欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2335-2346.doi: 10.3724/SP.J.1006.2024.44015

• 耕作栽培·生理生化 • 上一篇    下一篇

侧深施肥通过优化叶片功能与氮素积累来提高大豆产量

徐一帆**(), 徐彩龙**(), 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯*(), 吴存祥*()   

  1. 中国农业科学院作物科学研究所/国家大豆产业技术研发中心, 北京 100081
  • 收稿日期:2024-01-24 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-06-04
  • 通讯作者: *吴存祥, E-mail: wucunxiang@caas.cn; 宋雯雯, E-mail: songwenwen@caas.cn
  • 作者简介:徐一帆, E-mail: xyfok@outlook.com;
    徐彩龙, E-mail: xucailong@caas.cn
    **同等贡献
  • 基金资助:
    国家重点研发计划项目(2023YFE0105000);国家自然科学基金项目(32101845);财政部和农业农村部现代农业产业技术体系建设专项(CARS-04)

Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation

XU Yi-Fan**(), XU Cai-Long**(), LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen*(), WU Cun-Xiang*()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Soybean Industrial Technology R & D Center, Beijing 100081, China
  • Received:2024-01-24 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-06-04
  • Contact: *E-mail: wucunxiang@caas.cn; E-mail: songwenwen@caas.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2023YFE0105000);National Natural Science Foundation of China(32101845);China Agriculture Research System of MOF and MARA(CARS-04)

摘要:

肥料为作物提供必要的营养元素, 促进光合作用的进行, 推动作物的生长和产量形成。黄淮海平原是我国优质大豆主要产区, 优化该地区施肥技术对于提高大豆单产, 缓解我国大豆进口压力具有重要意义。本试验设置不施肥(no fertilization, F0)、侧深施肥(side deep fertilization, F1)、等距施肥(equidistant deep fertilization, F2)和地表撒施(surface fertilization, F3) 4个处理, 研究不同施肥方式下大豆叶片生理指标、物质积累和产量构成的变化规律, 旨在阐明施肥方式与大豆生产的相互关系, 为黄淮海地区大豆绿色高效生产提供理论支撑。结果表明, F1处理增加了大豆荚粒期叶片的光系统II潜在光化学量子产量(Fv/Fm)、光系统II实际光化学效率[Y(II)]、电子传递速率(ETR)和光化学荧光淬灭系数(qP); 相较于其他处理, F1处理大豆生育后期叶片的Y(II)增加3.61%~22.86%。在抗氧化代谢方面, F1处理显著提高了大豆叶片的SOD和CAT活性, 与其他处理相比, 鼓粒后期F1处理叶片SOD和CAT活性分别提高6.32%~35.34%和1.93%~50.55%, 进而促进了叶片净光合速率的提升(29.42%~70.10%)。F1处理光合功能的改善提升了生育中后期干物质(1.17%~101.18%)和氮素(1.01%~88.14%)的积累, 为产量的增加奠定基础。施肥方式的改变(F1、F2处理)显著提高了大豆产量, 较F3处理分别提高了10.66%和6.55%。进一步分析发现, 大豆叶片Fv/Fm、Y(II)、Pn、SOD和CAT活性与单株荚数、单株粒数和产量均呈显著正相关。综上, 侧深施肥增强了大豆叶片后期抗氧化系统的功能, 提升光合与物质积累, 优化产量构成, 促进大豆增产。

关键词: 侧深施肥, 叶绿素, 荧光参数, 光合能力, 产量

Abstract:

Fertilizers play a crucial role in providing essential nutrients for crops, promoting photosynthesis, and enhancing crop growth and yield formation. The Huang-Huai-Hai region is a significant soybean production area in China, known for high-quality soybean cultivation. Optimizing fertilization techniques in this region is pivotal for improving soybean yields and reducing soybean import pressure in China. In this experiment, we implemented four treatments: no fertilization (F0), side deep fertilization (F1), equidistant deep fertilization (F2), and surface fertilization (F3). The objective was to study the variations in soybean leaf physiological indices, material accumulation, and yield composition under different fertilization methods. Our aim was to elucidate the relationship between fertilization practices and soybean production, providing theoretical support for sustainable and efficient soybean production in the Huang-Huai-Hai region. The results demonstrated that the F1 treatment significantly increased the potential photochemical quantum yield of photosystem II (Fv/Fm), the actual photochemical quantum yield of photosystem II [Y(II)], the electron transfer rate (ETR), and the photochemical fluorescence quenching coefficient (qP) of soybean leaves during the pod-grain stage. Compared to the other treatments, the F1 treatment led to a 3.61%-22.86% increase in Y(II) in soybean leaves during the late reproductive stage. Regarding antioxidant metabolism, the F1 treatment significantly enhanced the activities of superoxide dismutase (SOD) and catalase (CAT) in soybean leaves. In comparison to the other treatments, the F1-treated leaves exhibited a 6.32%-35.34% increase in SOD activity and a 1.93%-50.55% increase in CAT activity during the late seed filling stage, subsequently contributing to a boosted net photosynthetic rate (29.42%-70.10%). The enhancement of photosynthetic function in the F1 treatment resulted in increased dry matter (1.17%-101.18%) and nitrogen (1.01%-88.14%) accumulation during the middle and late fertility stages, providing a foundation for increased yield. Changes in fertilization practices (F1 and F2 treatments) led to a significant increase in soybean yield by 10.66% and 6.55%, respectively, compared to the F3 treatment. Further analysis revealed a significant positive correlation between soybean leaf Fv/Fm, Y(II), Pn, SOD, CAT activities, and the number of pods per plant, number of grains per plant, and overall yield. In conclusion, side-depth fertilization enhanced the late antioxidant system function of soybean leaves, improved photosynthesis and material accumulation, optimized yield composition, and promoted increased soybean yield.

Key words: side deep fertilization, chlorophyll, fluorescence parameters, photosynthetic capacity, yield

图1

试验地点2020-2022年降雨量及温度"

图2

不同处理肥料施用方式示意图 F0: 不施肥; F1: 侧深施肥; F2: 等距施肥; F3: 地表撒施。"

表1

处理(T)和年份(Y)及其交互作用对本研究测量参数的影响"

项目
Item
变异来源Source of variation
产量
Yield
单株
荚数
Pods per plant
单株
粒数
Seeds per plant
百粒重
100-seed weight
叶面积指数LAI 净光合速率Pn 蒸腾
速率
Tr
最大光化学量子产量Fv/Fm 实际光化学效率Y(II) 电子传递速率ETR 光化学淬灭系数qP 超氧化物歧化酶SOD 过氧化氢酶CAT
处理Treatment (T) ** ** ** ** ** ** ** ** ** NS ** ** **
年份
Year (Y)
** ** ** ** ** ** ** ** **
处理×年份
T×Y
NS ** ** NS ** ** NS NS NS

图3

施肥方式对大豆植株持绿性的影响 F0: 不施肥; F1: 侧深施肥; F2: 等距施肥; F3: 地表撒施。"

图4

施肥方式对大豆净光合速率和蒸腾速率的影响 F0: 不施肥; F1: 侧深施肥; F2: 等距施肥; F3: 地表撒施; R1: 初花期; R3: 初荚期; R5: 始粒期; R7: 初熟期。Pn: 净光合速率; Tr: 蒸腾速率。"

图5

施肥方式对大豆叶绿素荧光参数的影响(2022) F0: 不施肥; F1: 侧深施肥; F2: 等距施肥; F3: 地表撒施; R1: 初花期; R3: 初荚期; R5: 始粒期; R7: 初熟期。Y(II): 实际光化学效率; Fv/Fm: 最大光化学量子产量; ETR: 电子传递速率; qp: 光化学淬灭系数。"

图6

施肥方式对大豆SOD和CAT活性的影响 F0: 不施肥; F1: 侧深施肥; F2: 等距施肥; F3: 地表撒施; V3: 三节期; R1: 初花期; R3: 初荚期; R5: 始粒期; R7: 初熟期。CAT: 过氧化氢酶; SOD: 超氧化物歧化酶。"

图7

产量与叶片光合指标相关性分析 F0: 不施肥; F1: 侧深施肥; F2: 等距施肥; F3: 地表撒施。Pn: 净光合速率; Tr: 蒸腾速率; Y(II): 实际光化学效率; Fv/Fm: 最大光化学量子产量; CAT: 过氧化氢酶; SOD: 超氧化物歧化酶。**表示在0.01概率水平差异显著; NS表示差异不显著。"

图8

施肥方式对大豆干物质和氮素积累的影响 F0: 不施肥; F1: 侧深施肥; F2: 等距施肥; F3: 地表撒施。"

图9

2020-2022年各处理大豆产量及产量构成 F0: 不施肥; F1: 侧深施肥; F2: 等距施肥; F3: 地表撒施。不同小写字母表示同一生育期处理间在0.05概率水平差异显著。"

图10

叶片光合、生理及产量构成指标间直接通径系数及相关性 SPP: 单株粒数; PPP: 单株荚数; HSW: 百粒重; Pn: 净光合速率; Tr: 蒸腾速率; Y(II): 实际光化学效率; qP: 光化学淬灭系数; CAT: 过氧化氢酶; SOD: 超氧化物歧化酶。*和**分别表示两指标在0.05和0.01概率水平差异显著; NS表示两指标没有相关性。"

[1] 司伟, 韩天富. “十四五”时期中国大豆增产潜力与实现路径. 农业经济问题, 2021, (7): 17-24.
Si W, Han T F. China’s soybean yield increase potential and realization path during the “14th five-year plan” period. Issu Agric Econ, 2021, (7): 17-24 (in Chinese with English abstract).
[2] Li J, Luo G, Shaibu A S, Li B, Zhang S, Sun J. Optimal fertilization level for yield, biological and quality traits of soybean under drip irrigation system in the arid region of Northwest China. Agronomy, 2022, 12: 291.
[3] Almeida L F A, Correndo A, Ross J, Licht M, Casteel S, Singh M, Naeve F, Vann R, Bais J, Kandel H, Lindsey L, Conley S, Kleinjan J, Kovacs P, Berning D, Hefley T, Reiter M, Holshouser D, Ciampitti I A. Soybean yield response to nitrogen and sulfur fertilization in the United States: contribution of soil N and N fixation processes. Eur J Agron, 2023, 145: 126791.
[4] Aserse A A, Markos D, Getachew G, Halla M, Lindström K. Rhizobial inoculation improves drought tolerance, biomass and grain yields of common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) at Halaba and Boricha in Southern Ethiopia. Arch Agron Soil Sci, 2020, 66: 488-501.
[5] Sheteiwy M S, Ali D F I, Xiong Y C, Brestic M, Skalicky M, Hamoud Y A, Ulhassan Z, Shaghaleh H, Abdelgawad H, Farooq M, Sharma A, Sawah A M E. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol, 2021, 21: 195.
doi: 10.1186/s12870-021-02949-z pmid: 33888066
[6] Xu Q Z, Liu X, Zhang C Y, Du W G, Guan Y F, Yang W Q. Insights into soybean with high photosynthetic efficiency. Adv Bot Res, 2022, 102: 121-151.
[7] Kubar M S, Shar A H, Kubar K A, Rind N A, Ullah H, Kalhoro S A, Wang C, Feng M C, Gujar A, Sun H, Yang W, Enshasy H E, Brestic M, Zivcak M, Ondrisik P, Aljuaid B, Shehawi A, Ansari M J. Optimizing nitrogen supply promotes biomass, physiological characteristics and yield components of soybean (Glycine max L. Merr.). Saud J Biol Sci, 2021, 28: 6209-6217.
[8] El Amine B, Mosseddaq F, Naciri R, Oukarroum A. Interactive effect of Fe and Mn deficiencies on physiological, biochemical, nutritional and growth status of soybean. Plant Physiol Biochem, 2023, 199: 107718.
[9] De Souza A P, Burgess S J, Doran L, Hansen J, Manukyan L, Maryn N, Gotarkar D, Leonelli L, Niyogi K, Long S P. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science, 2022, 377: 851-854.
doi: 10.1126/science.adc9831 pmid: 35981033
[10] Wu D, Zhang Y X, Gu W Q, Feng Z B, Xiu L Q, Zhang W M, Chen W F. Long term co-application of biochar and fertilizer could increase soybean yield under continuous cropping: insights from photosynthetic physiology. J Sci Food Agric, 2024, 104: 3113-3122.
[11] Singh S K, Reddy V R, Fleisher D H, Timlin D J. Interactive effects of temperature and phosphorus nutrition on soybean: leaf photosynthesis, chlorophyll fluorescence, and nutrient efficiency. Photosynthetica, 2019, 57: 248-257.
doi: 10.32615/ps.2019.036
[12] Nasar J, Wang G Y, Zhou F J, Gitari H, Zhou X B, Tabl K M, Hasan M E, Ali H, Waqas M M, Ali I, Jahan M S. Nitrogen fertilization coupled with foliar application of iron and molybdenum improves shade tolerance of soybean under maize-soybean intercropping. Front Plant Sci, 2022, 13: 1014640.
[13] Tripathi A, Pandey M, Sharma P. A review: effects of nitrogenous fertilizers on soil (pH, microbial community, greenhouse gases emission and carbon pool). Environ Contamin Rev, 2022, 5: 44-48.
[14] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响. 作物学报, 2021, 47: 2232-2249.
doi: 10.3724/SP.J.1006.2021.02086
Huang H, Jiang H X, Liu G M, Yuan J Q, Wang Y, Zhao C, Wang W L, Huo Z Y, Xu K, Dai Q G, Zhang H C, Li D J, Liu G L. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency. Acta Agron Sin, 2021, 47: 2232-2249 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02086
[15] Zhang Z, Wang Y F, Wang Z M, Ashraf U, Mo Z W, Tian H, Duan M Y, Li Y Q, Tang X R, Pan S G. Precise delivery of nitrogen at tillering stage enhances grain yield and nitrogen use efficiency in double rice cropping systems of South China. Field Crops Res, 2022, 289: 108736.
[16] Chen G Z, Wu P, Wang J Y, Zhou Y D, Ren L Q, Cai T, Zhang P, Jia Z K. How do different fertilization depths affect the growth, yield, and nitrogen use efficiency in rain-fed summer maize? Field Crops Res, 2023, 290: 108759.
[17] Wu P, Liu F, Chen G Z, Wang J Y, Huang F Y, Cai T, Zhang P, Jia Z. Can deep fertilizer application enhance maize productivity by delaying leaf senescence and decreasing nitrate residue levels? Field Crops Res, 2022, 277: 108417.
[18] Chen H, Gao L P, Li M C, Liao Y T, Liao Q X. Fertilization depth effect on mechanized direct-seeded winter rapeseed yield and fertilizer use efficiency. J Sci Food Agric, 2023, 103: 2574-2584.
[19] Ohyama T, Ikebe K, Okuoka S, Ozawa T, Nishiura T, Ishiwata T, Yamazaki A, Tanaka F, Takahashi T, Umezawa T, Ohshima H, Kato T, Maeda Y, Saito A, Higuchi K, Ohtake N, Takahashi Y, Harada N, Ohkama-Ohtsu N. A deep placement of lime nitrogen reduces the nitrate leaching and promotes soybean growth and seed yield. Crop Environ, 2022, 1: 221-230.
[20] Jong H K, Kang C K, Rho I R. Growth and yield responses of soybean according to subsurface fertigation. Agron J, 2023, 115: 1877-1891.
[21] Li Y L, Chen P, Fu Z D, Luo K, Lin P, Gao C, Liu S S, Pu T, Yong T W, Yang W Y. Maize-soybean relay cropping increases soybean yield synergistically by extending the post-anthesis leaf stay-green period and accelerating grain filling. Crop J, 2023, 11: 1921-1930.
doi: 10.1016/j.cj.2023.05.011
[22] Fortunato A A, Debona D, Bernardeli A M A, Rodrigues F Á. Changes in the antioxidant system in soybean leaves infected by Corynespora cassiicola. Phytopathology, 2015, 105: 1050-1058.
[23] Liang X Y, Wang C J, Wang H T, Yao Z L, Qiu X F, Wang J D, He W Q. Biogas slurry topdressing as replacement of chemical fertilizers reduces leaf senescence of maize by up-regulating tolerance mechanisms. J Environ Manag, 2023, 344: 118433.
[24] Ahmad I, Ahmad S, Kamran M, Yang X N, Hou F J, Yang B P, Ding R X, Liu T, Han Q F. Uniconazole and nitrogen fertilization trigger photosynthesis and chlorophyll fluorescence, and delay leaf senescence in maize at a high population density. Photosynthetica, 2021, 59: 192-202.
[25] Viljevac Vuletić M, Spanic V. Characterization of photosynthetic performance during natural leaf senescence in winter wheat: Multivariate analysis as a tool for phenotypic characterization. Photosynthetica, 2020, 58: 301-313.
[26] Cha-Um S, Kirdmanee C. Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak J Bot, 2009, 41: 87-98.
[27] Luo K, Xie C, Wang J, Du Q, Cheng P, Wang T, Wu Y C, Yang W Y, Yong T W. Uniconazole, 6-benzyladenine, and diethyl aminoethyl hexanoate increase the yield of soybean by improving the photosynthetic efficiency and increasing grain filling in maize-soybean relay strip intercropping system. J Plant Growth Regul, 2021, 40: 1869-1880.
[28] Morrison M J, Voldeng H D, Cober E R. Agronomic changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron J, 2000, 92: 780-784.
[29] Ahmed S, Raza M A, Zhou T, Hussain S, Khalid M H B, Feng L, Wasaya A, Iqbal N, Ahmed A, Liu W, Yang W. Responses of soybean dry matter production, phosphorus accumulation, and seed yield to sowing time under relay intercropping with maize. Agronomy, 2018, 8: 282.
[30] Dass A, Rajanna G A, Babu S, Lal S K, Choudhary A K, Singh R, Rathore S S, Kaur R, Dhar S, Singh T, Raj R, Shekhawat K, Singh C, Kumar B. Foliar application of macro- and micronutrients improves the productivity, economic returns, and resource-use efficiency of soybean in a semiarid climate. Sustainability, 2022, 14: 5825.
[31] Xu C L, Li R D, Song W W, Wu T T, Sun S, Han T F, Wu C X. High density and uniform plant distribution improve soybean yield by regulating population uniformity and canopy light interception. Agronomy, 2021, 11: 1880.
[32] Sadras V O, Villalobos F J, Fereres E. Radiation interception, radiation use efficiency and crop productivity. In: Villalobos F J, Fereres E, eds. Principles of Agronomy for Sustainable Agriculture. Berlin: Springer Press, 2017. pp 169-188.
[33] Liu T N, Wang Z L, Cai T. Canopy apparent photosynthetic characteristics and yield of two spike-type wheat cultivars in response to row spacing under high plant density. PLoS One, 2016, 11: e0148582.
[34] Zhang X D, Yang L C, Xue X K, Kamran M, Ahmad I, Dong Z Y, Liu T N, Jia Z K, Zhang P, Han Q F. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region. Field Crops Res, 2019, 233: 101-113.
[35] Chen Y Y, Fan P S, Mo Z W, Kong L L, Tian H, Duan M Y, Li L, Wu L J, Wang Z M, Tang X R, Pan S G. Deep placement of nitrogen fertilizer affects grain yield, nitrogen recovery efficiency, and root characteristics in direct-seeded rice in South China. J Plant Growth Regul, 2021, 40: 379-387.
[1] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[2] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[3] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[4] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[5] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[6] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[7] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[8] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[9] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[10] 闫子恒, 王先领, 邵东李, 郜耿东, 宁宁, 贾才华, 蒯婕, 汪波, 徐正华, 王晶, 赵杰, 周广生. 油菜籽粒叶绿素降解速率对菜籽油关键品质的影响[J]. 作物学报, 2024, 50(7): 1818-1828.
[11] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[12] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[13] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[14] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[15] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!