欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2207-2218.doi: 10.3724/SP.J.1006.2024.34216

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子育成品种萌芽期耐冷性综合评价

闫锋1(), 董扬1,*(), 李清泉1, 赵富阳1, 侯晓敏1, 刘洋1, 李青超1, 赵蕾1, 范国权2, 刘凯3   

  1. 1黑龙江省农业科学院齐齐哈尔分院, 黑龙江齐齐哈尔 161006
    2黑龙江省农业科学院经济作物研究所, 黑龙江哈尔滨 150086
    3黑龙江省农业科学院, 黑龙江哈尔滨 150086
  • 收稿日期:2023-12-30 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-05-31
  • 通讯作者: *董扬, E-mail: dongyang0717@126.com
  • 作者简介:E-mail: yanfeng6338817@126.com
  • 基金资助:
    财政部和农业农村部国家农业现代产业技术体系建设专项(CARS-06-14.5-B21)

Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage

YAN Feng1(), DONG Yang1,*(), LI Qing-Quan1, ZHAO Fu-Yang1, HOU Xiao-Min1, LIU Yang1, LI Qing-Chao1, ZHAO Lei1, FAN Guo-Quan2, LIU Kai3   

  1. 1Qiqihar Branch, Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, Heilongjiang, China
    2Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    3Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2023-12-30 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-05-31
  • Contact: *E-mail: dongyang0717@126.com
  • Supported by:
    China Agricultural Research System of MOF and MARA(CARS-06-14.5-B21)

摘要:

黑龙江地处高纬度地区, 谷子播种后萌发期冷害频繁发生, 造成出苗缓慢、出苗不齐、缺苗, 是限制本地区谷子产量和品质的关键性因素, 鉴定谷子耐冷性并筛选耐冷评价指标, 可为耐冷谷子品种选育提供理论依据并对谷子安全生产具有重要意义。以52个谷子育成品种为研究对象, 设置12个萌发期冷胁迫处理, 以发芽率为指标探讨了谷子萌发期耐冷性的适宜鉴定方法。低温胁迫后测量了发芽势、发芽率、发芽指数、芽长、根长、芽鲜重、根鲜重7个指标的耐冷系数, 运用隶属函数分析、主成分分析、相关分析和聚类分析法对参试品种的耐冷性进行了综合评价和归类, 并采用逐步回归分析建立了耐冷性预测回归方程。结果表明, 8℃低温处理7 d, 谷子品种发芽率的变异幅度最大, 能较好地鉴别品种间耐冷性差异, 是谷子萌发期耐冷性鉴定的最适宜条件; 低温胁迫后7个鉴定指标均低28℃对照处理, 但各指标间降低程度不同; 利用主成分分析将7个单项指标转化为3个独立的综合指标, 主成分分析表明, 芽长、芽鲜重和根鲜重最能代表谷子萌发期对低温胁迫后的响应情况, 可作为萌发期耐冷性鉴定的评价指标。通过聚类分析, 将52个谷子品种划分为3类, 筛选出嫩选14、朝谷14、蒙黑谷8号等17个高度耐冷品种, 以及鲁谷7号、晋谷20等15个冷敏感品种, 这些品种可为耐冷育种和谷子生产提供种质基础。

关键词: 谷子, 萌芽期, 冷胁迫, 综合评价, 主成分分析

Abstract:

Heilongjiang province, located in high latitudes, frequently experiences cold damage during the germination period of millet after sowing. This leads to slow and uneven emergence, as well as insufficient seedling growth, which is a key limiting factor for millet yield and quality in this region. Identifying the cold tolerance of millet and screening appropriate evaluation indices for cold tolerance can provide a theoretical foundation for breeding cold-tolerant millet varieties. It holds great significance for ensuring the safe production of millet. In this study, 52 foxtail millet cultivars were selected as research subjects. Twelve cold stress treatments were applied during the germination stage, and the suitability of using germination rate as the index for evaluating cold tolerance at this stage was explored. Following low-temperature stress, the cold tolerance coefficients of seven indices, including germination potential, germination rate, germination index, bud length, root length, bud fresh weight, and root fresh weight, were measured. Comprehensive evaluation of the tested varieties' cold tolerance was conducted using membership function analysis, principal component analysis, correlation analysis, and cluster analysis. Stepwise regression analysis was employed to establish a regression equation for predicting cold tolerance. The results revealed that the germination rate of millet varieties exhibited the largest variation range after seven days of low-temperature treatment at 8℃. This treatment effectively distinguished the differences in cold tolerance among varieties and proved to be the most suitable condition for evaluating cold tolerance during the germination stage. Following low-temperature stress, all seven evaluated indices showed lower values compared to the control treatment at 28℃, although the degree of reduction varied among the indices. Through principal component analysis, the seven individual indices were transformed into three independent comprehensive indices. It was found that bud length, bud fresh weight, and root fresh weight best represented the response of millet during the germination period to low-temperature stress. These indices can be used for evaluating cold tolerance during the germination stage. Cluster analysis categorized the 52 millet varieties into three groups, identifying 17 highly cold-tolerant varieties such as Nenxuan 14, Chaogu 14, and Mengheigu 8, as well as 15 cold-sensitive varieties such as Lugu 7 and Jingu 20. These varieties serve as valuable germplasm resources for breeding cold-tolerant millet and enhancing millet production.

Key words: foxtail millet, germination stage, cold stress, comprehensive evaluation, principal components analysis

表1

52份谷子品种名称及来源"

编号
No.
品种
Variety
来源
Sources
编号
No.
品种
Variety
来源
Sources
1 嫩选11 Nenxuan 11 黑龙江 Heilongjiang 27 金谷1号 Jingu 1 河北 Hebei
2 嫩选14 Nenxuan 14 黑龙江 Heilongjiang 28 冀谷27 Jigu 27 河北 Hebei
3 嫩选15 Nenxuan 15 黑龙江 Heilongjiang 29 冀谷30 Jigu 30 河北 Hebei
4 龙谷26 Longgu 26 黑龙江 Heilongjiang 30 保谷18 Baogu 18 河北 Hebei
5 龙谷31 Longgu 31 黑龙江 Heilongjiang 31 衡早1号 Hengzao 1 河北 Hebei
6 龙谷37 Longgu 37 黑龙江 Heilongjiang 32 衡早9号Hengzao 9 河北 Hebei
7 胜谷2号 Shenggu 2 黑龙江 Heilongjiang 33 坝谷214 Bagu 214 河北 Hebei
8 公矮5号 Gong’ai 5 吉林 Jilin 34 郑谷2号 Zhenggu 2 河南 Henan
9 公谷88 Gonggu 88 吉林 Jilin 35 郑谷4号 Zhenggu 4 河南 Henan
10 白谷6号 Baigu 6 吉林 Jilin 36 豫谷12 Yugu 12 河南 Henan
11 九谷15 Jiugu1 5 吉林 Jilin 37 豫谷18 Yugu 18 河南 Henan
12 九谷19 Jiugu 19 吉林 Jilin 38 豫谷31 Yugu 31 河南 Henan
13 九谷23 Jiugu 23 吉林 Jilin 39 豫谷32 Yugu 32 河南 Henan
14 朝谷14 Chaogu 14 辽宁 Liaoning 40 豫谷35 Yugu 35 河南 Henan
15 朝谷58 Chaogu 58 辽宁 Liaoning 41 鲁谷6号 Lugu 6 山东Shandong
16 朝438 Chao 438 辽宁 Liaoning 42 鲁谷7号 Lugu 7 山东Shandong
17 燕谷16 Yangu 16 辽宁 Liaoning 43 鲁谷10号Lugu 10 山东Shandong
18 燕谷18 Yangu 18 辽宁 Liaoning 44 陇谷4号 Longgu 4 甘肃 Gansu
19 朝新谷8号 Chaoxingu 8 辽宁 Liaoning 45 陇谷7号Longgu 7 甘肃 Gansu
20 赤谷1号Chigu 1 内蒙古 Inner Mongolia 46 陇谷13 Longgu 13 甘肃 Gansu
21 赤谷4号 Chigu 4 内蒙古 Inner Mongolia 47 大同25 Datong 25 山西 Shanxi
22 赤谷17 Chigu 17 内蒙古 Inner Mongolia 48 大同29 Datong 29 山西 Shanxi
23 峰红4号 Fenghong 4 内蒙古 Inner Mongolia 49 晋谷13 Jingu 13 山西 Shanxi
24 蒙黑谷8号 Mengheigu 8 内蒙古 Inner Mongolia 50 晋谷20 Jingu 20 山西 Shanxi
25 金苗K1 Jinmiao K1 内蒙古 Inner Mongolia 51 中谷2号 Zhonggu 2 北京 Beijing
26 金苗K2 Jinmiao K2 内蒙古 Inner Mongolia 52 中谷9号 Zhonggu 9 北京 Beijing

图1

低温处理后品种间发芽率、变异幅度的比较"

图2

低温胁迫下各指标耐冷系数描述性统计 GE: 发芽势; GP: 发芽率; GI: 发芽指数; SL: 芽长; RL: 根长; SFW: 芽鲜重; RFW: 根鲜重。"

附表1

参试谷子冷胁迫后各指标耐冷系数(8℃, 7 d)"

品种
Variety
发芽势
GE
发芽率
GP
发芽指数
GI
芽长
SL
根长
RL
芽鲜重
SFW
根鲜重
RFW
嫩选11 Nenxuan 11 0.840 0.747 0.330 0.614 0.772 0.681 0.533
嫩选14 Nenxuan 14 0.906 0.931 0.370 0.790 0.949 0.686 0.880
嫩选15 Nenxuan 15 0.850 0.910 0.336 0.710 0.885 0.594 0.793
龙谷26 Longgu 26 0.888 0.558 0.234 0.678 0.720 0.230 0.301
龙谷31 Longgu 31 0.811 0.903 0.292 0.802 0.962 0.623 0.851
龙谷37 Longgu 37 0.913 0.958 0.237 0.624 0.730 0.399 0.487
胜谷2号 Shenggu 2 0.958 0.890 0.299 0.725 0.802 0.615 0.833
公矮5号 Gong’ai 5 0.917 0.735 0.354 0.765 0.878 0.444 0.552
公谷88 Gonggu 88 0.960 0.807 0.339 0.664 0.520 0.479 0.597
白谷6号 Baigu 6 0.909 0.830 0.266 0.702 0.888 0.523 0.667
九谷15 Jiugu 15 0.920 0.826 0.313 0.687 0.782 0.620 0.710
九谷19 Jiugu 19 0.818 0.775 0.369 0.673 0.969 0.395 0.476
九谷23 Jiugu 23 0.803 0.840 0.247 0.851 0.952 0.455 0.562
朝谷14 Chaogu 14 0.870 0.986 0.246 0.661 0.863 0.562 0.722
朝谷58 Chaogu 58 0.920 0.909 0.291 0.487 0.893 0.364 0.415
朝438 Chao 438 0.912 0.892 0.227 0.819 0.658 0.627 0.855
燕谷16 Yangu 16 0.833 0.844 0.263 0.810 0.703 0.613 0.822
燕谷18 Yangu 18 0.947 0.750 0.262 0.533 0.896 0.377 0.444
朝新谷8号 Chaoxingu 8 0.917 0.873 0.257 0.729 0.530 0.620 0.589
赤谷1号Chigu 1 0.913 0.682 0.275 0.747 0.817 0.617 0.834
赤谷4号 Chigu 4 0.803 0.779 0.308 0.567 0.900 0.451 0.557
赤谷17 Vhigu 17 0.977 0.862 0.255 0.486 0.942 0.561 0.711
峰红4号 Fenghong 4 0.929 0.961 0.335 0.636 0.848 0.479 0.593
蒙黑谷8号 Mengheigu 8 0.880 0.896 0.218 0.727 0.892 0.676 0.933
金苗K1 Jinmiao K1 0.956 0.758 0.275 0.484 0.842 0.171 0.281
金苗K2 Jinmiao K2 0.875 0.672 0.297 0.655 0.580 0.429 0.535
金谷1号 Jingu 1 0.876 0.571 0.255 0.726 0.830 0.568 0.730
冀谷27 Jigu 27 0.950 0.905 0.310 0.564 0.662 0.396 0.476
冀谷30 Jigu 30 0.760 0.790 0.259 0.753 0.676 0.563 0.722
保谷18 Baogu 18 0.795 0.849 0.197 0.525 0.682 0.657 0.891
衡早1号 Hengzao 1 0.750 0.840 0.213 0.481 0.620 0.550 0.702
衡早9号Hengzao 9 0.792 0.732 0.288 0.614 0.858 0.390 0.471
坝谷214 Bagu 214 0.762 0.798 0.249 0.780 0.818 0.587 0.762
郑谷2号 Zhenggu 2 0.840 0.640 0.254 0.680 0.747 0.264 0.358
郑谷4号 Zhenggu 4 0.802 0.816 0.248 0.382 0.760 0.322 0.385
豫谷12 Yugu 12 0.696 0.838 0.248 0.569 0.550 0.600 0.807
豫谷18 Yugu 18 0.875 0.856 0.287 0.667 0.772 0.183 0.282
豫谷31 Yugu 31 0.625 0.708 0.167 0.442 0.690 0.408 0.515
豫谷32 Yugu 32 0.783 0.645 0.272 0.584 0.612 0.622 0.849
豫谷35 Yugu 35 0.404 0.771 0.248 0.569 0.845 0.405 0.500
鲁谷6号 Lugu 6 0.720 0.802 0.228 0.733 0.960 0.550 0.705
鲁谷7号 Lugu 7 0.961 0.460 0.287 0.427 0.610 0.367 0.429
鲁谷10号Lugu 10 0.763 0.797 0.232 0.721 0.887 0.385 0.451
陇谷4号 Longgu 4 0.609 0.738 0.231 0.600 0.730 0.484 0.602
陇谷7号Longgu 7 0.842 0.503 0.284 0.677 0.900 0.589 0.763
陇谷13 Longgu 13 0.960 0.921 0.360 0.720 0.848 0.530 0.620
大同25 Datong 25 0.792 0.630 0.355 0.519 0.740 0.464 0.565
大同29 Datong 29 0.894 0.853 0.322 0.520 0.780 0.479 0.591
晋谷13 Jingu 13 0.560 0.787 0.271 0.517 0.606 0.850 0.410
晋谷20 Jingu 20 0.383 0.637 0.340 0.600 0.806 0.582 0.746
中谷2号 Zhonggu 2 0.845 0.635 0.259 0.613 0.728 0.384 0.448
中谷9号 Zhonggu 9 0.792 0.801 0.248 0.619 0.860 0.396 0.479
平均值 Average 0.828 0.786 0.277 0.639 0.784 0.497 0.611
变异系数CV 0.153 0.150 0.166 0.174 0.155 0.276 0.284

图3

低温胁迫下各指标耐冷系数的相关分析 * 和 ** 分别表示在0.05和0.01概率水平相关性显著。缩写同图2。"

表2

各主成分的载荷矩阵、特征值及贡献率"

指标
Index
主成分Principle factor
I II III
发芽势 GP 0.173 0.373 0.140
发芽率 GR 0.134 0.284 0.321
发芽指数 GI 0.173 0.370 0.076
芽长 SL 0.353 0.067 0.293
根长 RL 0.028 0.139 0.846
芽鲜重 SFW 0.365 0.264 0.138
根鲜重 RFW 0.390 0.251 0.009
特征值 Eigen value 2.482 1.538 1.164
贡献率 Contribution ratio (%) 35.612 21.765 15.390
累计贡献率 Cumulative contribution ratio (%) 35.612 57.377 72.767

表3

参试谷子品种冷胁迫下的综合指标值、隶属函数值、D值及预测值"

品种
Variety
X1 X2 X3 U(X1) U(X2) U(X3) D
D-value
排名
Rank
预测值
P-value
嫩选11 Nenxuan 11 0.750 0.731 0.794 0.651 0.428 0.525 0.472 33 0.495
嫩选14 Nenxuan 14 0.850 0.886 1.050 0.815 0.744 0.979 0.804 1 0.837
嫩选15 Nenxuan 15 0.786 0.868 0.986 0.709 0.706 0.865 0.699 10 0.717
龙谷26 Longgu 26 0.494 0.774 0.916 0.230 0.516 0.740 0.332 44 0.304
龙谷31 Longgu 31 0.814 0.897 1.012 0.755 0.765 0.911 0.758 5 0.767
龙谷37 Longgu 37 0.782 0.877 0.965 0.703 0.726 0.828 0.692 11 0.676
胜谷2号 Shenggu 2 0.862 0.831 0.977 0.834 0.632 0.848 0.738 7 0.741
公矮5号 Gong’ai 5 0.641 0.855 1.023 0.471 0.681 0.931 0.578 21 0.598
公谷88 Gonggu 88 0.797 0.628 0.938 0.728 0.218 0.780 0.518 29 0.539
白谷6号 Baigu 6 0.747 0.905 0.954 0.645 0.782 0.808 0.673 12 0.660
九谷15 Jiugu 15 0.809 0.789 0.930 0.747 0.546 0.765 0.636 16 0.639
九谷19 Jiugu 19 0.547 0.929 0.964 0.317 0.831 0.826 0.513 30 0.554
九谷23 Jiugu 23 0.718 0.919 1.062 0.597 0.811 1.000 0.713 9 0.706
朝谷14 Chaogu 14 0.843 0.921 0.957 0.803 0.814 0.813 0.773 2 0.758
朝谷58 Chaogu 58 0.626 1.008 0.905 0.445 0.992 0.721 0.608 17 0.598
朝438 Chao 438 0.962 0.712 0.986 1.000 0.389 0.865 0.752 6 0.735
燕谷16 Yangu 16 0.875 0.697 0.973 0.855 0.358 0.841 0.654 14 0.658
燕谷18 Yangu 18 0.582 0.967 0.865 0.373 0.909 0.651 0.519 28 0.495
朝新谷8号 Chaoxingu 8 0.938 0.621 0.932 0.96 0.203 0.769 0.639 15 0.636
赤谷1号Chigu 1 0.755 0.768 0.897 0.658 0.504 0.708 0.556 23 0.547
赤谷4号 Chigu 4 0.593 0.891 0.870 0.392 0.753 0.659 0.479 32 0.481
赤谷17 Chigu 17 0.729 1.012 0.812 0.616 1.000 0.556 0.657 13 0.623
峰红4号 Fenghong 4 0.762 0.926 0.998 0.670 0.825 0.886 0.724 8 0.736
蒙黑谷8号 Mengheigu 8 0.890 0.888 0.908 0.881 0.748 0.727 0.768 3 0.742
金苗K1 Jinmiao K1 0.425 0.915 0.874 0.116 0.802 0.666 0.345 41 0.436
金苗K2 Jinmiao K2 0.666 0.626 0.886 0.512 0.212 0.687 0.370 40 0.379
金谷1号 Jingu 1 0.659 0.756 0.847 0.500 0.479 0.618 0.433 35 0.413
冀谷27 Jigu 27 0.737 0.813 0.932 0.629 0.594 0.769 0.589 20 0.594
冀谷30 Jigu 30 0.796 0.661 0.917 0.726 0.285 0.742 0.529 25 0.529
保谷18 Baogu 18 0.821 0.710 0.749 0.767 0.384 0.444 0.498 31 0.489
衡早1号 Hengzao 1 0.763 0.688 0.734 0.671 0.339 0.419 0.422 36 0.404
衡早9号Hengzao 9 0.565 0.854 0.893 0.345 0.678 0.699 0.440 34 0.439
坝谷214 Bagu 214 0.785 0.768 0.936 0.708 0.503 0.776 0.603 18 0.593
郑谷2号 Zhenggu 2 0.526 0.784 0.934 0.281 0.536 0.773 0.377 38 0.368
郑谷4号 Zhenggu 4 0.548 0.872 0.772 0.318 0.714 0.486 0.374 39 0.358
豫谷12 Yugu 12 0.822 0.583 0.766 0.768 0.126 0.475 0.419 37 0.412
豫谷18 Yugu 18 0.607 0.882 1.037 0.415 0.735 0.955 0.573 22 0.568
豫谷31 Yugu 31 0.586 0.727 0.657 0.380 0.419 0.282 0.248 50 0.201
豫谷32 Yugu 32 0.724 0.581 0.728 0.608 0.121 0.408 0.309 46 0.307
豫谷35 Yugu 35 0.514 0.744 0.780 0.262 0.453 0.500 0.258 49 0.260
鲁谷6号 Lugu 6 0.703 0.885 0.914 0.572 0.742 0.738 0.598 19 0.583
鲁谷7号 Lugu 7 0.451 0.660 0.673 0.158 0.282 0.310 0.087 52 0.104
鲁谷10号Lugu 10 0.592 0.906 0.990 0.390 0.784 0.873 0.552 24 0.550
陇谷4号 Longgu 4 0.644 0.694 0.784 0.475 0.353 0.506 0.344 42 0.327
陇谷7号Longgu 7 0.578 0.771 0.793 0.368 0.510 0.523 0.343 43 0.330
陇谷13 Longgu 13 0.809 0.904 1.021 0.747 0.780 0.927 0.764 4 0.767
大同25 Datong 25 0.568 0.732 0.753 0.350 0.429 0.451 0.285 47 0.274
大同29 Datong 29 0.682 0.845 0.867 0.539 0.661 0.654 0.527 26 0.539
晋谷13 Jingu 13 0.667 0.597 0.741 0.514 0.155 0.430 0.275 48 0.321
晋谷20 Jingu 20 0.355 0.522 0.498 0 0 0 0.130 51 0.160
中谷2号 Zhonggu 2 0.563 0.736 0.838 0.342 0.438 0.603 0.327 45 0.342
中谷9号 Zhonggu 9 0.624 0.888 0.900 0.443 0.747 0.713 0.521 27 0.506

图4

52个谷子品种萌发期耐冷性的聚类分析"

[1] Diao X M, Jia G Q. Origin and domestication of foxtail millet. In: Doust A, Diao X, eds. Genetics and Genomics of Setaria. Berlin: Springer, 2017. pp 61-72.
[2] 杨延兵, 管延安, 秦岭, 石慧, 王海莲, 张华文. 不同地区谷子小米黄色素含量与外观品质研究. 中国粮油学报, 2012, 27(1): 14-19.
Yang Y B, Guan Y A, Qin L, Shi H, Wang H L, Zhang H W. The studies on yellow pigment content and appearance quality of millet from different regions. J Chin Cereals Oils Assoc, 2012, 27(1): 14-19 (in Chinese with English abstract).
[3] 任晓利, 崔纪菡, 刘猛, 赵宇, 艾月鹏, 刘斐, 南春梅, 夏雪岩, 李顺国. 夏播饲用谷子农艺性状与品质评价. 草业学报, 2019, 28(1): 15-26.
doi: 10.11686/cyxb2018125
Ren X L, Cui J H, Liu M, Zhao Y, Ai Y P, Liu F, Nan C M, Xia X Y, Li S G. Evaluation of agronomic traits and forage quality in summer-sown varieties of forage foxtail millet. Acta Pratac Sin, 2019, 28(1): 15-26 (in Chinese with English abstract).
[4] 刘思辰, 曹晓宁, 温琪汾, 王海岗, 田翔, 王君杰, 陈凌, 秦慧彬, 王纶, 乔治军. 山西谷子地方品种农艺性状和品质性状的综合评价. 中国农业科学, 2020, 53: 2137-2148.
doi: 10.3864/j.issn.0578-1752.2020.11.001
Liu S C, Cao X N, Wen Q F, Wang H G, Tian X, Wang J J, Chen L, Qin H B, Wang L, Qiao Z J. Comprehensive evaluation of agronomic traits and quality traits of foxtail millet landrace in Shanxi. Sci Agric Sin, 2020, 53: 2137-2148 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.11.001
[5] 赵娟, 尹艺臻, 王晓璐, 马春英, 尹美强, 温银元, 宋喜娥, 董淑琦, 杨雪芳, 原向阳. 不同品种谷子愈伤组织对拿捕净胁迫的生理响应. 中国农业科学, 2020, 53: 917-928.
doi: 10.3864/j.issn.0578-1752.2020.05.005
Zhao J, Yin Y Z, Wang X L, Ma C Y, Yin M Q, Wen Y Y, Song X E, Dong S Q, Yang X F, Yuan X Y. Physiological response of millet callus with different herbicide-resistance to sethoxydim stress. Sci Agric Sin, 2020, 53: 917-928 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.05.005
[6] 邵丽华, 王莉, 白文文, 刘雅娟. 山西谷子资源叶酸含量分析及评价. 中国农业科学, 2014, 47: 1265-1272.
doi: 10.3864/j.issn.0578-1752.2014.07.003
Shao L H, Wang L, Bai W W, Liu Y J. Evaluation and analysis of folic acid content in millet from different ecological regions in Shanxi province. Sci Agric Sin, 2014, 47: 1265-1272 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.07.003
[7] 王丹丹, 希日格乐, 孙宇燕, 金砾, 郭世华. 谷子农艺性状相关性与食味品质分析. 内蒙古农业大学学报(自然科学版), 2014, 36(4): 29-37.
Wang D D, Xirigele, Sun Y Y, Jin S, Guo S H. Analysis on correlation of agronomic traits and eating quality in foxtail millet. J Inner Mongolia Agric Univ (Nat Sci Edn), 2014, 36(4): 29-37 (in Chinese with English abstract).
[8] 秦娜, 付森杰, 朱灿灿, 代书桃, 宋迎辉, 魏昕, 王春义, 叶珍言, 李君霞. 谷子苗期耐低氮相关性状的QTL分析. 中国农业科学, 2023, 56: 3931-3945.
doi: 10.3864/j.issn.0578-1752.2023.20.002
Qin N, Fu S J, Zhu C C, Dai S T, Song Y H, Wei X, Wang C Y, Ye Z Y, Li J X. QTL Analysis for seeding traits related to low nitrogen tolerance in foxtail millet. Sci Agric Sin, 2023, 56: 3931-3945 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.20.002
[9] 郑莉萍, 张云峰, 蒋洪蔚, 王明亮, 邱红梅, 孙星遂, 朴锦, 王曙明. 大豆种质资源芽期耐低温综合评价及筛选. 大豆科学, 2020, 39: 833-847.
Zheng L P, Zhang Y F, Jiang H W, Wang M L, Qiu H M, Sun X S, Piao J, Wang S M. Comprehensively evaluation and screening on low temperature tolerance of soybean germplasm resources at bud stage. Soybean Sci, 2020, 39: 833-847 (in Chinese with English abstract).
[10] 常博文, 钟鹏, 刘杰, 唐中华, 高亚冰, 于洪久, 郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响. 作物学报, 2019, 45: 118-130.
doi: 10.3724/SP.J.1006.2019.84043
Chang B W, Zhong P, Liu J, Tang Z H, Gao Y B, Yu H J, Guo W. Effect of low-temperature stress and gibberellin on seed germination and seedling physiological responses in peanut. Acta Agron Sin, 2019, 45: 118-130 (in Chinese with English abstract).
[11] Upadhyaya H D, Reddy L J, Dwivedi S L, Gowda C L L, Singh S. Phenotypic diversity in cold-tolerant peanut (Arachis hypogaea L.) germplasm. Euphytica, 2009, 165: 278-291.
[12] 马骊, 孙万仓, 刘自刚, 赵艳宁, 杨刚, 刘海卿, 武军艳, 方彦, 李学才, 刘林波, 钱武, 侯献飞. 白菜型与甘蓝型冬油菜抗寒机理差异的研究. 华北农学报, 2016, 31(1): 147-154.
doi: 10.7668/hbnxb.2016.01.024
Ma L, Sun W C, Liu Z G, Zhao Y N, Yang G, Liu H Q, Wu J Y, Fang Y, Li X C, Liu L B, Qian W, Hou X F. Study of difference in mechanism of cold resistance of winter rapeseed of Brassica rape and Brassica napus. Acta Agric Boreali-Sin, 2016, 31(1): 147-154 (in Chinese with English abstract).
[13] Theocharis A, Clement C, Barka E A. Physiological and molecular changes in plants grown at low temperatures. Planta, 2012, 235: 1091-1105.
doi: 10.1007/s00425-012-1641-y pmid: 22526498
[14] 李北齐, 张玉胡, 王贵强, 芦宝琳, 孟斌. 不同生态型玉米品种低温下出苗机理研究. 中国农学通报, 2011, 27(9): 120-125.
Li B Q, Zhang Y H, Wang G Q, Lu B L, Meng B. Research on seed germination mechanism of different ecotype maize under low temperature. Chin Agric Sci Bull, 2011, 27(9): 120-125 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2010-3513
[15] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选. 作物学报, 2021, 47: 1753-1767.
doi: 10.3724/SP.J.1006.2021.04182
Zhang H, Jiang C J, Yin D M, Dong J L, Ren J Y, Zhao X H, Zhong C, Wang X G, Yu H Q. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut. Acta Agron Sin, 2021, 47: 1753-1767 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04182
[16] 赵星棋, 郭泰, 王志新, 郑伟, 李灿东, 徐杰飞, 王象然, 郭美玲, 张振宇, 赵建有. 黑龙江早熟区大豆芽期耐低温种质资源鉴定与筛选. 种子, 2023, 42(8): 58-63.
Zhao X Q, Guo T, Wang Z X, Zheng W, Li C D, Xu J F, Wang X R, Guo M L, Zhang Z Y, Zhao J Y. Identification and screening of soybean germplasms with low temperature tolerance at bud stage in early-maturing area of Heilongjiang province. Seed, 2023, 42(8): 58-63 (in Chinese with English abstract).
[17] 沈倩, 张思平, 刘瑞华, 刘绍东, 陈静, 葛常伟, 马慧娟, 赵新华, 杨国正, 宋美珍, 庞朝友. 棉花出苗期耐冷综合评价体系的构建及耐冷指标筛选. 中国农业科学, 2022, 55: 4342-4355.
doi: 10.3864/j.issn.0578-1752.2022.22.002
Shen Q, Zhang S P, Liu R H, Liu S D, Chen J, Ge C W, Ma H J, Zhao X H, Yang G Z, Song M Z, Pang C Y. Construction of a comprehensive evaluation system and screening of cold tolerance indicators for cold tolerance of cotton at seedling emergence stage. Sci Agric Sin, 2022, 55: 4342-4355 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.22.002
[18] 唐双勤, 吴自明, 谭雪明, 曾勇军, 石庆华, 潘晓华, 曾研华. 直播早籼稻品种芽期耐冷性鉴定研究. 作物杂志, 2019, (1): 159-167.
Tang S Q, Wu Z M, Tan X M, Zeng Y J, Shi Q H, Pan X H, Zeng Y H. Identification of cold tolerance of direct seeded early rice varieties at bud stage. Crops, 2019, (1): 159-167 (in Chinese with English abstract).
[19] 谢志坚. 农业科学中的模糊数学方法. 武汉: 华中理工大学出版社, 1983. pp 99-193.
Xie Z J. Method of Fuzzy Mathematics in Agricultural Science. Wuhan: Huazhong University of Science and Technology Press, 1983. pp 99-193 (in Chinese).
[20] 何学敏, 刘笑, 殷红, 游松财. 1986-2015年中国东北地区主要农业气象灾害变化特征. 沈阳农业大学学报, 2019, 50: 392-398.
He X M, Liu X, Yin H, You S C. Characteristics of major agricultural meteorological disasters in northeast China from 1986 to 2015. J Shenyang Agric Univ, 2019, 50: 392-398 (in Chinese with English abstract).
[21] Li M, Sui N, Lin L, Yang Z, Zhang Y. Transcriptomic profiling revealed genes involved in response to cold stress in maize. Funct Plant Biol, 2019, 46: 830-844.
doi: 10.1071/FP19065 pmid: 31217070
[22] Shen X, Liu B, Xue Z, Jiang M, Lu X, Zhang Q. Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of northeast China. Sci Total Environ, 2019, 666: 1169-1177.
[23] 杨静, 毛笈华, 于永涛, 李春艳, 王永飞, 胡建广. 低温对甜玉米种子氧化酶活性的影响及相关基因表达分析. 核农学报, 2016, 30: 1840-1847.
doi: 10.11869/j.issn.100-8551.2016.09.1840
Yang J, Mao J H, Yu Y T, Li C Y, Wang Y F, Hu J G. Effects of chilling on antioxidant enzyme activity and related gene expression levels during seed germination. Acta Agric Nucl Sci, 2016, 30: 1840-1847 (in Chinese with English abstract).
[24] 周亚峰, 许彦宾, 王艳玲, 李琼, 胡建斌. 基于主成分-聚类分析构建甜瓜幼苗耐冷性综合评价体系. 植物学报, 2017, 52: 520-529.
doi: 10.11983/CBB16138
Zhou Y F, Xu Y B, Wang Y L, Li Q, Hu J B. Establishment of a comprehensive evaluation system for chilling tolerance in melon seedlings based on principal component analysis and cluster analysis. Acta Bot Sin, 2017, 52: 520-529 (in Chinese with English abstract).
[25] 单彩云. 大豆耐低温资源筛选及蛋白质组学研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2008.
Shan C Y. Screening and Proteomic Research of Soybean Low Temperature Tolerance Germplasm. MS Thesis of Northeast Agriculture University, Harbin, Heilongjiang, China, 2008 (in Chinese with English abstract).
[26] 江玲, 侯名语, 刘世家, 陈亮明, 刘喜, 翟虎渠, 万建民. 水稻种子低温萌发生理机制的初步研究. 中国农业科学, 2005, 38: 480-485.
Jiang L, Hou M Y, Liu S J, Chen L M, Liu X, Zhai H Q, Wan J M. Physiological mechanism of seed germination (Oryza sativa L.) under low temperature. Sci Agric Sin, 2005, 38: 480-485 (in Chinese with English abstract).
[27] 薛云云, 白冬梅, 田跃霞, 权宝全. 24份山西花生资源芽期和苗期耐寒性鉴定. 核农学报, 2018, 32: 582-590.
doi: 10.11869/j.issn.100-8551.2018.03.0582
Xue Y Y, Bai D M, Tian Y X, Quan B Q. Cold tolerance identification for 24 peanut resources from Shanxi province at the stage of germination and seedling. Acta Agric Nucl Sci, 2018, 32: 582-590 (in Chinese with English abstract).
[28] 刘宏宇, 姚雪, 栾非时, 王学征. 厚皮甜瓜种子萌芽期耐冷性评价方法研究. 东北农业大学学报, 2016, 47(7): 24-81.
Liu H Y, Yao X, Luan F S, Wang X Z. Study on evaluation method of chilling tolerance at germination stage in Cucmmis melo. J Northeast Agric Univ, 2016, 47(7): 24-81 (in Chinese with English abstract).
[29] 王树刚, 王振林, 王平, 王海伟, 李府, 黄玮, 武玉国, 尹燕枰. 不同小麦品种对低温胁迫的反应及抗冻性评价. 生态学报, 2011, 31: 1064-1072.
Wang S G, Wang Z L, Wang P, Wang H W, Li F, Huang W, Wu Y G, Yin Y P. Evaluation of wheat freezing resistance based on the responses of the physiological indices to low temperature stress. Acta Ecol Sin, 2011, 31: 1064-1072 (in Chinese with English abstract).
[30] 刘海卿, 孙万仓, 刘自刚, 武军艳, 钱武, 王志江, 郭仁迪, 马骊, 侯献飞, 刘林波. 北方寒旱区白菜型冬油菜抗寒性与抗旱性评价及其关系. 中国农业科学, 2015, 48: 3743-3756.
doi: 10.3864/j.issn.0578-1752.2015.18.018
Liu H Q, Sun W C, Liu Z G, Wu J Y, Qian W, Wang Z J, Guo R D, Ma L, Hou X F, Liu L B. Evaluation of drought resistance and cold resistance and research of their relationship at seedling stage of winter rapeseed (Brassica campestris L.) in cold and arid regions in north china. Sci Agric Sin, 2015, 48: 3743-3756 (in Chinese with English abstract).
[1] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[2] 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709.
[3] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[4] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[5] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708.
[6] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279.
[7] 薛亚鹏, 辛旭霞, 王若楠, 于筱菡, 刘少雄, 王瑞云, 刘敏轩. 国内外谷子资源农艺、品质性状差异分析以及遗传多样性研究[J]. 作物学报, 2024, 50(10): 2468-2482.
[8] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[9] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[10] 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768.
[11] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选[J]. 作物学报, 2023, 49(6): 1551-1561.
[12] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[13] 孙现军, 姜奇彦, 胡正, 李宏博, 庞斌双, 张风廷, 张胜全, 张辉. 小麦种质资源苗期耐盐性鉴定评价[J]. 作物学报, 2023, 49(4): 1132-1139.
[14] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[15] 李继军, 陈雅慧, 王艺瑾, 周志华, 郭子越, 张建, 涂金星, 姚璇, 郭亮. 甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选[J]. 作物学报, 2023, 49(12): 3162-3175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .