欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2237-2247.doi: 10.3724/SP.J.1006.2024.34178

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

过表达马铃薯StuPPO9基因对烟草抗旱能力的影响

刘波(), 池明* (), 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪   

  1. 天津农学院园艺园林学院, 天津 300384
  • 收稿日期:2023-11-01 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-05-28
  • 通讯作者: *池明, E-mail: chiming@tjau.edu.cn
  • 作者简介:E-mail: 17622576425@163.com
  • 基金资助:
    天津市教委科研计划项目(2018KJ192)

Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana

LIU Bo(), CHI Ming* (), CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong   

  1. School of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
  • Received:2023-11-01 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-05-28
  • Contact: *E-mail: chiming@tjau.edu.cn
  • Supported by:
    Tianjin Municipal Education Commission(2018KJ192)

摘要:

为鉴定马铃薯多酚氧化酶基因StuPPO9在干旱胁迫响应中的功能, 本研究以利用农杆菌介导法获得的过表达StuPPO9基因的本氏烟草为材料, 通过盆栽试验模拟自然干旱胁迫, 对比转基因株系和空载转化(WT)烟草植株干旱胁迫0 d、3 d、6 d、9 d、12 d的生长形态, 测定叶绿素、丙二醛、脯氨酸含量和抗氧化酶活性等生理指标以及抗旱相关基因的表达情况。结果表明, 干旱处理后过表达株系叶片的相对含水量、叶绿素、脯氨酸含量以及SOD、POD活性均显著高于WT, 而丙二醛含量则显著低于WT。RT-qPCR分析发现, 活性氧(reactive oxygen species, ROS)清除系统基因SODPOX, ABA生物合成基因NCEDRD29A, 脯氨酸生物合成基因P5CS以及其他应激反应基因LEAADCSAMDC等的表达量明显升高。本研究表明, StuPPO9基因增强了烟草植株对干旱的耐受性, 为探明StuPPO9基因调控干旱胁迫响应的功能提供理论依据。

关键词: StuPPO9, 转基因烟草, 抗旱性, 功能鉴定

Abstract:

To investigate the role of the potato polyphenol oxidase gene StuPPO9 in response to drought stress, we utilized the overexpression of the StuPPO9 gene in Nicotiana benthamiana through Agrobacterium-mediated transformation as the experimental material. Pot experiments were conducted to simulate natural drought stress, and various physiological indicators including growth morphology, chlorophyll content, malondialdehyde and proline levels, antioxidant enzyme activity, and expression of related resistance genes were compared and measured in transgenic and wild-type tobacco plants under drought stress for 0, 3, 6, 9 and 12 days. The results revealed that following the drought treatment, the transgenic strains exhibited significantly higher relative water content, chlorophyll content, proline levels, and superoxide dismutase (SOD) and peroxidase (POD) activities compared to the wild-type plants. Conversely, the malondialdehyde content was significantly lower in the transgenic strains compared to the wild-type. RT-qPCR analysis demonstrated a significant upregulation of expression levels in ROS scavenging system genes (SOD, POX), ABA biosynthesis genes (NCED, RD29A), proline biosynthesis gene (P5CS), and other stress response genes (LEA, ADC, SAMDC). These findings suggest that the overexpression of the StuPPO9 gene enhances drought tolerance in tobacco plants, providing a theoretical foundation for further exploration of StuPPO9’s role in regulating drought stress response.

Key words: StuPPO9, transgenic tobacco, drought tolerance, functional identification

表1

试验所用引物序列"

基因名称
Gene name
GenBank ID 正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (3°-5°)
NtSOD XM_016657042.1 CTTATGTGTAGTCGCTGGTTGA AAGAGTTGCGCTCAAACGAT
NtApxL NM_001324874.1 AAGGCTCTCCTCTCTGATCC CTCTTCCTCCTATCGCAAGC
NtADC1 AF127239 TGCGTAGACGCTACTGTTTC GAGTTTGTAGGAGGTACGCC
NtSAMDC NM_001325698.3 AGTAGTGTCTTGAGGGCTGT AAATCCGAACGACACAGCTT
NtPOX2 AB178953 GACGAGTTGTTAACAGAGCCA AGAAGAACTCCTCCATCGCA
NtP5CS1 HM854026 AGACCTTAGTGGGCTTGAGA GTTAGGCTTCAACCTGCCTT
NtERD10C AB049337 TGGGGTTTGAAGGGTAATACAG AAGGTGAAAACCAAACCAACTG
NtLEA5 AF053076 GCTGCATCATCAGCTAGTGT CTCAGCAGCGTCAATCTCTT
NtNCED1 KM605435 AGCCCAAGATATCAATGCCAAG AGGAGCTTGGAGTGAGGAATTA
NtRD29A NM_001325924.1 TCATGGTGGACCCTATGCTAT CTGCAAAACTGGCCTATGTG
NtActin XM_016579509.1 GTCTCTTTGGATGCCTCTGC CATCCTATCAGCAATGCCCG
StuPPO9 XM_006347021.2 GGACCCGACGTTACCAAATG TGATGGAAGCTGGAAGTCGA
STPO XM_006347021.2 ATGTTCATGAATACATCTCAAAC CTAATCCTCAAGCACAATC

图1

StuPPO9过表达载体PCR检测 M: Trans2K Plus DNA marker; STPO: 马铃薯StuPPO9基因扩增产物。"

图2

StuPPO9过表达烟草阳性植株PCR鉴定 M: Trans2K Plus DNA marker; +: 阳性质粒pCambia2301- StuPPO9对照; -: 空载转化烟草; 5、7、9、11、15、18: 转基因烟草阳性株系Line-5、Line-7、Line-9、Line-11、Line-15、Line-18。"

图3

StuPPO9过表达烟草阳性植株株系StuPPO9基因表达量 图中小写字母表示在0.05概率水平差异显著。"

图4

干旱胁迫下StuPPO9转基因烟草地上部表型观察"

图5

干旱胁迫下StuPPO9转基因烟草根表型观察"

表2

干旱胁迫下StuPPO9转基因烟草生长指标变化"

株系
Line
株高Height (cm) 茎粗Stem diameter (mm) 叶面积Leaf area (cm2)
对照组CK 干旱Drought 对照组CK 干旱Drought 对照组CK 干旱Drought
野生型WT 15.07±0.318 b 10.27±0.273 d 1.60±0.024 b 1.18±0.035 d 24.28±0.274 b 13.67±0.418 e
Line-5 15.60±0.306 b 13.47±0.203 c 1.67±0.021 ab 1.35±0.021 c 25.75±0.279 a 16.80±0.393 d
Line-9 16.40±0.173 a 14.00±0.252 c 1.75±0.031 a 1.42±0.029 c 26.41±0.188 a 18.77±0.256 c

表3

干旱胁迫下StuPPO9转基因烟草叶片/根系相对含水量"

株系
Line
叶片Leaf 根系Root
对照组CK 干旱Drought 对照组CK 干旱Drought
野生型WT 92.25±0.584 a 85.06±0.208 c 94.36±0.220 b 87.24±0.347 d
Line-5 92.76±0.201 a 89.66±0.236 b 95.18±0.045 a 91.19±0.073 c
Line-9 93.15±0.075 a 90.12±0.602 b 95.27±0.074 a 91.34±0.044 c

图6

干旱胁迫下StuPPO9转基因烟草叶绿素含量变化 对于干旱胁迫处理下各处理间的差异显著性以不同小写字母(P < 0.05)标记。"

图7

干旱胁迫下StuPPO9转基因烟草叶片丙二醛(A)和脯氨酸(B)含量的变化 对于干旱胁迫处理下各处理间的差异显著性以不同小写字母(P < 0.05)标记。"

图8

干旱胁迫下StuPPO9转基因烟草叶片超氧化物歧化酶(A)、过氧化物酶(B)活性的变化 对于干旱胁迫处理下各处理间的差异显著性以不同小写字母(P < 0.05)标记。"

图9

干旱胁迫下转基因植株ROS和ABA相关基因表达量 对于干旱胁迫处理前后各处理间的差异显著性以不同小写字母(P < 0.05)标记。"

图10

干旱胁迫下转基因植株抗旱相关基因表达量 对于干旱胁迫处理前后各处理间的差异显著性以不同小写字母(P < 0.05)标记。"

[1] Tran L T, Taylor J S, Constabel C P. The polyphenol oxidase gene family in land plants: lineage-specific duplication and expansion. BMC Genomics, 2012, 13: 395.
doi: 10.1186/1471-2164-13-395 pmid: 22897796
[2] 刘芳, 赵金红, 朱明慧, 甘芝霖, 倪元颖. 多酚氧化酶结构及褐变机理研究进展. 食品研究与开发, 2015, 36(6): 113-119.
Liu F, Zhao J H, Zhu M H, Gan Z L, Ni Y Y. Advances in research of the structure and browning mechanism of polyphenol oxidase. Food Res Dev, 2015, 36(6): 113-119 (in Chinese with English abstract).
[3] Xiao K, Liu X, Zhang A, Zha D, Zhu W M, Tan F, Huang Q, Zhou Y, Zhang M, Li J, Wu X. Genome-wide identification of polyphenol oxidase (PPO) family members in eggplant (Solanum melongena L.) and their expression in response to low temperature. Hortic Environ Biotechnol, 2022, 63: 747-758.
[4] Liang M, Haroldsen V, Cai X, Wu Y. Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ, 2006, 29: 746-753.
[5] Sharma N, Hundal G, Sharma I, Bhardwaj R. 28-Homobrassinolide alters protein content and activities of glutathione-S-transferase and polyphenol oxidase in Raphanus sativus L. plants under heavy metal stress. Toxicol Int, 2014, 21: 44-50.
doi: 10.4103/0971-6580.128792 pmid: 24748734
[6] Chen X, Wang B, Huang W, Wang T, Li Y, Zhong Z, Yang L, Li S, Tian J. Comparative proteomic analysis reveals elevated capacity for photosynthesis in polyphenol oxidase expression-silenced Clematis terniflora DC. leaves. Int J Mol Sci, 2018, 19: 3897.
[7] Szymborska-Sandhu I, Przybył J L, Pióro-Jabrucka E, Jędrzejuk A, Węglarz Z, Bączek K. Effect of shading on development, yield and quality of bastard balm herb (Melittis melissophyllum L.). Molecules, 2020, 25: 2142.
[8] 田奇琳, 林玉玲, 郑庆游, 苏荣峰, 赖钟雄. 龙眼DlPPO1基因的克隆及其表达调控分析. 西北植物学报, 2016, 36: 1098-1104.
Tian Q L, Lin Y L, Zheng Q Y, Su R F, Lai Z X. Cloning and expression regulation analysis of Longyan DlPPO1 gene. Acta Bot Boreali-Occident Sin, 2016, 36: 1098-1104 (in Chinese with English abstract).
[9] He F, Shi Y J, Zhao Q, Zhao K J, Cui X L, Chen L H, Wan X Q. Genome-wide investigation and expression profiling of polyphenol oxidase (PPO) family genes uncover likely functions in organ development and stress responses in Populus trichocarpa. BMC Genomics, 2021, 22: 731.
[10] Ullah Z, Iqbal J, Abbasi B A, Akhtar W, Kanwal S, Ali I, Mahmood T. Assessment of GUS expression induced by anti-sense OsPPO gene promoter and antioxidant enzymatic assays in response to drought and heavy metal stress in transgenic Arabidopsis thaliana. Sustainability, 2023, 15: 12783.
[11] Akhtar W, Mahmood T. Response of rice polyphenol oxidase promoter to drought and salt stress. Pak J Bot, 2017, 49: 21-23.
[12] Liu D, Meng S, Xiang Z, Yang G, He N. An R1R2R3 MYB transcription factor, MnMYB3R1, regulates the polyphenol oxidase gene in mulberry (Morus notabilis). Int J Mol Sci, 2019, 20: 2602.
[13] Chi M, Bhagwat B, Lane W D, Tang G, Su Y, Sun R, Oomah B D, Wiersma P A, Xiang Y. Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biol, 2014, 14: 62.
[14] 薛聪, 唐达, 黄洁萍, 刘波, 张卫华, 吴颖, 池明. 马铃薯CRISPR/Cas9编辑多酚氧化酶StuPPO9基因的初探. 植物生理学报, 2023, 59: 1135-1144.
Xue C, Tang D, Huang J P, Liu B, Zhang W H, Wu Y, Chi M. Preliminary exploration of the polyphenol oxidase StuPPO9 gene in potato CRISPR/Cas9 editing. Plant Physiol J, 2023, 59: 1135-1144 (in Chinese with English abstract).
[15] 张金辉, 池明, Yu X, 王远宏, 李二峰, 刘慧芹, 马睿. 马铃薯多酚氧化酶新成员StuPPO9基因的分离鉴定及其过表达烟草遗传转化. 食品研究与开发, 2020, 41(2): 165-171.
Zhang J H, Chi M, Yu X, Wang Y H, Li E F, Liu H Q, Ma R. Isolation and identification of StuPPO9 gene, a new member of potato polyphenol oxidase, and its overexpression in tobacco genetic transformation. Food Res Dev, 2020, 41(2): 165-171 (in Chinese with English abstract).
[16] 马文广, 崔华威, 李永平, 郑昀晔, 王洋, 秦国臣, 胡晋. 20个烟草品种干旱胁迫下发芽和苗期生理特性及耐旱性评价. 种子, 2012, 31(2): 25-30.
Ma W G, Cui H W, Li Y P, Zheng Y Y, Wang Y, Qin G C, Hu J. Evaluation of physiological characteristics and drought tolerance of 20 tobacco varieties during germination and seedling stage under drought stress. Seed, 2012, 31(2): 25-30 (in Chinese with English abstract).
[17] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 15-16.
Gao J F. Experimental Guidance for Plant Physiology. Beijing: Higher Education Press, 2006. pp 15-16 (in Chinese).
[18] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导(第4版). 北京: 高等教育出版社, 2009. pp 227-229.
Zhang Z L, Qu W J, Li X F. Experimental Guidance on Plant Physiology, 4th edn. Beijing: Higher Education Press, 2009. pp 227-229 (in Chinese).
[19] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies. Plant Soil, 1973, 39: 205-207.
[20] 王学奎. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2006. pp 134-136.
Wang X K. Principles and Techniques of Plant Physiology and Biochemistry Experiments. Beijing: Higher Education Press, 2006. pp 134-136 (in Chinese).
[21] Gao K, Khan W U, Li J, Huang S, Yang X, Guo T, Guo B, Wu R, An X. Identification and validation of reliable reference genes for gene expression studies in Koelreuteria paniculata. Genes, 2022, 13: 714.
[22] Hosseinifard M, Stefaniak S, Ghorbani Javid M, Soltani E, Wojtyla L, Garnczarska M. Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. Int J Mol Sci, 2022, 23: 5186.
[23] 张祎, 秦利军, 赵丹, 赵德刚. 超量表达NtHAK1基因提高烟草干旱胁迫能力. 植物生理学报, 2017, 53: 1444-1452.
Zhang Y, Qin L J, Zhao D, Zhao D G. Overexpression of NtHAK1 gene enhances tobacco’s drought stress ability. Plant Physiol J, 2017, 53: 1444-1452 (in Chinese with English abstract).
[24] 许兴, 郑国琦, 邓西平, 徐兆桢, 刘振荣. 不同基因型小麦幼苗抗旱抗盐性比较研究. 西北植物学报, 2002, 22: 1122-1135.
Xu X, Zheng G Q, Deng X P, Xu Z Z, Liu Z R. Comparative study on drought and salt resistance of wheat seedlings with different genotypes. Acta Bot Boreali-Occident Sin, 2002, 22: 1122-1135 (in Chinese with English abstract).
[25] 马秀芳, 沈秀瑛, 杨德光, 赵天宏, 郝宪彬, 沈枫. 不同耐旱性玉米品种对干旱的生理生化反应. 沈阳农业大学学报, 2002, 33(3): 167-170.
Ma X F, Shen X Y, Yang D G, Zhao T H, Hao X B, Shen F. Physiological and biochemical responses of maize varieties with different drought tolerance to drought. J Shenyang Agric Univ, 2002, 33(3): 167-170 (in Chinese with English abstract).
[26] 唐玉婧, 马猛, 邓西, 唐春, 邓荣, 杨淑慎. 干旱胁迫下小麦抗旱能力与其根系特征间的关系. 西北农林科技大学学报(自然科学版), 2014, 42(4): 48-54.
Tang Y J, Ma M, Deng X, Tang C, Deng R, Yang S S. The relationship between drought resistance and root characteristics of wheat under drought stress. J Northwest A&F Univ (Nat Sci Edn), 2014, 42(4): 48-54 (in Chinese with English abstract).
[27] 邓珍, 徐建飞, 段绍光, 刘杰, 卞春松, 庞万福, 金黎平. PEG-8000模拟干旱胁迫对11个马铃薯品种的组培苗生长指标的影响. 华北农学报, 2014, 29(5): 99-106.
doi: 10.7668/hbnxb.2014.05.017
Deng Z, Xu J F, Duan S G, Liu J, Bian C S, Pang W F, Jin L P. The effect of PEG-8000 simulated drought stress on the growth indicators of 11 potato varieties in tissue culture seedlings. Acta Agric Boreali-Sin, 2014, 29(5): 99-106 (in Chinese with English abstract).
[28] 杨宁, 王程亮, 李宜珅, 王新霞, 陈霞, 牛涛. 高山离子芥试管苗在 PEG-6000模拟干旱条件下的生理响应. 广西植物, 2015, 35: 77-83.
Yang N, Wang C L, Li Y S, Wang X X, Chen X, Niu T. Physiological response of alpine ion mustard plantlets under PEG-6000 simulated drought conditions. Guihaia, 2015, 35: 77-83 (in Chinese with English abstract).
[29] 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定. 作物学报, 2023, 49: 2654-2664.
Shen Q Q, Wang T J, Wang J G, Zhang S Z, Zhao X T, He L L, Li F S. Functional identification of SsWRKY1, a transcription factor that enhances drought resistance in sugarcane varieties. Acta Agron Sin, 2023, 49: 2654-2664 (in Chinese with English abstract).
[30] 贾斯淳, 王娜, 郝兴宇, 宗毓铮, 张东升, 李萍. 不同干旱胁迫处理对大豆品种生长及逆境生理的影响. 华北农学报, 2019, 34(5): 137-144.
doi: 10.7668/hbnxb.201751770
Jia S C, Wang N, Hao X Y, Zong Y Z, Zhang D S, Li P. The effects of different drought stress treatments on the growth and stress physiology of soybean varieties. Acta Agric Boreali-Sin, 2019, 34(5): 137-144 (in Chinese with English abstract).
[31] 林庆同, 王伟, 杨美花, 黄浩, 石艳. 金属离子对马铃薯多酚氧化酶活力的影响. 厦门大学学报(自然科学版), 2010, 49: 561-563.
Lin Q T, Wang W, Yang M H, Huang H, Shi Y. The effect of metal ions on the activity of potato polyphenol oxidase. J Xiamen Univ (Nat Sci Edn), 2010, 49: 561-563 (in Chinese with English abstract).
[32] 徐萍, 李进, 吕海英, 李永洁, 李佳, 马春兰. 干旱胁迫对银沙槐幼苗叶绿体和线粒体超微结构及膜脂过氧化的影响. 干旱区研究, 2016, 33(1): 120-130.
Xu P, Li J, Lyu H Y, Li Y J, Li J, Ma C L. Effects of drought stress on the ultrastructure of chloroplasts and mitochondria, as well as membrane lipid peroxidation in silver sand locust seedlings. Arid Zone Res, 2016, 33(1): 120-130 (in Chinese with English abstract).
[33] 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定. 作物学报, 2023, 49: 2171-2182.
doi: 10.3724/SP.J.1006.2023.24193
Wen L C, Xiong T, Deng Z C, Liu T, Guo C, Li W, Guo Y F. Expression analysis and functional identification of tobacco transcription factor NtNAC080 under abiotic stress. Acta Agron Sin, 2023, 49: 2171-2182 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24193
[34] Feng J, Wang L, Wu Y, Luo Q C, Zhang Y, Qiu D, Han J P, Su P P, Xiong Z Y, Chang J L. TaSnRK2.9, a sucrose non-fermenting 1-related protein kinase gene, positively regulates plant response to drought and salt stress in transgenic tobacco. Front Plant Sci, 2019, 9: 2003.
[35] Aziz E, Batool R, Akhtar W, Akhtar W, Rehman S, Gregersen P L, Mahmood T. Expression analysis of the polyphenol oxidase gene in response to signaling molecules, herbivory and wounding in antisense transgenic tobacco plants. 3 Biotech, 2019, 9: 55.
doi: 10.1007/s13205-019-1587-x pmid: 30729079
[36] Lee S U, Mun B G, Bae E K, Kim J Y, Kim H H, Shahid M, Choi Y I, Hussain A, Yun B W. Drought stress-mediated transcriptome profile reveals NCED as a key player modulating drought tolerance in Populus davidiana. Front Plant Sci, 2021, 12: 755539.
[37] Liu Y, Wang L, Xing X, Sun L, Pan J, Kong X, Zhang M, Li D. ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses. Plant Cell Physiol, 2013, 54: 944-959.
[38] Mertens J, Aliyu H, Cowan D A. LEA proteins and the evolution of the WHy domain. Appl Environ Microbiol, 2018, 84: e00539.
[39] Jang E K, Min K H, Kim S H, Nam S H, Zhang S, Kim Y C, Cho B H, Yang K Y. Mitogen-activated protein kinase cascade in the signaling for polyamine biosynthesis in tobacco. Plant Cell Physiol, 2009, 50: 658-664.
[40] Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci, 2005, 24: 23-58.
[41] Huang X S, Luo T, Fu X Z, Fan Q J, Liu J H. Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. J Exp Bot, 2011, 62: 5191-5206.
[1] 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768.
[2] 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583.
[3] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[4] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041.
[5] 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664.
[6] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[7] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[8] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[9] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[10] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[11] 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818.
[12] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[13] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
[14] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[15] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!