欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2347-2357.doi: 10.3724/SP.J.1006.2024.42006

• 耕作栽培·生理生化 • 上一篇    下一篇

种植季节对高直链淀粉水稻品种淀粉消化特性的影响

胡丽琴1(), 肖正午2, 方升亮3, 曹放波2, 陈佳娜2, 黄敏2,*()   

  1. 1湖南省作物研究所, 湖南长沙 410125
    2作物生理与分子生物学教育部重点实验室 / 湖南农业大学, 湖南长沙 410128
    3衡阳市农业科学院, 湖南衡阳 421101
  • 收稿日期:2024-01-25 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-06-04
  • 通讯作者: *黄敏, E-mail: mhuang@hunau.edu.cn
  • 作者简介:E-mail: hnliqin1003@126.com
  • 基金资助:
    国家重点研发计划项目(2023YFD2301303);财政部和农业农村部国家现代农业产业技术体系建设专项(水稻, CARS-01)

Effects of planting season on digestive characteristics of high amylose content rice

HU Li-Qin1(), XIAO Zheng-Wu2, FANG Sheng-Liang3, CAO Fang-Bo2, CHEN Jia-Na2, HUANG Min2,*()   

  1. 1Hunan Crop Research Institute, Changsha 410125, Hunan, China
    2Rice and Product Ecophysiology, Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology / Hunan Agricultural University, Changsha 410128, Hunan, China
    3Hengyang Academy of Agricultural Sciences, Hengyang 421101, Hunan, China
  • Received:2024-01-25 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-06-04
  • Contact: *E-mail: mhuang@hunau.edu.cn
  • Supported by:
    National Key R&D Program of China(2023YFD2301303);China Agriculture Research System of MOF and MARA (Rice, CARS-01)

摘要:

为探究早季与晚季不同种植季节对高直链淀粉水稻消化特性的影响, 本研究以6个高直链淀粉水稻为供试品种, 于2020—2021年进行早、晚季种植, 通过体外消化模拟方法结合气象数据, 研究高直链淀粉水稻在早季种植时和晚季种植时的淀粉消化特性的差异。结果表明, 高直链淀粉水稻在早季种植时, 灌浆期平均温度和平均辐射量比晚季种植分别高16.1%和10.1%。总葡萄糖生成量(total glucose production, TGP)和葡萄糖生成速率(glucose production rate, GPR)比晚季种植时分别降低4.1%和10.0%, 而活跃消化时间(active digestion duration, ADD)增加7.8%。与晚季种植相比, 高直链淀粉水稻在早季种植时直链淀粉增加3.1%, 蛋白质降低8.5%。稻米RVA谱特征值中峰值黏度、最低黏度、崩解值、最终黏度、回复值和糊化温度分别增加34.4%、29.7%、51.6%、26.2%、20.6%和1.3%, 而消减值降低2.6%。相关性分析表明, GPR与直链淀粉含量、峰值黏度、最低黏度和最终黏度呈显著负相关关系, 相关系数分别为-0.429、-0.558、-0.662和-0.439, 与蛋白质含量呈显著正相关关系, 相关系数为0.565。直链淀粉含量、峰值黏度、最低黏度都与灌浆期的日平均温度和日平均太阳辐射呈显著正相关关系, 蛋白质与灌浆期的日平均温度和日平均太阳辐射呈显著正相关关系。由此可知, 高直链淀粉水稻品种在早季种植后, 灌浆期日平均温度及日平均太阳辐射量增加, 导致直链淀粉含量、峰值黏度、最低黏度和最终黏度增加, 蛋白质含量降低, 进而导致淀粉消化速率变慢。本研究结果可为高直链淀粉水稻品种淀粉消化快慢的栽培调控提供理论依据。

关键词: 高直链淀粉水稻, 种植季节, 消化特性, 平均温度, 太阳辐射

Abstract:

To elucidate the effects of planting season on the digestive properties of high amylose content rice, six rice cultivars with high amylose content were cultivated in both the early and late seasons in 2020 and 2021. The differences in starch digestion characteristics between early and late-season rice were investigated by the in vitro digestion simulation method combined with meteorological data. The results showed that the average temperature and radiation of high amylose rice in the early season increased by 16.1% and 10.1%, respectively, compared to the late season. Moreover, compared to the late-season planting, the total glucose production (TGP) and glucose production rate (GPR) decreased by 4.1% and 10.0%, respectively, while active digestion duration (ADD) increased by 7.8%. Additionally, compared to late-season planting, early-season planting resulted in a 3.1% increase in amylose content and an 8.5% decrease in protein content. The peak viscosity, through viscosity, breakdown value, final viscosity, consistency viscosity, and pasting temperature of the rice RVA spectrum increased by 34.4%, 29.7%, 51.6%, 26.2%, 20.6%, and 1.3%, respectively, while the setback value decreased by 2.6%. Correlation analysis revealed that GPR showed negative correlations with grain amylose content, peak viscosity, minimum viscosity, and final viscosity, with correlation coefficient values of -0.429, -0.558, -0.662, and -0.439, respectively. However, GPR exhibited a highly positive correlation with protein content, with a correlation coefficient of 0.565. Amylose content, peak viscosity, and minimum viscosity showed positive correlation with the daily mean temperature and daily mean solar radiation during grain filling. The final viscosity showed a positive correlation with the average daily temperature during the grain-filling period. In conclusion, compared to late-season planting, early-season planting of high amylose rice varieties resulted in increased daily average temperature and daily average solar radiation during the filling period, leading to increased amylose content, peak viscosity, minimum viscosity, and final viscosity, as well as a decrease in protein content, which further contributed to a slower starch digestion rate. The results of this study provide a theoretical basis for the cultivation regulation of starch digestion speed of high amylose rice varieties.

Key words: high amylose content rice, cropping season, digestive characteristics, average temperature, solar radiation

表1

2020年和2021年各品种灌浆期及其平均温度和辐射情况"

年份
Year
品种
Variety
早季种植Early season planting 晚季种植Late season planting 早晚季日平均温度差
ΔMT
(℃)
早晚季日平均太阳辐射差
ΔMR
(MJ m-2)
抽穗期
Full heading date
(month/day)
成熟期
Maturity
(month/day)
灌浆期
Grain filling period
(d)
日平均温度
Daily mean temperature (℃)
日平均
太阳辐射
Daily mean radiation
(MJ m-2)
抽穗期
Full heading date
(month/day)
成熟期
Maturity
(month/day)
灌浆期
Grain filling period
(d)
日平均温度
Daily mean temperature (℃)
日平均
太阳辐射
Daily mean radiation
(MJ m-2)
2020
中嘉早17 Zhongjiazao 17 6/10 7/12 33.0 28.0 12.5 8/28 10/9 43.0 22.1 9.7 5.9 2.8
湘早籼24号Xiangzaoxian 24 6/11 7/14 34.0 28.1 13.0 8/26 10/7 43.0 22.6 10.2 5.5 2.8
中早39 Zhongzao 39 6/14 7/16 33.0 28.0 12.8 9/4 10/13 40.0 21.0 8.2 7.0 4.6
广陆矮4号Guanglu’ai 4 6/11 7/13 33.0 28.1 12.7 8/26 10/7 43.0 22.6 10.2 5.5 2.5
株两优729 Zhuliangyou 729 6/10 7/12 33.0 28.0 12.5 8/31 10/10 41.0 21.6 8.8 6.4 3.7
陆两优996 Luliangyou 996 6/15 7/17 33.0 28.1 12.9 9/3 10/12 40.0 21.1 8.3 7.0 4.6
平均值Mean 33.2 28.1 12.7 41.7 21.8 9.2 6.3 3.5
2021 中嘉早17 Zhongjiazao 17 6/15 7/11 27.0 28.7 15.4 9/2 10/9 38.0 27.3 16.7 1.4 -1.3
湘早籼24号Xiangzaoxian 24 6/16 7/12 27.0 28.8 15.5 9/1 10/8 38.0 27.6 17.1 1.2 -1.6
中早39 Zhongzao 39 6/18 7/14 27.0 29.0 16.1 9/4 10/11 38.0 26.7 15.7 2.3 0.4
广陆矮4号Guanglu’ai 4 6/16 7/11 26.0 28.6 15.1 9/2 10/10 39.0 27.1 16.3 1.5 -1.2
株两优729 Zhuliangyou 729 6/15 7/11 27.0 28.7 15.4 8/30 10/6 38.0 28.2 18.1 0.5 -2.7
陆两优996 Luliangyou 996 6/19 7/15 27.0 29.2 16.6 9/4 10/11 38.0 26.7 15.7 2.5 0.9
平均值Mean 26.8 28.8 15.7 38.2 27.2 16.6 1.6 -0.9

图1

种植季节对高直链淀粉水稻品种直链淀粉含量的影响 *和**分别表示同一品种早、晚季在0.05和0.01概率水平差异显著。XJZ17: 中嘉早17; XZX24: 湘早籼24号; ZZ39: 中早39; GLA4: 广陆矮4号; ZLY729: 株两优729; LLY996: 陆两优996。"

图2

种植季节对高直链淀粉水稻品种蛋白质含量的影响 *和**分别表示同一品种早、晚季在0.05和0.01概率水平差异显著。XJZ17: 中嘉早17; XZX24: 湘早籼24号; ZZ39: 中早39; GLA4: 广陆矮4号; ZLY729: 株两优729; LLY996: 陆两优996。"

图3

种植季节对高直链淀粉水稻品种淀粉RVA的影响 *和**分别表示同一品种早、晚季在0.05和0.01概率水平差异显著。XJZ17: 中嘉早17; XZX24: 湘早籼24号; ZZ39: 中早39; GLA4: 广陆矮4号; ZLY729: 株两优729; LLY996: 陆两优996。"

表2

2020-2021年高直链淀粉水稻品种淀粉早季与晚季的淀粉消化特性"

年份
Year
品种
Variety
种植季节
Planting season
总葡萄糖生成量
Total glucose production
(mg g-1)
活跃消化时间
Digestive active duration
(min)
葡萄糖生成速率
Glucose production rate
(mg g-1 min-1)
2020 中嘉早17
Zhongjiazao 17
早季Early season 358±7 a 160±9 a 2.2±0.1 a
晚季Late season 356±26 a 154±7 a 2.3±0.3 a
湘早籼24号
Xiangzaoxian 24
早季Early season 346±7 a 143±5 a 2.4±0.1 a
晚季Late season 352±9 a 137±7 a 2.6±0.1 a
中早39
Zhongzao 39
早季Early season 378±6 a 209±9 a 1.8±0.1 b
晚季Late season 355±10 b 174±9 b 2.0±0.1 a
广陆矮4号
Guanglu’ai 4
早季Early season 354±11 b 171±9 a 2.1±0.1 b
晚季Late season 382±11 a 156±13 a 2.3±0.1 a
株两优729
Zhuliangyou 729
早季Early season 343±6 b 167±15 a 2.1±0.2 a
晚季Late season 391±5 a 174±12 a 2.3±0.1 a
陆两优996
Luliangyou 996
早季Early season 347±9 b 253±14 a 1.4±0.0 b
晚季Late season 406±10 a 269±7 a 1.5±0.0 a
平均值
Mean
早季Early season 354.2 B 183.8 A 2.0 A
晚季Late season 373.8 A 178.9 A 2.2 A
2021 中嘉早17
Zhongjiazao 17
早季Early season 367±5 a 238±14 a 1.5±0.1 b
晚季Late season 379±11 a 189±28 a 2.0±0.3 a
湘早籼24号
Xiangzaoxian 24
早季Early season 333±10 b 188±11 a 1.8±0.1 b
晚季Late season 387±25 a 190±19 a 2.0±0.1 a
中早39
Zhongzao 39
早季Early season 344±5 b 227±11 a 1.5±0.1 b
晚季Late season 388±11 a 226±16 a 1.7±0.1 a
广陆矮4号
Guanglu’ai 4
早季Early season 368±12 a 220±12 a 1.7±0.1 a
晚季Late season 336±13 b 194±11 a 1.7±0.2 a
株两优729
Zhuliangyou 729
早季Early season 353±10 a 190±14 a 1.9±0.1 a
晚季Late season 351±13 a 192±15 a 1.8±0.2 a
陆两优996
Luliangyou 996
早季Early season 357±11 a 281±37 a 1.3±0.1 b
晚季Late season 345±17 a 205±8 b 1.7±0.0 a
平均值
Mean
早季Early season 353.7 A 223.9 A 1.6 B
晚季Late season 364.5 A 199.4 B 1.8 A
方差分析(F值)
ANOVA (F-value)
季节Season (S) 29.40** 19.47** 42.46**
品种Cultivar (C) 1.66 51.09** 47.77**
年份Year (Y) 3.06 77.86** 134.73**
季节×品种S×C 3.27* 2.56* 1.16
季节×年份S×Y 2.49 6.45* 1.26
品种×年份C×Y 5.73** 9.81** 8.98**
季节×品种×年份S×C×Y 19.02** 6.64** 2.65*

表3

高直链淀粉含量水稻稻米品质与淀粉消化特性的相关性(r值, n=24)"

指标
Trait
GPR Am Pro PKV TV BV FV SV CV PaT
TGP 0.018 -0.078 0.104 -0.317 -0.337 -0.151 -0.351 -0.059 -0.177 -0.311
ADD -0.945** 0.336 -0.442* 0.461** 0.573** 0.047 0.350 -0.518** -0.276 0.198
GPR 1 -0.429* 0.565** -0.558** -0.662** -0.119 -0.439* 0.565** 0.238 -0.207

表4

高直链淀粉含量水稻淀粉消化特性、稻米品质与气象因子的相关性(r值, n=24)"

指标
Trait
Am Pro PKV TV BV FV SV CV PaT GPR
MT 0.516** -0.736** 0.731** 0.727** 0.444* 0.693** -0.296 0.230 0.152 -0.432*
MR 0.598** -0.742** 0.454* 0.537** 0.101 0.375 -0.394 -0.150 0.034 -0.460*
[1] Pereira C, Loureno V M, Menezes R, Brites C. Rice compounds with impact on diabetic control. Foods, 2021, 10: 1992.
[2] Toutounji M R, Farahnaky A, Santhakumar A B, Oli P, Butardo V M, Blanchard C L. Intrinsic and extrinsic factors affecting rice starch digestibility. Trends Food Sci Technol, 2019, 88: 10-22.
[3] Calle M C, Andersen C J. Assessment of dietary patterns represents a potential, yet variable, measure of in-flammatory status: a review and update. Dis Markers, 2019, 2019: 3102870.
[4] Englyst H N, Kingman S M, Cummings J H. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr, 1992, 46(S2): 33-50.
[5] Hu L Q, Cao J L, Liu Y, Xiao Z W, Zhang M Y, Chen J N, Cao F B, Iqbal A, Abou-Elwafa S F, Huang M. Multidimensional relationships of starch digestibility with physicochemical, pasting and textural properties of 30 rice varieties. Agron J, 2022, 12: 720.
[6] Huang M, Hu L Q, Chen J N, Cao F B. In vitro testing indicates an accelerated rate of digestion of starch into glucose of cooked rice with the development of low amylose rice in China. Food Chem: X, 2022, 14: 100278.
[7] Panlasigui L N, Thompson L U, Juliano B O, Perez C M, Yiu S H, Greenberg G R. Rice varieties with similar amylose content differ in starch digestibility and glycemic response in humans. Am J Clin Nutr, 1991, 54: 871-877.
pmid: 1951159
[8] Chen M H, Bergman C J, McClung A M, Everette J D. Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods. Food Chem, 2017, 234: 180-189.
[9] Nakamura S, Katsura J, Kato K, Ohtsubo K. Development of formulae for estimating amylose content and resistant starch content based on the pasting properties measured by RVA of japonica polished rice and starch. Biosci Biotechnol Biochem, 2016, 80: 329-340.
[10] Benmoussa M, Moldenhauer K A K, Hamaker B R. Rice amylopectin fine structure variability affects starch digestion properties. J Agric Food Chem, 2007, 55: 1475-1759.
[11] Ye J, Hu X, Luo S, McClements D J, Liang L, Liu C. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Res Int, 2018, 106: 404-409.
doi: S0963-9969(18)30008-5 pmid: 29579941
[12] Khatun A, Waters D L, Liu L. A review of rice starch digestibility: effect of composition and heat-moisture processing. Starke, 2019, 71: 1900090.
[13] Li X K, Wu L, Geng X, Xia X H, Wang X H, Xu Z J, Xu Q. Deciphering the environmental impacts on rice quality for different rice cultivated areas. Rice, 2018, 11: 7.
doi: 10.1186/s12284-018-0198-1 pmid: 29352429
[14] Ai X F, Xiong R Y, Tan X M, Wang H X, Zeng Y J, Huang S, Shang Q Y, Pan X H, Shi Q H, Zhang J, Zeng Y H. Low temperature and light combined stress after heading on starch fine structure and physicochemical properties of late-season indica rice with different grain quality in southern China. Food Res Int, 2023, 164: 112320.
[15] Liu Q H, Wu X, Ma J Q, Li T, Zhou X B, Guo T. Effects of high air temperature on rice grain quality and yield under field condition. Agron J, 2013, 105: 446-454.
[16] Dou Z, Tang S, Chen W Z, Zhang H X, Li G H, Liu Z H, Ding C Q, Chen L, Wang S H, Zhang H C, Ding Y F. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta. J Cereal Sci, 2018, 81: 118-126.
[17] Zhang H D, Huang M, Wei Y J, Chen J N, Shan S L, Cao F B, Chen G H, Zou Y B. Amylose content and starch granule size in rice grains are affected by growing season. Phyton, 2019, 88: 403-412.
[18] 程方民, 丁元树, 朱碧岩. 稻米直链淀粉含量的形成及其与灌浆结实期温度的关系. 生态学报, 2000, 20: 646-652.
Cheng F M, Ding Y S, Zhu B Y. The formation of amylose content in rice grain and its relation with field temperature. Acta Ecol Sin, 2000, 20: 646-652 (in Chinese with English abstract).
[19] 朱莜芸, 曾玉玲, 李博, 袁玉洁, 周星, 李秋萍, 何辰延, 陈勇, 王丽, 程红, 周伟, 陶有凤, 雷小龙, 任万军, 邓飞. 花后弱光胁迫对成都平原籼稻米饭食味品质的影响. 中国农业科学, 2023, 56: 430-440.
doi: 10.3864/j.issn.0578-1752.2023.03.003
Zhu Y Y, Zeng Y L, Li B, Yuan Y J, Zhou X, Li Q P, He C Y, Chen Y, Wang L, Cheng H, Zhou W, Tao Y F, Lei X L, Ren W J, Deng F. Effect of post-anthesis shading stress on eating quality of indica rice in Chengdu Plain. Sci Agric Sin, 2023, 56: 430-440 (in Chinese with English abstract).
[20] Kumar P, Prakash K S, Jan K, Swer T L, Jan S, Verma R, Deepika K, Dar M, Verma K, Bashir K. Effects of gamma irradiation on starch granule structure and physicochemical properties of brown rice starch. J Cereal Sci, 2017, 77: 194-200.
[21] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响. 作物学报, 2022, 48: 1730-1745.
doi: 10.3724/SP.J.1006.2022.12039
Tao Y, Yao Y, Wang K T, Xing Z P, Zhai H T, Feng Y, Liu Q Y, Hu Y J, Guo B W, Wei H Y, Zhang H C. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice. Acta Agron Sin, 2022, 48: 1730-1745 (in Chinese with English abstract).
[22] Hu P S, Zhao H J, Duan Z Y, Zhang L L, Wu D X. Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. J Cereal Sci, 2004, 40: 231-237.
[23] 吴伟斌, 李佳雨, 张震邦, 凌彩金, 林贤柯, 常星亮. 基于高光谱图像的茶树 LAI 与氮含量反演. 农业工程学报, 2018, 34(3): 195-201.
Wu W B, Li J Y, Zhang Z B, Ling C J, Lin X K, Chang X L. Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image. Trans CSAE, 2018, 34(3): 195-201 (in Chinese with English abstract).
[24] Tsukaguchi T, Taniguchi Y, Ito R. The effects of nitrogen uptake before and after heading on grain protein content and the occurrence of basal-and back-white grains in rice (Oryza sativa L.). Plant Prod Sci, 2016, 19: 508-517.
[25] Fitzgerald M A, Rahman S, Resurreccion A P, Concepcion J, Daygon V D, Dipti S S, Kabir K A, Klingner B, Morell M K, Bird A R. Identification of a major genetic determinant of glycaemic index in rice. Rice, 2011, 4: 66-74.
[26] 李部, 潘立旭, 杨勇, 朱霁晖, 陈飞, 李钱峰, 刘巧泉, 张昌泉. 高直链淀粉含量水稻品种间淀粉消化特性的差异分析. 扬州大学学报(农业与生命科学版), 2021, 42(2): 18-25.
Li B, Pan L X, Yang Y, Zhu J H, Chen F, Li Q F, Liu Q Q, Zhang C Q. Comparative study of the starch digestion properties of high-amylose rice cultivars. J Yangzhou Univ (Agric Life Sci Edn), 2021, 42(2): 18-25 (in Chinese with English abstract).
[27] Bao J S, Shen S Q, Mei S, Corke H. Analysis of genotypic diversity in the starch physicochemical properties of nonwaxy rice: apparent amylose content, pasting viscosity and gel texture. Starke, 2006, 58: 259-267.
[28] Cheng F M, Zhong L J, Zhao N C, Liu Y, Zhang G P. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul, 2005, 46: 87-95.
[29] Abeysekera W K S M, Premakumara G A S, Bentota A P, Abeysiriwardena D S Z. Grain amylose content and its stability over seasons in a selected set of rice varieties grown in Sri Lanka. J Agric Sci, 2017, 12: 43-50.
[30] 朱大伟, 章林平, 陈铭学, 方长云, 于永红, 郑小龙, 邵雅芳. 中国优质稻品种品质及食味感官评分值的特征. 中国农业科学, 2022, 55: 1271-1283.
doi: 10.3864/j.issn.0578-1752.2022.07.002
Zhu D W, Zhang L P, Chen M X, Fang C Y, Yu Y H, Zheng X L, Shao Y F. Characteristics of high-quality rice varieties and taste sensory evaluation values in China. Sci Agric Sin, 2022, 55: 1271-1283 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.07.002
[31] 杨陶陶, 韦佳, 邹积祥, 伍龙梅, 包晓哲, 黄庆, 陈青春, 张彬. 早晚兼用型水稻稻米品质在早、晚季的差异特征. 核农学报, 2023, 37: 1843-1851.
doi: 10.11869/j.issn.1000-8551.2023.09.1843
Yang T T, Wei J, Zou J X, Wu L M, Bao X Z, Huang Q, Chen Q C, Zhang B. Difference in grain qualities of early and late season dual-use rice cultivars planted in early and late seasons. Acta Agric Nucl Sin, 2023, 37: 1843-1851 (in Chinese with English abstract).
[32] 周慧颖, 彭小松, 欧阳林娟, 朱昌兰, 陈小荣, 傅军如, 边建民, 胡丽芳, 贺浩华, 贺晓鹏. 支链淀粉结构对稻米淀粉糊化特性的影响. 中国粮油学报, 2018, 33(8): 25-30.
Zhou H Y, Peng X S, Ou-Yang L J, Zhu C L, Chen X R, Fu J R, Bian J M, Hu L F, He H H, He X P. Effects of amylopectin structure on gelatinization characteristics of rice starch. J Chin Cereals Oils Assoc, 2018, 33(8): 25-30 (in Chinese with English abstract).
[33] 张超, 吴焱, 魏海燕, 刘国栋, 张洪程. 半糯性粳稻的淀粉精细结构及其米粉/饭功能特性研究. 中国粮油学报, 2021, 36(6): 1-7.
Zhang C, Wu Y, Wei H Y, Liu G D, Zhang H C. Starch fine structure and functionality of semi-waxy japonica rice flour/cooked rice. J Chin Cereals Oils Assoc, 2021, 36(6): 1-7 (in Chinese with English abstract).
[34] Liu Z D, Wang J Y, Li L, Wu P. Mechanistic insights into the role of starch multi-level structures in functional properties of high-amylose rice cultivars. Food Hydrocoll, 2020, 113: 106441.
[35] Liu W Z, Yin T Y, Zhao Y F, Wang X Q, Wang K L, Shen Y Y, Ding Y F, Tang S. Effects of high temperature on rice grain development and quality formation based on proteomics comparative analysis under field warming. Front Plant Sci, 2021, 12: 746180.
[36] 程方民, 蒋德安, 吴平, 石春海. 早稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征. 作物学报, 2001, 27: 201-206.
Cheng F M, Jiang D A, Wu P, Shi C H. The dynamic change of starch synthesis enzymes during the grain filling stage and effects of temperature upon it. Acta Agron Sin, 2001, 27: 201-206 (in Chinese with English abstract).
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!