作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2219-2236.doi: 10.3724/SP.J.1006.2024.34214
杨煜琛2(), 靳雅荣2, 骆金婵2, 祝鑫2, 李葳航2, 贾纪原2, 王小珊2, 黄德均1,*(
), 黄琳凯2,*(
)
YANG Yu-Chen2(), JIN Ya-Rong2, LUO Jin-Chan2, ZHU Xin2, LI Wei-Hang2, JIA Ji-Yuan2, WANG Xiao-Shan2, HUANG De-Jun1,*(
), HUANG Lin-Kai2,*(
)
摘要:
珍珠粟是世界范围重要的谷物, 拥有极强的光合能力和高生产潜力, 较其他作物相比, 珍珠粟具有对贫瘠土壤的耐受性, 能够适应多种非生物胁迫和多样化的环境条件。PgWD40基因家族在植物抵御生物和非生物胁迫以及调控植物生长发育中扮演着重要角色。本研究利用生物信息学方法全面鉴定和分析了珍珠粟中的PgWD40基因家族及其表达模式。研究结果显示, 共鉴定出209个PgWD40基因家族成员, 通过对珍珠粟和水稻的系统进化分析将其归为5个亚家族, 在同一亚族内的成员中, 它们的保守序列和基因结构表现出一定的相似性。此外, 通过对启动子顺式作用元件的分析显示, 176个PgWD40基因与植物的生长和发育相关, 208个PgWD40基因成员含有不同激素胁迫响应的顺式作用元件, 进一步通过转录组数据分析和qRT-PCR分析显示, PMA3G03393.1、PMA4G00558.1、PMA5G02217.1等基因受到盐、热和干旱胁迫的诱导, 表明这些基因可能通过依赖不同激素的信号通路来调控和响应非生物胁迫, 可作为进一步研究PgWD40基因家族耐受性功能的候选基因。并且PgWD40基因家族成员在珍珠粟抽穗期的不同时期存在表达差异。通过基因表达热图以及GO和KEGG等分析, 发现许多PgWD40基因家族成员参与了植物生长发育和籽粒形成的各个阶段。研究结果为全面解析PgWD40基因结构与生物学功能、耐逆性分子机制以及分子育种提供了理论基础, 为今后培育高效抗逆作物新品种提供基因资源。
[1] |
Wu B, Sun M, Zhang H, Yang D, Lin C, Khan I, Wang X, Zhang X, Nie G, Feng G, Yan Y, Li Z, Peng Y, Huang L. Transcriptome analysis revealed the regulation of gibberellin and the establishment of photosynthetic system promote rapid seed germination and early growth of seedling in pearl millet. Biotechnol Biofuels, 2021, 14: 94.
doi: 10.1186/s13068-021-01946-6 pmid: 33840392 |
[2] | Serba D D, Perumal R, Tesso T T, Min D. Status of global pearl millet breeding programs and the way forward. Crop Sci, 2017, 57: 2891-2905. |
[3] |
Yan H, Sun M, Zhang Z, Jin Y, Zhang A, Lin C, Wu B, He M, Xu B, Wang J, Qin P, Mendieta J P, Nie G, Wang J, Jones C S, Feng G, Srivastava R K, Zhang X, Bombarely A, Luo D, Jin L, Peng Y, Wang X, Ji Y, Tian S, Huang L. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nat Genet, 2023, 55: 507-518.
doi: 10.1038/s41588-023-01302-4 pmid: 36864101 |
[4] | Mohammed R, Gangashetty P I, Karimoune L, Ba N M. Genetic variation and diversity of pearl millet [Pennisetum glaucum (L.)] genotypes assessed for millet head miner, Heliocheilus albipunctella resistance, in West Africa. Euphytica, 2020, 216: 158. |
[5] | Khatri A B, Patel P T, Patel R, Patel M S, Shah S K, Patel J S, Vaghela P O. Genetic analysis of grain biochemical parameters and yield in pearl millet [Pennisetum glaucum (L.) R. Br.]. J Cereal Sci, 2023, 113: 103746. |
[6] |
Varshney R K, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava R K, Chitikineni A, Fan G, Bajaj P, Punnuri S, Gupta S K, Wang H, Jiang Y, Couderc M, Katta M A V S K, Paudel D R, Mungra K D, Chen W, Harris-Shultz K R, Garg V, Desai N, Doddamani D, Kane N A, Conner J A, Ghatak A, Chaturvedi P, Subramaniam S, Yadav O P, Berthouly-Salazar C, Hamidou F, Wang J, Liang X, Clotault J, Upadhyaya H D, Cubry P, Rhoné B, Gueye M C, Sunkar R, Dupuy C, Sparvoli F, Cheng S, Mahala R S, Singh B, Yadav R S, Lyons E, Datta S K, Hash C T, Devos K M, Buckler E, Bennetzen J L, Paterson A H, Ozias-Akins P, Grando S, Wang J, Mohapatra T, Weckwerth W, Reif J C, Liu X, Vigouroux Y, Xu X. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol, 2017, 35: 969-976.
doi: 10.1038/nbt.3943 pmid: 28922347 |
[7] |
Feng R, Zhang C, Ma R, Cai Z, Lin Y, Yu M. Identification and characterization of WD40 superfamily genes in peach. Gene, 2019, 710: 291-306.
doi: S0378-1119(19)30558-X pmid: 31185283 |
[8] | Wang C, Tang Y, Li Y, Hu C, Li J, Lyu A. Genome-wide identification and bioinformatics analysis of the WD40 transcription factor family and candidate gene screening for anthocyanin biosynthesis in Rhododendron simsii. BMC Genomics, 2023, 24: 488. |
[9] | Jain B P, Pandey S. WD 40 repeat proteins: signalling scaffold with diverse functions. Protein J, 2018, 37: 391-406. |
[10] | Hu R, Xiao J, Gu T, Yu X, Zhang Y, Chang J, Yang G, He G. Genome-wide identification and analysis of WD40 proteins in wheat (Triticum aestivum L.). BMC Genomics, 2018, 19: 803. |
[11] |
Ouyang Y, Huang X, Lu Z, Yao J. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice. BMC Genomics, 2012, 13: 100.
doi: 10.1186/1471-2164-13-100 pmid: 22429805 |
[12] | Liu H, Xiu Z, Yang H, Ma Z, Yang D, Wang H, Tan B-C. Maize Shrek1 encodes a WD40 protein that regulates pre-rRNA processing in ribosome biogenesis. Plant Cell, 2022, 34: 4028-4044. |
[13] | Xin Y, Wu Y, Han X, Xu L A. Overexpression of the Ginkgo biloba WD40 gene GbLWD1-like improves salt tolerance in transgenic Populus. Plant Sci, 2021, 313: 111092. |
[14] |
Eryong C, Bo S. OsABT, a rice WD40 domain-containing protein, is involved in abiotic stress tolerance. Rice Sci, 2022, 29: 247-256.
doi: 10.1016/j.rsci.2021.07.012 |
[15] | Yang X, Wang J, Xia X, Zhang Z, He J, Nong B, Luo T, Feng R, Wu Y, Pan Y, Xiong F, Zeng Y, Chen C, Guo H, Xu Z, Li D, Deng G. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. Plant J, 2021, 107: 198-214. |
[16] | Liu Y, Hou H, Jiang X, Wang P, Dai X, Chen W, Gao L, Xia T. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB-bHLH-WD40 ternary complexes. Int J Mol Sci, 2018, 19: 1686. |
[17] | Sun Y B, Zhang X J, Zhong M C, Dong X, Yu D M, Jiang X D, Wang D, Cui W H, Chen J H, Hu J Y. Genome-wide identification of WD40 genes reveals a functional diversification of COP1-like genes in Rosaceae. Plant Mol Biol, 2020, 104: 81-95. |
[18] | Zhang X, Feng Q, Miao J, Zhu J, Zhou C, Fan D, Lu Y, Tian Q, Wang Y, Zhan Q, Wang Z Q, Wang A, Zhang L, Shang-Guan Y, Li W, Chen J, Weng Q, Huang T, Tang S, Si L, Huang X, Wang Z X, Han B. The WD40 domain-containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). Plant Cell, 2023, 35: 4002-4019. |
[19] | Cai J, Huang H, Xu X, Zhu G. An Arabidopsis WD40 repeat-containing protein XIW1 promotes salt inhibition of seed germination. Plant Signal Behav, 2020, 15: 1712542. |
[20] | Kim Y J, Kim M H, Hong W J, Moon S, Kim E J, Silva J, Lee J, Lee S, Kim S T, Park S K, Jung K H. GORI, encoding the WD40 domain protein, is required for pollen tube germination and elongation in rice. Plant J, 2021, 105: 1645-1664. |
[21] |
Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell, 2011, 2: 202-214.
doi: 10.1007/s13238-011-1018-1 pmid: 21468892 |
[22] | Zhang S, Song Z, An L, Liu X, Hu X W, Naz A, Zhou R, Guo X, He L, Zhu H. WD40 repeat and FYVE domain containing 3 is essential for cardiac development. Cardiovasc Res, 2018, 115: 1320-1331. |
[23] | Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L, Tosatto S C, Paladin L, Raj S, Richardson L J. Pfam: the protein families database in 2021. Nucleic Acids Res, 2021, 49: D412-D419. |
[24] | Sun M, Yan H, Zhang A, Jin Y, Lin C, Luo L, Wu B, Fan Y, Tian S, Cao X, Wang Z, Luo J, Yang Y, Jia J, Zhou P, Tang Q, Jones C S, Varshney R K, Srivastava R K, He M, Xie Z, Wang X, Feng G, Nie G, Huang D, Zhang X, Zhu F, Huang L. Milletdb: a multi-omics database to accelerate the research of functional genomics and molecular breeding of millets. Planteic Biotechnol J, 2023, 21: 2348-2357. |
[25] |
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel R D, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, 2003, 31: 3784-3788.
doi: 10.1093/nar/gkg563 pmid: 12824418 |
[26] | Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335. |
[27] |
Combet C, Blanchet C, Geourjon C, Deleage G. NPS@: network protein sequence analysis. Trends Biochem Sci, 2000, 25: 147-150.
doi: 10.1016/s0968-0004(99)01540-6 pmid: 10694887 |
[28] | Kelley L A, Mezulis S, Yates C M, Wass M N, Sternberg M J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protocols, 2015, 10: 845-858. |
[29] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
[30] |
Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree Visualization by One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592.
doi: 10.1093/nar/gkad359 pmid: 37144476 |
[31] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[32] | Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucl Acids Res, 2009, 37: W202-W208. |
[33] | Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327. |
[34] | Li G, Xu B, Zhang Y, Xu Y, Khan N U, Xie J, Sun X, Guo H, Wu Z, Wang X, Zhang H, Li J, Xu J, Wang W, Zhang Z, Li Z. RGN1 controls grain number and shapes panicle architecture in rice. Plant Biotechnol J, 2022, 20: 158-167. |
[35] | Shi D Q, Liu J, Xiang Y H, Ye D, Yang W C. SLOW WALKER1, Essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. Plant Cell, 2005, 17: 2340-2354. |
[36] | Ohbayashi I, Lin C Y, Shinohara N, Matsumura Y, Machida Y, Horiguchi G, Tsukaya H, Sugiyama M. Evidence for a role of ANAC082 as a ribosomal stress response mediator leading to growth defects and developmental alterations in Arabidopsis. Plant Cell, 2017, 29: 2644-2660. |
[37] |
Walker A R, Davison P A, Bolognesi-Winfield A C, James C M, Srinivasan N, Blundell T L, Esch J J, Marks M D, Gray J C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell, 1999, 11: 1337-1349.
doi: 10.1105/tpc.11.7.1337 pmid: 10402433 |
[38] | Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics, 2013, 13: 75-98. |
[39] | Higa L A, Wu M, Ye T, Kobayashi R, Sun H, Zhang H. CUL4- DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol, 2006, 8: 1277-1283. |
[40] |
Guerriero G, Hausman J F, Ezcurra I. WD40-repeat proteins in plant cell wall formation: current evidence and research prospects. Front Plant Sci, 2015, 6: 1112.
doi: 10.3389/fpls.2015.01112 pmid: 26734023 |
[41] | Chen W, Chen L, Zhang X, Yang N, Guo J, Wang M, Ji S, Zhao X, Yin P, Cai L. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375: eabg7985. |
[42] | Schreel J D, von der Crone J S, Kangur O, Steppe K. Influence of drought on foliar water uptake capacity of temperate tree species. Forests, 2019, 10: 562. |
[43] | Bu Y, Sun B, Zhou A, Zhang X, Takano T, Liu S. Overexpression of AtOxR gene improves abiotic stresses tolerance and vitamin C content in Arabidopsis thaliana. BMC Biotechnol, 2016, 16: 69. |
[44] | Radha B, Sunitha N C, Sah R P, Md Azharudheen T P, Krishna G, Umesh D K, Thomas S, Anilkumar C, Upadhyay S, Kumar A, Manikanta Ch L N, Behera S, Marndi B C, Siddique K H M. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. Front Plant Sci, 2023, 13: 996514. |
[45] | Jin Y, Luo J, Yang Y, Jia J, Sun M, Wang X, Khan I, Huang D, Huang L. The evolution and expansion of RWP-RK gene family improve the heat adaptability of elephant grass (Pennisetum purpureum Schum.). BMC Genomics, 2023, 24: 510. |
[1] | 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334. |
[2] | 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407. |
[3] | 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346. |
[4] | 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424. |
[5] | 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395. |
[6] | 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382. |
[7] | 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105. |
[8] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
[9] | 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013. |
[10] | 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786. |
[11] | 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817. |
[12] | 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854. |
[13] | 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607. |
[14] | 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502. |
[15] | 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627. |
|