欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2219-2236.doi: 10.3724/SP.J.1006.2024.34214

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

珍珠粟WD40基因家族鉴定及表达特征分析

杨煜琛2(), 靳雅荣2, 骆金婵2, 祝鑫2, 李葳航2, 贾纪原2, 王小珊2, 黄德均1,*(), 黄琳凯2,*()   

  1. 1重庆市畜牧科学院, 重庆 402460
    2四川农业大学草业科技学院, 四川成都 611130
  • 收稿日期:2023-12-25 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-06-13
  • 通讯作者: *黄琳凯, E-mail: huanglinkai@sicau.edu.cn; 黄德均, E-mail: xkyhdj@163.com
  • 作者简介:E-mail: 18391503953@163.com
  • 基金资助:
    重庆市财政专项资金项目(23515C);重庆市自然科学基金项目(CSTB2022NSCQ-MSX0274);四川省饲草创新团队项目(SCCXTD-2020-16);四川省育种攻关项目(2021YFYZ0013)

Identification and expression analysis of the WD40 gene family in pearl millet

YANG Yu-Chen2(), JIN Ya-Rong2, LUO Jin-Chan2, ZHU Xin2, LI Wei-Hang2, JIA Ji-Yuan2, WANG Xiao-Shan2, HUANG De-Jun1,*(), HUANG Lin-Kai2,*()   

  1. 1Chongqing Academy of Animal Science, Chongqing 402460, China
    2College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2023-12-25 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-06-13
  • Contact: *E-mail: huanglinkai@sicau.edu.cn; E-mail: xkyhdj@163.com
  • Supported by:
    Chongqing Municipal Special Funds Project(23515C);Chongqing Natural Science Foundation Project(CSTB2022NSCQ-MSX0274);Sichuan Province Forage Innovation Team Project(SCCXTD-2020-16);Sichuan Province Breeding Tackling Project(2021YFYZ0013)

摘要:

珍珠粟是世界范围重要的谷物, 拥有极强的光合能力和高生产潜力, 较其他作物相比, 珍珠粟具有对贫瘠土壤的耐受性, 能够适应多种非生物胁迫和多样化的环境条件。PgWD40基因家族在植物抵御生物和非生物胁迫以及调控植物生长发育中扮演着重要角色。本研究利用生物信息学方法全面鉴定和分析了珍珠粟中的PgWD40基因家族及其表达模式。研究结果显示, 共鉴定出209个PgWD40基因家族成员, 通过对珍珠粟和水稻的系统进化分析将其归为5个亚家族, 在同一亚族内的成员中, 它们的保守序列和基因结构表现出一定的相似性。此外, 通过对启动子顺式作用元件的分析显示, 176个PgWD40基因与植物的生长和发育相关, 208个PgWD40基因成员含有不同激素胁迫响应的顺式作用元件, 进一步通过转录组数据分析和qRT-PCR分析显示, PMA3G03393.1PMA4G00558.1PMA5G02217.1等基因受到盐、热和干旱胁迫的诱导, 表明这些基因可能通过依赖不同激素的信号通路来调控和响应非生物胁迫, 可作为进一步研究PgWD40基因家族耐受性功能的候选基因。并且PgWD40基因家族成员在珍珠粟抽穗期的不同时期存在表达差异。通过基因表达热图以及GO和KEGG等分析, 发现许多PgWD40基因家族成员参与了植物生长发育和籽粒形成的各个阶段。研究结果为全面解析PgWD40基因结构与生物学功能、耐逆性分子机制以及分子育种提供了理论基础, 为今后培育高效抗逆作物新品种提供基因资源。

关键词: 珍珠粟, WD40基因家族, 生物信息学分析, 产量, 逆境胁迫

Abstract:

Pearl millet is a globally significant cereal, known for its excellent photosynthetic capabilities and high production potential. It has evolved tolerance to infertile soils and the ability to adapt to various abiotic stressors and diverse environmental conditions, setting it apart from other crops. The PgWD40 gene family plays a crucial role in plant defense against biotic and abiotic stresses, as well as in the regulation of plant growth and development. In this study, we conducted a comprehensive identification and analysis of the PgWD40 gene family and its expression pattern in pearl millet. A total of 209 members of the PgWD40 gene family were identified and categorized into five subfamilies through phylogenetic analysis of pearl millet and rice. Members within the same subfamily exhibited some similarity in their conserved sequences and gene structures. Furthermore, analysis of promoter cis-acting elements revealed that 176 PgWD40 genes were associated with plant growth and development, while 208 PgWD40 gene members contained cis-acting elements related to different hormone stress responses. Transcriptomic data analysis and qRT-PCR analysis indicated that PMA3G03393.1, PMA4G00558.1, and PMA5G02217.1 were induced by salt, heat, and drought stresses, suggesting their involvement in regulating and responding to abiotic stresses through hormone-dependent signaling pathways. These genes hold potential for further studies on the tolerance function of the PgWD40 gene family. Additionally, the PgWD40 gene family exhibited differential expression during different stages of pearl millet tasseling. Through gene expression heat maps, as well as GO and KEGG analysis, it was found that many members of the PgWD40 gene family are involved in various stages of plant growth, development, and seed formation. The results of this study provide a theoretical basis for comprehensive analysis of the structure and biological function of the PgWD40 gene, as well as understanding the molecular mechanisms underlying stress tolerance and molecular breeding. Furthermore, it offers valuable genetic resources for the cultivation of new high-efficiency stress-resistant crop varieties.

Key words: Pearl millet, WD40 gene family, bioinformatics analysis, yield, adversity stress

附表1

候选基因qRT-PCR引物及基因克隆和连接引物"

引物名称
Primer names
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
DL-PMA3G03393.1 TTCCTTGCCTACAACATG CCACAGCCTTCACTTCTT
DL-PMA4G01199.1 TGACGAGGATGATGAAGTGAA CCAAAGCGGAAACCAGAG
DL-PMA7G00781.1 ATCAAGGCATCACCAAAT AGACCACGAAGAAGGGAC
DL-PMA4G00558.1 CGGACGATGAGGACGACGAAG TTGACGAGGGAGCCGAGGAG
DL-PMA5G00729.1 ATGCCATTTACTGATGATAG AATAAGGTGCTTGGGACA
DL-PMA3G05660.1 TGGCGACCTGAGTATGAG CCCAGTATCCAGATCCCT
DL-PMA5G02217.1 CGTGAGATGAGGCTGAAAGA TCGGGCGATTGGTAGATG
DL-PMA6G00539.1 GTGGCATCACCAACTAAC GAGAAGTGGCAACATAGAA
DL-UBC-E2 ACCGCCTGACAATCCCTATG GGGATAGTCTGGCGGAAAATG
KL-PMA5G02217.1 CGTGAGATGAGGCTGAAAGA TCGGGCGATTGGTAGATG
KL-PMA4G00558.1 CGGACGATGAGGACGACGAAG TTGACGAGGGAGCCGAGGAG
LK-PMA5G02217.1 GGACAGGGTACCCGGGGATCCATGCACTGGTCTCCCCTGTTC CACCATGGTACTAGTGTCGACGAAGAAGAACGCGTCCAGGTAG
LK-PMA4G00558.1 GGACAGGGTACCCGGGGATCCATGGGGAACCGCAAGAAGC CACCATGGTACTAGTGTCGACCGCCGCGCCCATGTGCTT
YS-M13 TGTAAAACGACGGCCAGT CAGGAAACAGCTATGACC

附表2

WD40蛋白理化性质分析"

蛋白名称
Protein name
亚细胞定位
Subcellular location
氨基酸数目
Aminoacid number
分子量
Molecular weight
理论等电点
pI
亲水性平均系数GRAVY 不稳定系数
Instability index
PMA0G00793.1 细胞核Nucleus 2465 271,464.84 6.30 -0.088 42.19
PMA1G00217.1 细胞核Nucleus 149 16,369.59 8.45 -0.285 40.90
PMA1G00219.1 细胞核Nucleus 322 34,004.50 6.03 -0.005 36.17
PMA1G00767.1 细胞核Nucleus 392 41,676.28 4.98 0.010 39.71
PMA1G01014.1 细胞核Nucleus 392 41,722.37 4.98 0.018 39.20
PMA1G02748.1 细胞核Nucleus 444 50,257.79 4.77 -0.430 45.00
PMA1G02765.1 细胞核Nucleus 685 77,923.58 5.64 -0.708 45.45
PMA1G03446.1 细胞核Nucleus 409 44,705.74 4.83 -0.244 41.78
PMA1G04181.1 细胞核Nucleus 1091 121,161.61 8.10 -0.216 47.58
PMA1G04536.1 细胞核Nucleus 461 51,592.20 6.05 -0.495 36.39
PMA1G04659.1 细胞核Nucleus 827 89,725.16 4.89 0.102 50.90
PMA1G05610.1 细胞核Nucleus 883 97,829.17 6.09 -0.126 39.47
PMA1G05712.1 细胞核Nucleus 359 39,159.68 4.65 -0.324 34.52
PMA1G05801.1 细胞核Nucleus 321 35,394.84 6.25 -0.193 51.16
PMA1G05895.1 细胞质Cytoplasm 334 36,292.64 6.13 -0.169 30.55
PMA1G06030.1 细胞核Nucleus 486 53,553.13 6.57 -0.564 50.67
PMA1G06073.1 细胞核Nucleus 1130 125,324.14 5.66 -0.488 41.81
PMA1G06201.1 细胞核Nucleus 420 45,918.71 6.45 -0.214 49.07
PMA1G06361.1 细胞核Nucleus 478 52,872.12 8.25 -0.333 32.00
PMA1G06512.1 细胞核Nucleus 625 69,769.76 5.75 -0.208 47.69
PMA1G06569.1 细胞核Nucleus 400 43,640.78 9.52 -0.166 35.05
PMA1G06802.1 细胞核Nucleus 591 67,089.43 9.32 -0.556 51.79
PMA1G07347.1 细胞核Nucleus 327 36,369.05 6.66 -0.270 32.27
PMA1G07708.1 细胞核Nucleus 558 59,054.70 7.62 -0.370 42.71
PMA1G07756.1 细胞核Nucleus 1236 133,951.74 4.57 -0.470 61.75
PMA1G07797.1 细胞核Nucleus 877 96,241.49 6.54 -0.291 56.18
PMA1G07960.1 细胞核Nucleus 346 38,249.59 4.94 -0.438 48.32
PMA2G00100.1 细胞核Nucleus 437 44,718.46 5.31 -0.148 49.93
PMA2G00413.1 质膜plasma membrane 3226 360,005.44 5.88 -0.109 45.92
PMA2G00952.1 细胞核Nucleus 481 52,702.61 8.12 -0.385 54.59
PMA2G00990.1 细胞核Nucleus 937 104,940.17 4.72 -0.225 35.55
PMA2G01434.1 细胞核Nucleus 321 35,451.08 6.03 -0.144 36.26
PMA2G01657.1 细胞核Nucleus 470 51,291.66 7.70 -0.380 49.36
PMA2G02572.1 细胞核Nucleus 1280 137,842.55 6.04 -0.345 49.26
PMA2G02702.1 细胞核Nucleus 548 60,766.91 8.57 -0.320 34.78
PMA2G03403.1 细胞核Nucleus 454 50,701.42 5.29 -0.433 26.71
PMA2G03704.1 细胞核Nucleus 910 102,742.23 4.92 -0.294 35.71
PMA2G03982.1 细胞核Nucleus 311 33,490.38 5.38 -0.336 50.51
PMA2G04109.1 细胞核Nucleus 861 97,304.46 6.50 -0.350 37.96
PMA2G04873.1 细胞核Nucleus 623 68,257.36 5.36 -0.685 42.69
PMA2G04881.1 细胞核Nucleus 346 39,364.00 8.11 -0.177 39.35
PMA2G04891.1 细胞核Nucleus 526 57,608.26 6.04 -0.304 24.9
PMA2G05041.1 细胞核Nucleus 474 52,197.49 9.13 -0.392 39.13
PMA2G05138.1 细胞核Nucleus 819 90,497.01 6.94 -0.379 40.99
PMA2G05709.1 细胞核Nucleus 504 52,589.91 8.58 -0.155 52.34
PMA2G05778.1 细胞核Nucleus 431 48,657.33 4.86 -0.527 45.78
PMA2G05796.1 细胞核Nucleus 506 56,413.23 6.28 -0.719 55.89
PMA2G05985.1 内质网Endoplasmic reticulum. 380 41,711.77 7.15 -0.300 30.39
PMA2G06056.1 细胞核Nucleus 316 35,200.67 6.11 -0.240 34.14
PMA2G06198.1 细胞核Nucleus 518 55,648.23 8.87 -0.393 56.04
PMA2G06296.1 细胞核Nucleus 1219 136,490.97 6.57 -0.219 34.88
PMA2G06386.1 细胞核Nucleus 766 82,587.06 6.27 -0.448 51.65
PMA2G06408.1 细胞核Nucleus 319 34,260.66 6.75 -0.117 30.60
PMA2G06485.1 细胞核Nucleus 806 88,550.65 7.63 -0.345 43.46
PMA2G06512.1 细胞核Nucleus 422 46,093.73 4.55 -0.361 41.55
PMA2G06520.1 细胞核Nucleus 494 52,329.12 8.11 -0.385 46.24
PMA2G06561.1 叶绿体Chloroplast. 3585 397,756.23 5.68 -0.158 45.61
PMA2G06587.1 细胞核Nucleus 507 55,370.58 6.48 -0.337 38.67
PMA2G06589.1 细胞核Nucleus 433 46,991.82 5.57 0.003 42.56
PMA2G06662.1 细胞核Nucleus 423 45,957.79 7.63 -0.206 40.32
PMA2G07120.1 细胞核Nucleus 369 40,518.76 8.62 -0.005 35.65
PMA2G07533.1 细胞核Nucleus 553 61,282.69 9.26 -0.738 68.15
PMA2G07594.1 细胞核Nucleus 445 47,368.03 8.84 -0.132 32.65
PMA2G07605.1 细胞核Nucleus 725 79,019.32 6.82 -0.525 45.28
PMA3G00139.1 细胞核Nucleus 806 87,816.92 6.45 -0.674 60.55
PMA3G00146.1 细胞核Nucleus 960 105,115.41 8.78 -0.412 44.83
PMA3G00177.1 细胞核Nucleus 959 107,715.47 5.07 -0.372 41.22
PMA3G00886.1 细胞核Nucleus 476 51,930.36 8.55 -0.418 50.34
PMA3G00941.1 细胞核Nucleus 883 97,211.67 6.1 -0.227 38.32
PMA3G01194.1 细胞核Nucleus 697 76,837.82 5.96 -0.480 52.21
PMA3G01569.1 细胞核Nucleus 781 85,956.52 7.28 -0.629 66.19
PMA3G01833.1 细胞核Nucleus 344 38,400.00 4.82 -0.268 44.69
PMA3G02151.1 细胞核Nucleus 457 46,892.97 10.06 0 47.39
PMA3G02964.1 细胞核Nucleus 669 74,608.88 8.31 -0.576 43.10
PMA3G03393.1 细胞核Nucleus 1008 109,231.86 6.87 -0.321 38.96
PMA3G03537.1 细胞核Nucleus 137 15,111.24 7.69 -0.073 38.88
PMA3G04747.1 细胞核Nucleus 1127 122,219.27 8.35 -0.267 58.29
PMA3G05484.1 细胞核Nucleus 417 44,233.84 4.76 -0.346 40.52
PMA3G05660.1 细胞核Nucleus 678 76,202.42 8.71 -0.461 39.85
PMA3G05758.1 细胞核Nucleus 303 33,400.46 7.57 -0.274 38.38
PMA3G06171.1 细胞核Nucleus 474 53,201.10 6.28 -0.314 57.06
PMA3G06172.1 细胞核Nucleus 434 47,552.71 9.12 -0.366 39.33
PMA3G06467.1 细胞核Nucleus 521 58,551.30 6.45 -0.572 59.14
PMA3G06676.1 细胞核Nucleus 785 86,524.28 6.88 -0.590 57.54
PMA3G06886.1 细胞核Nucleus 2856 310,990.10 5.82 -0.114 48.22
PMA3G06996.1 细胞核Nucleus 426 45,952.16 8.15 -0.255 29.23
PMA3G07032.1 细胞核Nucleus 359 38,646.59 5.02 -0.075 50.01
PMA3G07196.1 细胞核Nucleus 473 51,733.01 6.95 -0.419 50.19
PMA3G07405.1 细胞核Nucleus 994 112,445.75 5.06 -0.545 33.28
PMA3G07416.1 细胞核Nucleus 1332 144,494.63 5.66 -0.361 43.47
PMA3G07594.1 细胞核Nucleus 420 44,768.68 9.05 -0.202 45.35
PMA3G07849.1 细胞核Nucleus 690 77,023.29 6.85 -0.402 55.23
PMA3G08081.1 细胞核Nucleus 1448 160,789.00 6.91 -0.213 49.72
PMA3G08095.1 细胞核Nucleus 339 37,566.66 6.41 -0.355 40.64
PMA3G08220.1 细胞核Nucleus 835 91,410.17 6.7 -0.525 45.77
PMA3G08261.1 细胞核Nucleus 382 42,263.85 8.44 -0.236 35.66
PMA4G00280.1 细胞核Nucleus 379 42,300.88 5.76 -0.241 40.80
PMA4G00343.1 细胞核Nucleus 771 86,343.16 8.27 -0.400 44.22
PMA4G00351.1 细胞核Nucleus 599 66,619.63 6.04 -0.323 40.41
PMA4G00356.1 细胞核Nucleus 344 38,359.49 7.67 -0.490 33.95
PMA4G00558.1 细胞核Nucleus 525 56,138.57 9.52 -0.475 53.36
PMA4G00708.1 细胞核Nucleus 1384 151,258.67 8.49 -0.110 41.90
PMA4G00806.1 细胞核Nucleus 323 33,830.33 7.69 0.001 32.62
PMA4G01031.1 细胞核Nucleus 1359 149,461.10 6.38 -0.170 50.06
PMA4G01199.1 细胞核Nucleus 537 58,359.36 9.62 -0.131 42.92
PMA4G01748.1 细胞核Nucleus 537 58,351.38 9.62 -0.123 43.08
PMA4G02122.1 细胞核Nucleus 505 54,971.56 6.44 -0.136 43.68
PMA4G02464.1 细胞核Nucleus 1018 112,999.59 7.37 -0.325 38.68
PMA4G02604.1 细胞核Nucleus 558 61,127.57 9.62 -0.436 60.16
PMA4G02948.1 细胞核Nucleus 496 55,778.10 8.60 -0.346 42.15
PMA4G03423.1 细胞质Cytoplasm 650 72,846.72 6.38 -0.427 44.61
PMA4G03555.1 细胞核Nucleus 417 44,768.38 4.48 -0.171 31.02
PMA4G03775.1 细胞质, 细胞核Cytoplasm, Nucleus 1351 150,028.82 6.72 -0.353 35.38
PMA4G04247.1 细胞核Nucleus 437 49,440.99 5.43 -0.567 34.96
PMA4G04304.1 细胞核Nucleus 886 97,382.94 6.16 -0.072 41.89
PMA4G05601.1 细胞核Nucleus 932 100,042.50 8.82 -0.618 62.63
PMA4G05672.1 细胞核Nucleus 437 48,075.70 9.32 -0.246 53.31
PMA4G05783.1 细胞核Nucleus 563 60,177.89 6.63 -0.431 39.74
PMA4G06215.1 细胞核Nucleus 478 52,687.81 5.08 -0.453 48.96
PMA5G00048.1 细胞核Nucleus 486 54,262.97 5.97 -0.313 42.43
PMA5G00065.1 细胞核Nucleus 1333 146,896.02 6.05 -0.124 45.23
PMA5G00091.1 细胞核Nucleus 749 82,761.34 5.71 -0.490 56.26
PMA5G00152.1 细胞核Nucleus 531 56,902.66 9.17 -0.318 40.69
PMA5G00393.1 细胞核Nucleus 937 103,649.83 6.36 -0.277 46.49
PMA5G00599.1 叶绿体, 细胞核Chloroplast, Nucleus 1388 153,239.02 6.44 -0.106 49.24
PMA5G00729.1 细胞核Nucleus 748 84,095.68 6.19 -0.540 48.70
PMA5G00929.1 细胞核Nucleus 570 62,146.24 4.73 -0.478 41.28
PMA5G01270.1 细胞核Nucleus 1129 124,995.73 6.68 -0.356 43.21
PMA5G01303.1 细胞核Nucleus 179 20,035.50 5.41 -0.278 32.44
PMA5G01527.1 细胞核Nucleus 480 53,737.19 6.26 -0.496 42.15
PMA5G01614.1 细胞核Nucleus 630 68,294.60 6.31 -0.244 46.73
PMA5G01672.1 细胞核Nucleus 1681 188,842.65 6.54 -0.724 49.30
PMA5G02007.1 细胞核Nucleus 526 58,363.66 5.73 -0.506 46.90
PMA5G02217.1 细胞核Nucleus 292 31,753.50 5.3 -0.146 33.98
PMA5G02326.1 细胞核Nucleus 701 77,353.01 6.8 -0.526 47.28
PMA5G02346.1 细胞核Nucleus 445 48,614.04 8.52 -0.278 50.31
PMA5G02456.1 细胞核Nucleus 314 32,962.19 6.66 -0.086 40.60
PMA5G02562.1 细胞核Nucleus 344 37,618.20 8.28 -0.399 33.35
PMA5G02857.1 细胞核Nucleus 443 48,363.44 6.41 -0.317 36.24
PMA5G03186.1 细胞核Nucleus 413 45,981.90 6.55 -0.532 35.96
PMA5G03629.1 细胞核Nucleus 487 54,149.50 4.54 -0.502 34.02
PMA5G04031.1 整合膜蛋白Integral membrane protein 3262 366,453.79 6.23 -0.075 46.20
PMA5G04119.1 细胞核Nucleus 555 61,343.29 6.23 -0.497 40.28
PMA5G04316.1 细胞核Nucleus 657 73,138.67 6.49 -0.405 45.98
PMA5G04368.1 细胞核Nucleus 905 101,187.57 6.69 -0.176 50.62
PMA5G04793.1 细胞核Nucleus 339 36,902.27 5.51 -0.368 38.35
PMA5G04860.1 细胞核Nucleus 903 101,813.39 4.88 -0.240 40.08
PMA5G05243.1 细胞核Nucleus 199 21,992.07 6.43 -0.154 45.68
PMA5G05244.1 细胞核Nucleus 274 30,197.32 5.93 -0.097 43.72
PMA5G05456.1 细胞核Nucleus 559 63,039.57 5.70 -0.715 35.67
PMA5G05860.1 细胞核Nucleus 440 47,379.37 9.15 -0.283 49.63
PMA5G05900.1 细胞核Nucleus 714 78,944.72 8.95 -0.770 54.54
PMA5G06012.1 细胞核Nucleus 733 79,808.32 8.33 -0.300 48.80
PMA6G00045.1 细胞核Nucleus 518 54,949.01 7.37 -0.171 48.34
PMA6G00058.1 细胞核Nucleus 1417 152,442.89 5.81 -0.189 55.31
PMA6G00190.1 细胞核Nucleus 305 33,158.16 5.85 -0.245 33.36
PMA6G00264.1 细胞核Nucleus 425 46,542.45 6.07 -0.263 45.04
PMA6G00276.1 细胞核Nucleus 802 88,984.57 9.14 -0.363 45.03
PMA6G00277.1 细胞核Nucleus 391 42,534.46 8.06 -0.049 27.63
PMA6G00331.1 细胞核Nucleus 1214 135,908.23 6.66 -0.212 31.98
PMA6G00424.1 细胞核Nucleus 253 27,702.88 7.65 -0.034 29.63
PMA6G00426.1 细胞核Nucleus 174 17,825.96 9.84 0.434 67.85
PMA6G00442.1 细胞核Nucleus 484 53,114.51 7.29 -0.188 41.48
PMA6G00539.1 细胞核Nucleus 863 95,133.05 6.46 -0.550 59.62
PMA6G00623.1 细胞核Nucleus 417 46,141.60 8.28 -0.160 36.73
PMA6G01002.1 细胞核Nucleus 591 65,909.04 8.28 -0.721 45.05
PMA6G01158.1 细胞核Nucleus 610 66,336.86 6.26 -0.202 29.64
PMA6G01528.1 细胞核Nucleus 1130 124,753.56 6.79 -0.348 38.42
PMA6G02166.1 细胞核Nucleus 517 58,330.47 6.96 -0.385 40.41
PMA6G02184.1 细胞核Nucleus 1649 182,068.88 5.93 -0.150 52.76
PMA6G03130.1 细胞核Nucleus 1205 134,028.97 6.03 -0.182 43.25
PMA6G03218.1 细胞核Nucleus 1205 134,084.07 6.05 -0.180 43.73
PMA6G03544.1 细胞核Nucleus 900 99,100.11 6.78 -0.731 59.96
PMA6G03546.1 细胞核Nucleus 872 95,444.56 6.30 -0.560 54.13
PMA6G03948.1 细胞核Nucleus 345 37,853.78 8.61 -0.402 41.65
PMA6G04468.1 细胞质Cytoplasm 334 36,305.86 6.3 -0.101 34.72
PMA6G04616.1 细胞核Nucleus 898 99,014.75 5.91 -0.092 46.84
PMA6G04682.1 细胞核Nucleus 453 50,011.73 5.84 -0.501 46.33
PMA6G04859.1 细胞核Nucleus 782 86,990.63 5.26 -0.397 56.35
PMA6G05403.1 细胞核Nucleus 479 52,010.73 9.03 -0.203 44.05
PMA6G05433.1 细胞核Nucleus 833 91,540.97 8.28 -0.319 40.75
PMA6G06158.1 细胞核Nucleus 451 49,884.85 7.24 -0.453 45.26
PMA6G06236.1 细胞核Nucleus 359 38,809.74 5.19 -0.061 44.68
PMA6G06558.1 细胞核Nucleus 457 49,731.87 9.42 -0.276 53.64
PMA6G06757.1 细胞核Nucleus 499 54,477.63 4.50 -0.478 45.15
PMA6G06858.1 细胞核Nucleus 459 49,536.67 5.15 -0.351 62.24
PMA7G00183.1 细胞核Nucleus 1134 122,186.87 5.13 -0.303 49.60
PMA7G00484.1 细胞核Nucleus 313 34,887.18 5.24 -0.188 31.42
PMA7G00719.1 细胞核Nucleus 435 47,443.67 5.79 -0.192 42.79
PMA7G00744.1 细胞核Nucleus 452 52,016.35 9.45 -0.635 42.66
PMA7G00781.1 细胞核Nucleus 488 54,101.47 5.50 -0.034 37.74
PMA7G00782.1 细胞核Nucleus 171 18,555.35 8.54 0.165 30.24
PMA7G00991.1 细胞核Nucleus 326 35,399.17 8.58 -0.098 36.05
PMA7G01251.1 细胞核Nucleus 467 51,644.04 8.43 -0.459 49.73
PMA7G02044.1 细胞核Nucleus 383 2444.33 4.67 -0.344 42.01
PMA7G03038.1 细胞核Nucleus 182 19,654.30 6.01 -0.227 41.14
PMA7G03703.1 细胞核Nucleus 381 40,919.03 5.51 -0.062 54.88
PMA7G04112.1 细胞核Nucleus 331 36,828.55 6.16 -0.412 26.60
PMA7G04156.1 细胞核Nucleus 573 63,340.86 8.14 -0.206 44.74
PMA7G04786.1 细胞核Nucleus 1009 110,000.00 7.27 -0.358 41.41
PMA7G05461.1 细胞核Nucleus 350 38,868.13 4.92 -0.447 32.23
PMA7G05512.1 细胞核Nucleus 301 32,387.74 6.44 -0.062 29.38
PMA7G05993.1 细胞核Nucleus 103 11,548.15 6.94 -0.172 2.16
PMA7G05994.1 细胞核Nucleus 394 43,350.11 5.18 -0.615 65.95
PMA7G06048.1 细胞核Nucleus 396 43,401.77 6.47 -0.116 44.20
PMA7G06380.1 细胞核Nucleus 326 36,267.66 6.06 -0.424 31.81
PMA7G06743.1 细胞核Nucleus 756 82,460.69 5.37 -0.133 33.00
PMA7G06785.1 细胞核Nucleus 573 62,201.15 4.65 -0.492 43.97
PMA7G06994.1 细胞核Nucleus 481 52,195.22 9.46 -0.363 52.70

图1

PgWD40家族成员在染色体上的分布图"

附图1

PgWD40第Ⅰ亚族保守结构域、保守基序和基因结构分析 从左到右分别为:(a) PgWD40基因家族进化树。(b) PgWD40蛋白的motif分布。右侧标签不同颜色代表不同motif。(c) 代表性PgWD40蛋白的结构。蛋白质结构基于WD40的存在,以及由NCBI识别的其他域(d)209个PgWD40基因的内外含子结构。外显子和内含子分别用黄框和绿框表示;黄色框表示CDS。"

附图2

PgWD40第Ⅱ亚族保守结构域、保守基序和基因结构分析 从左到右分别为:(a) PgWD40基因家族进化树。(b) PgWD40蛋白的motif分布。右侧标签不同颜色代表不同motif。(c) 代表性PgWD40蛋白的结构。蛋白质结构基于WD40的存在,以及由NCBI识别的其他域(d)209个PgWD40基因的内外含子结构。外显子和内含子分别用黄框和绿框表示;黄色框表示CDS。"

附图3

PgWD40第Ⅲ~Ⅴ亚族保守结构域、保守基序和基因结构分析 从左到右分别为:(a) PgWD40基因家族进化树。(b) PgWD40蛋白的motif分布。右侧标签不同颜色代表不同motif。(c) 代表性PgWD40蛋白的结构。蛋白质结构基于WD40的存在,以及由NCBI识别的其他域(d) 209个PgWD40基因的内外含子结构。外显子和内含子分别用黄框和绿框表示;黄色框表示CDS。"

图2

PgWD40家族蛋白共享的保守基序的标志 数字代表10个不同的图案及其代码。彩色字母代表每个基序序列标识中氨基酸残基的类型。"

附图4

PgWD40基因启动子序列顺式作用元件分析 其响应元件从上到下分别是脱落酸反应、厌氧诱导、生长素响应、茉莉酸响应、昼夜节律调控、赤霉素响应、光响应、缺氧特异性诱导、生长与发育相关、水杨酸反应、防御和压力反应、干旱诱导、低温响应、伤口响应元件。"

图3

珍珠粟(Pg)与水稻(Os)WD40基因家族成员系统进化树"

图4

PgWD40基因家族的共线性分析"

图5

珍珠粟(Pg)和水稻(Os) WD40基因家族的共线性分析"

图6

PgWD40基因家族成员在盐胁迫中的表达热图 “L”为叶片, “R”是根, 数字为胁迫时长。"

图7

PgWD40基因家族成员在热胁迫中的表达热图 “L”为叶片, “R”是根, 数字为胁迫时长。"

图8

PgWD40基因家族成员在干旱胁迫中的表达热图 “L”为叶片, “R”是根, 数字为胁迫时长。"

图9

PgWD40基因家族成员在不同部位的表达热图 其中部位分: HI_SP代表抽穗期的穗, FW_F代表开花期的穗, SI_SD代表蜡熟期的穗, Seed代表完熟期。"

图10

PgWD40基因家族成员在不同胁迫中的表达分析 D: 干旱胁迫; H: 热胁迫; S: 盐胁迫; 胁迫后数字代表胁迫时长。"

图11

PgWD40蛋白质互作网络 彩色圆球分别表示不同的蛋白, 彩色圆球内部是该蛋白所对应的三级结构。不同蛋白之间的连线所代表的含义具体如下: 天蓝色线: 从精选数据库获得; 紫色线: 实验确定; 绿色线: 基因邻域; 深蓝色线: 基因共现; 鹅黄色线: 文本数据挖掘; 黑色线: 共表达; 浅蓝色线: 蛋白同源。"

图12

PgWD40基因家族成员的GO分析 GO分析使用eggNOG在线网站进行, 将其分为3个方面: 分子功能、生物过程和细胞组分; 纵轴表示GO具体内容, 横轴表示对应的蛋白序列数量。"

图13

PgWD40基因家族成员的KEGG分析"

图14

8个PgWD40蛋白的三级结构分析"

图15

空载体2300、PMA4G00558.1和PMA5G02217.1的亚细胞定位分析"

[1] Wu B, Sun M, Zhang H, Yang D, Lin C, Khan I, Wang X, Zhang X, Nie G, Feng G, Yan Y, Li Z, Peng Y, Huang L. Transcriptome analysis revealed the regulation of gibberellin and the establishment of photosynthetic system promote rapid seed germination and early growth of seedling in pearl millet. Biotechnol Biofuels, 2021, 14: 94.
doi: 10.1186/s13068-021-01946-6 pmid: 33840392
[2] Serba D D, Perumal R, Tesso T T, Min D. Status of global pearl millet breeding programs and the way forward. Crop Sci, 2017, 57: 2891-2905.
[3] Yan H, Sun M, Zhang Z, Jin Y, Zhang A, Lin C, Wu B, He M, Xu B, Wang J, Qin P, Mendieta J P, Nie G, Wang J, Jones C S, Feng G, Srivastava R K, Zhang X, Bombarely A, Luo D, Jin L, Peng Y, Wang X, Ji Y, Tian S, Huang L. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nat Genet, 2023, 55: 507-518.
doi: 10.1038/s41588-023-01302-4 pmid: 36864101
[4] Mohammed R, Gangashetty P I, Karimoune L, Ba N M. Genetic variation and diversity of pearl millet [Pennisetum glaucum (L.)] genotypes assessed for millet head miner, Heliocheilus albipunctella resistance, in West Africa. Euphytica, 2020, 216: 158.
[5] Khatri A B, Patel P T, Patel R, Patel M S, Shah S K, Patel J S, Vaghela P O. Genetic analysis of grain biochemical parameters and yield in pearl millet [Pennisetum glaucum (L.) R. Br.]. J Cereal Sci, 2023, 113: 103746.
[6] Varshney R K, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava R K, Chitikineni A, Fan G, Bajaj P, Punnuri S, Gupta S K, Wang H, Jiang Y, Couderc M, Katta M A V S K, Paudel D R, Mungra K D, Chen W, Harris-Shultz K R, Garg V, Desai N, Doddamani D, Kane N A, Conner J A, Ghatak A, Chaturvedi P, Subramaniam S, Yadav O P, Berthouly-Salazar C, Hamidou F, Wang J, Liang X, Clotault J, Upadhyaya H D, Cubry P, Rhoné B, Gueye M C, Sunkar R, Dupuy C, Sparvoli F, Cheng S, Mahala R S, Singh B, Yadav R S, Lyons E, Datta S K, Hash C T, Devos K M, Buckler E, Bennetzen J L, Paterson A H, Ozias-Akins P, Grando S, Wang J, Mohapatra T, Weckwerth W, Reif J C, Liu X, Vigouroux Y, Xu X. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol, 2017, 35: 969-976.
doi: 10.1038/nbt.3943 pmid: 28922347
[7] Feng R, Zhang C, Ma R, Cai Z, Lin Y, Yu M. Identification and characterization of WD40 superfamily genes in peach. Gene, 2019, 710: 291-306.
doi: S0378-1119(19)30558-X pmid: 31185283
[8] Wang C, Tang Y, Li Y, Hu C, Li J, Lyu A. Genome-wide identification and bioinformatics analysis of the WD40 transcription factor family and candidate gene screening for anthocyanin biosynthesis in Rhododendron simsii. BMC Genomics, 2023, 24: 488.
[9] Jain B P, Pandey S. WD 40 repeat proteins: signalling scaffold with diverse functions. Protein J, 2018, 37: 391-406.
[10] Hu R, Xiao J, Gu T, Yu X, Zhang Y, Chang J, Yang G, He G. Genome-wide identification and analysis of WD40 proteins in wheat (Triticum aestivum L.). BMC Genomics, 2018, 19: 803.
[11] Ouyang Y, Huang X, Lu Z, Yao J. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice. BMC Genomics, 2012, 13: 100.
doi: 10.1186/1471-2164-13-100 pmid: 22429805
[12] Liu H, Xiu Z, Yang H, Ma Z, Yang D, Wang H, Tan B-C. Maize Shrek1 encodes a WD40 protein that regulates pre-rRNA processing in ribosome biogenesis. Plant Cell, 2022, 34: 4028-4044.
[13] Xin Y, Wu Y, Han X, Xu L A. Overexpression of the Ginkgo biloba WD40 gene GbLWD1-like improves salt tolerance in transgenic Populus. Plant Sci, 2021, 313: 111092.
[14] Eryong C, Bo S. OsABT, a rice WD40 domain-containing protein, is involved in abiotic stress tolerance. Rice Sci, 2022, 29: 247-256.
doi: 10.1016/j.rsci.2021.07.012
[15] Yang X, Wang J, Xia X, Zhang Z, He J, Nong B, Luo T, Feng R, Wu Y, Pan Y, Xiong F, Zeng Y, Chen C, Guo H, Xu Z, Li D, Deng G. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. Plant J, 2021, 107: 198-214.
[16] Liu Y, Hou H, Jiang X, Wang P, Dai X, Chen W, Gao L, Xia T. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB-bHLH-WD40 ternary complexes. Int J Mol Sci, 2018, 19: 1686.
[17] Sun Y B, Zhang X J, Zhong M C, Dong X, Yu D M, Jiang X D, Wang D, Cui W H, Chen J H, Hu J Y. Genome-wide identification of WD40 genes reveals a functional diversification of COP1-like genes in Rosaceae. Plant Mol Biol, 2020, 104: 81-95.
[18] Zhang X, Feng Q, Miao J, Zhu J, Zhou C, Fan D, Lu Y, Tian Q, Wang Y, Zhan Q, Wang Z Q, Wang A, Zhang L, Shang-Guan Y, Li W, Chen J, Weng Q, Huang T, Tang S, Si L, Huang X, Wang Z X, Han B. The WD40 domain-containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). Plant Cell, 2023, 35: 4002-4019.
[19] Cai J, Huang H, Xu X, Zhu G. An Arabidopsis WD40 repeat-containing protein XIW1 promotes salt inhibition of seed germination. Plant Signal Behav, 2020, 15: 1712542.
[20] Kim Y J, Kim M H, Hong W J, Moon S, Kim E J, Silva J, Lee J, Lee S, Kim S T, Park S K, Jung K H. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. Plant J, 2021, 105: 1645-1664.
[21] Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell, 2011, 2: 202-214.
doi: 10.1007/s13238-011-1018-1 pmid: 21468892
[22] Zhang S, Song Z, An L, Liu X, Hu X W, Naz A, Zhou R, Guo X, He L, Zhu H. WD40 repeat and FYVE domain containing 3 is essential for cardiac development. Cardiovasc Res, 2018, 115: 1320-1331.
[23] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L, Tosatto S C, Paladin L, Raj S, Richardson L J. Pfam: the protein families database in 2021. Nucleic Acids Res, 2021, 49: D412-D419.
[24] Sun M, Yan H, Zhang A, Jin Y, Lin C, Luo L, Wu B, Fan Y, Tian S, Cao X, Wang Z, Luo J, Yang Y, Jia J, Zhou P, Tang Q, Jones C S, Varshney R K, Srivastava R K, He M, Xie Z, Wang X, Feng G, Nie G, Huang D, Zhang X, Zhu F, Huang L. Milletdb: a multi-omics database to accelerate the research of functional genomics and molecular breeding of millets. Planteic Biotechnol J, 2023, 21: 2348-2357.
[25] Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel R D, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, 2003, 31: 3784-3788.
doi: 10.1093/nar/gkg563 pmid: 12824418
[26] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335.
[27] Combet C, Blanchet C, Geourjon C, Deleage G. NPS@: network protein sequence analysis. Trends Biochem Sci, 2000, 25: 147-150.
doi: 10.1016/s0968-0004(99)01540-6 pmid: 10694887
[28] Kelley L A, Mezulis S, Yates C M, Wass M N, Sternberg M J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protocols, 2015, 10: 845-858.
[29] Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491
[30] Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree Visualization by One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592.
doi: 10.1093/nar/gkad359 pmid: 37144476
[31] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[32] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucl Acids Res, 2009, 37: W202-W208.
[33] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[34] Li G, Xu B, Zhang Y, Xu Y, Khan N U, Xie J, Sun X, Guo H, Wu Z, Wang X, Zhang H, Li J, Xu J, Wang W, Zhang Z, Li Z. RGN1 controls grain number and shapes panicle architecture in rice. Plant Biotechnol J, 2022, 20: 158-167.
[35] Shi D Q, Liu J, Xiang Y H, Ye D, Yang W C. SLOW WALKER1, Essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. Plant Cell, 2005, 17: 2340-2354.
[36] Ohbayashi I, Lin C Y, Shinohara N, Matsumura Y, Machida Y, Horiguchi G, Tsukaya H, Sugiyama M. Evidence for a role of ANAC082 as a ribosomal stress response mediator leading to growth defects and developmental alterations in Arabidopsis. Plant Cell, 2017, 29: 2644-2660.
[37] Walker A R, Davison P A, Bolognesi-Winfield A C, James C M, Srinivasan N, Blundell T L, Esch J J, Marks M D, Gray J C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell, 1999, 11: 1337-1349.
doi: 10.1105/tpc.11.7.1337 pmid: 10402433
[38] Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics, 2013, 13: 75-98.
[39] Higa L A, Wu M, Ye T, Kobayashi R, Sun H, Zhang H. CUL4- DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol, 2006, 8: 1277-1283.
[40] Guerriero G, Hausman J F, Ezcurra I. WD40-repeat proteins in plant cell wall formation: current evidence and research prospects. Front Plant Sci, 2015, 6: 1112.
doi: 10.3389/fpls.2015.01112 pmid: 26734023
[41] Chen W, Chen L, Zhang X, Yang N, Guo J, Wang M, Ji S, Zhao X, Yin P, Cai L. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375: eabg7985.
[42] Schreel J D, von der Crone J S, Kangur O, Steppe K. Influence of drought on foliar water uptake capacity of temperate tree species. Forests, 2019, 10: 562.
[43] Bu Y, Sun B, Zhou A, Zhang X, Takano T, Liu S. Overexpression of AtOxR gene improves abiotic stresses tolerance and vitamin C content in Arabidopsis thaliana. BMC Biotechnol, 2016, 16: 69.
[44] Radha B, Sunitha N C, Sah R P, Md Azharudheen T P, Krishna G, Umesh D K, Thomas S, Anilkumar C, Upadhyay S, Kumar A, Manikanta Ch L N, Behera S, Marndi B C, Siddique K H M. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. Front Plant Sci, 2023, 13: 996514.
[45] Jin Y, Luo J, Yang Y, Jia J, Sun M, Wang X, Khan I, Huang D, Huang L. The evolution and expansion of RWP-RK gene family improve the heat adaptability of elephant grass (Pennisetum purpureum Schum.). BMC Genomics, 2023, 24: 510.
[1] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[2] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[3] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[4] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[5] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[6] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[7] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[8] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[9] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[10] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[11] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[12] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[13] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[14] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[15] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!