investigated the quality of PHS seeds at different developmental stages. By evaluating the quality of PHS seeds, we proposed a new grading method for rice PHS seeds. This method includes the following grades: grade 0 for intact, full, and non-germinated seeds; grade 1 for seeds with protruding embryonic roots but uncracked lemma shells; grade 2 for seeds with visible embryonic roots less than 2 mm in length; and grade 3 for seeds with visible embryonic roots greater than 2 mm in length. Compared to grade 0 seeds, the germination rate of grade 1-3 PHS seeds significantly decreased, while the abnormal seedling rate showed a significant increase. This effect was more pronounced under low temperature and water flooding stresses. Moreover, 38℃ oven drying had a smaller impact on seed quality compared to air drying. Additionally, seeds with high maturity (35 days after pollination) exhibited a smaller impact on seed quality after sprouting compared to seeds with low maturity (25 days after pollination). Through the comprehensive evaluation of seeds with different PHS grades, our study proposes a new grading method for PHS seeds, which holds significant value in accurately understanding PHS seeds and evaluating rice PHS levels in the field.

Key words: rice (Oryza sativa L.), pre-harvest sprouting (PHS) grading, PHS rate, seed quality

图1

穗萌1级和2级的新鲜未干燥的水稻种子形态 a: 1级种子; b: 2级种子。"

图2

去稃壳后的不同穗萌级别的水稻干燥种子形态 a: QY0508, 钱优0508; b: YLY689, Y两优689; a: 0级种子; b: 1级种子; c: 2级种子; d: 3级种子。"

图3

杂交水稻QY0508和YLY689不同穗萌级别新鲜种子中MDA含量、抗氧化酶活性及可溶性物质含量变化 A: 丙二醛(MDA)含量; B: 过氧化物酶(POD)活性; C: 过氧化氢酶(CAT)活性; D: 抗坏血酸过氧化物酶(APX)活性; E: 超氧化物歧化酶(SOD)活性; F: 可溶性蛋白含量; G: 可溶性糖含量。QY0508: 钱优0508; YLY689: Y两优689; 同一颜色柱形图误差线上的小写字母表示同一品种不同穗萌级别种子间的差异显著性(LSD, α=0.05)。"

图4

杂交水稻QY0508和YLY689不同穗萌级别种子中GA3和ABA含量变化 A: 赤霉素(GA3)含量; B: 脱落酸(ABA)含量; C: GA3与ABA含量比值。"

表1

不同穗萌级别杂交水稻种子经干燥处理后的发芽情况"

品种
Cultivar
干燥方式
Drying method
穗萌级别
Grade of PHS seeds
发芽势Germination potential (%) 发芽率Germination rate (%) 不正常幼苗率
Abnormal seedling rate (%)
发芽指数
Germination index
根长
Root length (cm)
苗高
Shoot height
(cm)
幼苗干重
Dry weight
(g per 10 seedlings)
QY
0508
晾干
Air drying
0 92.00 a 96.00 a 0 c 11.77 a 6.33 a 7.53 a 0.0870 a
1 46.67 b 49.33 b 64.70 b 6.03 b 2.40 b 3.40 b 0.0373 b
2 9.33 c 9.33 c 100.00 a 1.22 c
3 0 d 0 d
烘干
Oven drying
0 88.67 a 97.33 a 0 c 12.11 a 7.43 a 7.30 a 0.0892 a
1 82.00 b 88.67 b 38.33 b 10.00 b 5.47 b 4.60 b 0.0749 b
2 76.67 c 80.00 c 55.00 a 8.94 c 4.33 c 4.17 c 0.0601 c
3 42.00 d 42.67 d 34.27 b 5.12 d 2.73 d 2.53 d 0.0312 d
YLY
689
晾干
Air drying
0 97.33 a 100.00 a 0 c 13.68 a 6.33 a 7.27 a 0.0913 a
1 41.33 b 49.33 b 51.22 a 5.87 b 3.17 b 2.53 b 0.0337 b
2 22.67 c 22.67 c 41.11 b 2.82 c
3 11.33 d 12.00 d 55.71 a 1.31 d
烘干
Oven drying
0 96.67 a 100.00 a 0 c 13.65 a 5.77 a 7.17 a 0.0913 a
1 94.00 a 95.33 b 23.76 b 12.48 b 5.13 b 3.77 b 0.0472 b
2 56.00 b 94.67 b 40.84 a 9.66 c 4.60 c 3.47 c 0.0423 c
3 14.67 c 54.67 c 21.98 b 4.88 d

图5

低温和淹水胁迫下杂交水稻QY0508与YLY689不同穗萌级别烘干种子的发芽情况 QY0508: 钱优0508; YLY689: Y两优689; A: 低温胁迫下不同穗萌级别种子的发芽势(GP)、发芽率(GR)和不正常幼苗率(ASR); B: 淹水胁迫下不同穗萌级别种子的发芽势(GP)、发芽率(GR)和不正常幼苗率(ASR); C: 低温胁迫下不同穗萌级别种子的发芽指数; D: 淹水胁迫下不同穗萌级别种子的发芽指数。"

表2

水稻穗萌发生时期对穗萌种子发芽及幼苗生长的影响"

品种
Cultivar
授粉后
天数
DAP (d)
穗萌级别
Grade of PHS seeds
发芽势Germination potential (%) 发芽率Germination rate (%) 不正常幼苗率
Abnormal seedling rate (%)
发芽指数
Germination index
根长
Root length (cm)
苗高
Shoot height
(cm)
幼苗干重
Dry weight
(g per 10 seedlings)
QY
0508
25 0 88.00 a 95.33 a 0 c 13.49 a 4.21 7.93 0.0963
1 10.67 b 10.67 b 74.44 b 2.19 b
2 2.00 c 2.00 c 100.00 a 0.49 c
3 0 c 0 c
35 0 94.67 a 95.33 a 0 c 16.05 a 5.62 a 9.87 a 0.1132 a
1 80.00 b 84.67 b 5.50 b 13.87 b 5.03 b 8.77 b 0.1002 b
2 51.33 c 59.33 c 11.24 a 9.37 c 4.60 c 3.47 c 0.0423 c
3 40.00 d 42.67 d 6.15 b 6.45 d
YLY
689
25 0 92.67 a 95.33 a 0 c 12.58 a 4.32 8.81 0.1141
1 6.00 b 6.00 b 88.89 b 1.11 b
2 4.67 b 4.67 b 88.89 b 0.83 b
3 2.00 c 2.00 c 100.00 a 0.33 c
35 0 95.33 a 97.33 a 0 d 14.80 a 4.93 a 9.69 a 0.1282 a
1 92.67 a 94.67 b 1.40 c 13.97 a 4.62 a 9.23 a 0.1201 a
2 44.00 b 67.33 c 6.92 b 9.42 b 4.01 b 7.71 b 0.0823 b
3 40.00 c 48.67 d 8.22 a 6.89 c 3.21 c 4.63 c 0.0511 c

图6

不同穗萌级别水稻种子示意图 0级: 种子完整饱满无萌动; 1级: 种子胚根已凸起但稃壳未开裂; 2级: 种子胚根露出稃壳长度< 2 mm; 3级: 种子胚根伸长≥ 2 mm。胚根长度测定参照ISTA[14]。"

表3

4种穗萌抑制药剂对杂交水稻QY0508和YLY689田间穗萌的影响"

品种
Cultivar
穗萌分级方法
Grading method of PHS seeds
处理
Treatment
0级率
Grade 0 rate
(%)
1级率
Grade 1 rate
(%)
2级率
Grade 2 rate
(%)
3级率
Grade 3 rate
(%)
穗萌率
PHS rate
(%)
穗萌指数
PHS index
QY0508 PHSG-H2003 CK 60.87 c 14.17 a 21.04 a 3.92 ab 24.96 a 0.95 a
A 71.94 ab 9.36 b 15.03 ab 3.67 ab 18.70 b 0.73 b
B 76.05 a 8.22 b 11.49 b 4.25 a 15.74 b 0.64 b
C 72.01 ab 10.14 b 16.18 ab 1.67 b 17.85 b 0.67 b
D 67.94 b 12.67 a 18.53 a 0.86 b 19.39 b 0.72 b
PHSG-G2023 CK 37.35 d 18.02 a 27.40 a 17.23 a 62.65 a 1.86 a
A 61.32 b 10.62 ab 18.72 b 9.36 b 38.68 b 1.14 b
B 64.08 ab 9.38 b 16.82 b 9.72 b 35.92 bc 1.08 b
C 66.24 a 9.22 b 18.95 b 5.59 b 33.76 c 0.94 b
D 60.17 b 13.40 ab 23.09 ab 3.34 b 39.83 b 0.99 b
YLY689 PHSG-H2003 CK 46.39 c 16.91 a 29.45 a 7.25 a 36.71 a 1.41 a
A 69.77 b 9.49 ab 16.76 b 3.98 b 20.75 b 0.80 b
B 80.16 a 6.44 c 10.56 d 2.83 b 13.39 c 0.52 c
C 78.05 a 8.53 b 12.27 cd 1.16 b 13.43 c 0.51 c
D 71.79 b 11.92 ab 15.06 bc 1.22 b 16.28 bc 0.63 bc
YLY689 PHSG-G2023 CK 34.72 c 11.67 a 33.83 a 19.78 a 65.28 a 2.12 a
A 61.60 b 8.17 b 18.97 bc 11.26 b 38.40 b 1.21 bc
B 72.38 a 7.78 b 12.89 c 6.95 c 27.62 c 0.81 c
C 62.85 b 5.29 b 15.09 c 16.77 ab 37.15 b 1.34 b
D 64.75 ab 7.05 b 23.85 b 4.35 c 35.25 bc 1.00 bc
[1] Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R. Genes controlling seed dormancy and pre-harvest sprouting in a rice- wheat-barley comparison. Funct Integr Genomics, 2004, 4: 84-93.
[2] Fang J, Chu C. Abscisic acid and the pre-harvest sprouting in cereals. Plant Signal Behav, 2008, 3: 1046-1048.
doi: 10.4161/psb.3.12.6606 pmid: 19513237
[3] Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008, 59: 387-415.
doi: 10.1146/annurev.arplant.59.032607.092740 pmid: 18257711
[4] 陈兵先, 刘军. 水稻穗萌及其调控的研究进展. 种子, 2017, 36(2): 49-55.
Chen B X, Liu J. Research progress of rice vivipary and its regulation. Seed, 2017, 36(2): 49-55 (in Chinese).
[5] Gu X Y, Zhang J F, Ye H, Zhang L H, Feng J H. Genotyping of endosperms to determine seed dormancy genes regulating germination through embryonic, endospermic, or maternal tissues in rice. G3: Genes Genom Genet, 2015, 5: 183-193.
[6] Shu K, Liu X D, Xie Q, He Z H. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016, 9: 34-45.
doi: S1674-2052(15)00356-1 pmid: 26343970
[7] Nee G, Xiang Y, Soppe W J J. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol, 2017, 35: 8-14.
doi: S1369-5266(16)30133-9 pmid: 27710774
[8] Hu Q J, Lin C, Guan Y J, Sheteiwy M S, Hu W M, Hu J. Inhibitory effect of eugenol on seed germination and pre-harvest sprouting of hybrid rice (Oryza sativa L.). Sci Rep, 2017, 7: 5295.
[9] Steinbach H S, Benech-Arnold R L, Sanchez R A. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol, 1997, 113: 149-154.
pmid: 12223597
[10] 周述波, 贺立红, 贺立静, 林伟. 杂交水稻亲本种子与穗萌芽时的生理特性比较. 湖北农业科学, 2017, 56: 1023-1025.
Zhou S B, He L H, He L J, Lin W. Comparison of physiological characteristics between seed germination and preharvest sprouting of hybrid rice parents’ lines. Hubei Agric Sci, 2017, 56: 1023-1025 (in Chinese with English abstract).
[11] 薛全义, 都基坤, 邓丽, 王再鹏. 晒种对隔年玉米种子活力的影响研究. 辽宁农业职业技术学院学报, 2006, 8(1): 4-5.
Xue Q Y, Du J K, Deng L, Wang Z P. Separates the year corn seed vigor experimental study. J Liaoning Agric Tech Univ, 2006, 8(1): 4-5 (in Chinese with English abstract).
[12] 马丽. 种子干燥技术研究进展. 中国种业, 2008, (12): 14-16.
Ma L. Research progress of seed drying technology. China Seed, 2008, (12): 14-16 (in Chinese).
[13] 胡伟民, 马华升, 樊龙江, 阮松林. 杂交水稻制种不育系穗上发芽特性. 作物学报, 2003, 29: 441-446.
Hu W M, Ma H S, Fan L J, Ruan S L. Characteristics of pre-harvest sprouting in sterile lines in hybrid rice seeds production. Acta Agron Sin, 2003, 29: 441-446 (in Chinese with English abstract).
[14] International Seed Testing Association (ISTA). International Rues for Seed Testing, Chapter 15: Seed vigour testing, 2023. pp 1-28.
[15] Abbas S, Basit F, Tanwir K, Zhu X B, Hu J, Guan Y J, Hu W M, Sheteiwy M S, Yang H S, El-Keblawy A, El-Tarabily K A, Abuqamar S F, Lou J F. Exogenously applied sodium nitroprusside alleviates nickel toxicity in maize by regulating antioxidant activities and defense-related gene expression. Physiol Plant, 2023, 175: e13985.
[16] Guan Y J, Hu J, Wang X J, Shao C X. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci, 2009, 10: 427-433.
[17] Basit F, Tao J, An J Y, Song X Y, Sheteiwy M S, Holford P, Hu J, Josko I, Guan Y J. Nitric oxide and brassinosteroids enhance chromium stress tolerance in Glycine max L. (Merr.) by modulating antioxidative defense and glyoxalase systems. Environ Sci Pollut Res, 2023, 30: 51638-51653.
[18] Basit F, Bhat J A, Alyemeni M N, Shah T, Ahmad P. Nitric oxide mitigates vanadium toxicity in soybean (Glycine max L.) by modulating reactive oxygen species (ROS) and antioxidant system. J Hazard Mater, 2023, 451: 131085.
[19] 尹燕枰. 种子学实验技术. 北京: 中国农业出版社, 2008. pp 97-99.
Yin Y P. Seed Experimental Technique. Beijing: China Agriculture Press, 2008. pp 97-99 (in Chinese).
[20] 董倩倩, 龚桂芝, 彭祝春, 李一兵, 侯艳红, 洪棋斌. 柑橘采前落果与果实不同部位内源激素含量关系分析. 植物生理学报, 2018, 54: 1569-1575.
Dong Q Q, Gong G Z, Peng Z C, Li Y B, Hou Y H, Hong Q B. Analysis on the relationship between physiological fruit drop and content of four endogenous hormones in different parts of fruit in citrus. Plant Physiol J, 2018, 54: 1569-1575 (in Chinese with English abstract).
[21] 黄玉韬, 曹栋栋, 邹文雄, 吴华平, 吴玭, 吴伟. 水稻种子机械干燥存在的问题及对策—以浙江省种子企业为例. 中国稻米, 2020, 26(3): 91-95.
doi: 10.3969/j.issn.1006-8082.2020.03.023
Huang Y T, Cao D D, Zou W X, Wu H P, Wu P, Wu W. Study on issue and solution of rice seed mechanical drying in Zhejiang province. China Rice, 2020, 26(3): 91-95 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2020.03.023
[22] 胡晋. 种子学(第2版). 北京: 中国农业出版社, 2014. pp 346-359.
Hu J. Seed Science, 2nd edn. Beijing: China Agriculture Press, 2014. pp 346-359 (in Chinese).
[23] Luo Y, Lin C, Fu Y Y, Huang Y T, He F, Guan Y J, Hu J. Single counts of radicle emergence can be used as a fast method to test seed vigour of indica rice. Seed Sci Technol, 2017, 45: 222-229.
[24] 胡晋, 关亚静. 种子检验学(第2版). 北京: 科学出版社, 2022. pp 80-88.
Hu J, Guan Y J. Seed Testing Science, 2nd edn. Beijing: Science Press, 2022. pp 80-88 (in Chinese).
[25] 林程. 锌铁螯合物引发对杂交水稻种子活力和低温、淹水及其复合逆境抗性调控的研究. 浙江大学博士学位论文, 浙江杭州, 2021.
Lin C. Modulation Study of Fe-Zn-NA Chelates Priming on Seed Vigor and Tolerance of Low Temperature, Waterlogging and Their Compound Stress in Hybrid Rice Seeds. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2020 (in Chinese with English abstract).
[26] Tai L, Wang H J, Xu X J, Sun W H, Ju L, Liu W T, Li W Q, Sun J Q, Chen K M. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. J Exp Bot, 2021, 72: 2857-2876.
doi: 10.1093/jxb/erab024 pmid: 33471899
[27] 曾芳, 高娅, 潘鑫, 邬晓勇, 孙雁霞. 调控穗发芽的植物内源激素研究进展. 江苏农业学报, 2023, 39: 848-858.
Zeng F, Gao Y, Pan X, Wu X Y, Sun Y X. Research progress of plant endogenous hormones regulating pre-harvest sprouting. Jiangsu J Agirc Sci, 2023, 39: 848-858 (in Chinese with English abstract).
[28] 李霞, 宋一鸣, 程凤娟, 戴杏, 王若仲, 唐启源. 杂交水稻制种过程中谷粒内源激素含量的动态变化. 中国农学通报, 2016, 32(15): 102-106.
doi: 10.11924/j.issn.1000-6850.casb16010156
Li X, Song Y M, Cheng F J, Dai X, Wang R Z, Tang Q Y. Changes of endogenous hormones contents during hybrid rice seed production. Chin Agric Sci Bull, 2016, 32(15): 102-106 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb16010156
[29] Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M. The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol, 2002, 128: 1264-1270.
[30] 倪万潮, 束红梅, 郭书巧, 蒋璐, 何晓兰, 崔晓霞, 巩元勇. 不同水稻品种种子萌发生理特性差异研究. 中国农学通报, 2020, 36(2): 1-5.
doi: 10.11924/j.issn.1000-6850.casb18080094
Ni W C, Shu H M, Guo S Q, Jiang L, He X L, Cui X X, Gong Y Y. Seed germination of rice cultivars: differences in physiological characteristics. Chin Agric Sci Bull, 2020, 36(2): 1-5 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb18080094
[31] Crowe J H, Crowe L M. Membrane integrity in anhydrobiotic organisms:toward a mechanism for stabilizing dry cells. Berlin Springer Internet, 1992, 7: 87-103.
[32] Xin X, Tian Q, Yin G K, Chen X L, Zhang J M, Ng S, Lu X X. Reduced mitochondrial and ascorbate-glutathione activity after artificial ageing in soybean seed. J Plant Physiol, 2014, 171: 140-147.
[33] Aghdam M S, Mohammadkhani N. Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food Bioproc Technol, 2014, 7: 909-914.
[34] 李江, 吴黄铭, 陈惠萍. 外源CO和NO对水稻种子萌发过程中干旱胁迫损伤的缓解效应. 西北植物学报, 2011, 31: 731-738.
Li J, Wu H M, Chen H P. Exogenous carbon monoxide and nitric oxide alleviate the oxidative damage in rice seed germination under drought stress. Acta Bot Boreali-Occident Sin, 2011, 31: 731-738 (in Chinese with English abstract).
[35] Ritonga F N, Chen S. Physiological molecular mechanism involved in cold stress tolerance in plants. Plants (Basel), 2020, 9: 560.
[36] 颜启传. 种子学. 北京: 中国农业出版社, 2001. pp 234-236.
Yan Q C. Seed Science. Beijing: China Agriculture Press, 2001. pp 234-236 (in Chinese).
[37] 胡琦娟. 杂交水稻穗萌抑制剂筛选及其抑制机理研究. 浙江大学博士学位论文, 浙江杭州, 2016.
Hu Q J. Selection of Exogenous Inhibitors for Pre-harvest Sprouting and Their Inhibitory Mechanism Research in Hybrid Rice. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2016 (in Chinese with English abstract).
[38] 陈新红, 张安存, 韩正光, 吕宏飞, 叶玉秀, 周青. 烘干温度与时间对不同收获期下水稻种子含水量和活力的影响及相关分析. 西南农业学报, 2014, 27: 2331-2338.
Chen X H, Zhang A C, Han Z G, Lyu H F, Ye Y X, Zhou Q. Effects of drying temperature and drying time on seed moisture content and seed vigor and its correlation analysis rice seeds at different harvest period in rice. Southwest China J Agric Sci, 2014, 27: 2331-2338 (in Chinese with English abstract).
[1] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[2] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[3] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[4] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[5] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[6] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[7] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[8] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[9] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[10] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[11] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[12] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[13] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[14] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[15] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!