欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (7): 1699-1709.doi: 10.3724/SP.J.1006.2024.34198

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选

李晓菲1,2,**(), 高华伟2,3,**, 广慧2,4,5, 石宇欣1,2, 谷勇哲2, 齐照明1,*(), 邱丽娟1,2,*()   

  1. 1东北农业大学农学院, 黑龙江哈尔滨 150030
    2农作物基因资源与遗传改良国家重大科学工程 / 农业农村部种质资源利用重点实验室 / 中国农业科学院作物科学研究所, 北京 100081
    3三亚中国农业科学院国家南繁研究院, 海南三亚 572024
    4黑龙江护理高等专科学校, 黑龙江哈尔滨 150028
    5哈尔滨师范大学生命科学与技术学院, 黑龙江哈尔滨 150025
  • 收稿日期:2023-11-23 接受日期:2024-01-30 出版日期:2024-07-12 网络出版日期:2024-02-20
  • 通讯作者: *齐照明, E-mail: qizhaoming1860@126.com;邱丽娟, E-mail: qiulijuan@caas.cn
  • 作者简介:李晓菲, E-mail: 1612025234@qq.com

    **同等贡献

  • 基金资助:
    海南省重点研发计划项目(ZDYF2021XDNY275)

Identification and evaluation of atrazine tolerance of soybean germplasm resources at germination stage and screening of excellent germplasm

LI Xiao-Fei1,2,**(), GAO Hua-Wei2,3,**, GUANG Hui2,4,5, SHI Yu-Xin1,2, GU Yong-Zhe2, QI Zhao-Ming1,*(), QIU Li-Juan1,2,*()   

  1. 1College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2National Key Facility for Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
    4Heilongjiang Nursing College, Harbin 150028, Heilongjiang, China
    5College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China
  • Received:2023-11-23 Accepted:2024-01-30 Published:2024-07-12 Published online:2024-02-20
  • Contact: *E-mail: qizhaoming1860@126.com; E-mail: qiulijuan@caas.cn
  • About author:

    **Contributed equally to this work

  • Supported by:
    Key Research and Development Program of Hainan Province(ZDYF2021XDNY275)

摘要:

室内生物测定是农作物除草剂耐受性鉴定的常用方法, 已广泛应用于大豆、棉花等作物对草甘膦、氯嘧磺隆等除草剂的耐受性研究, 但莠去津室内生测方法及大豆对莠去津耐受性相关研究鲜见报道。本研究以莠去津对大豆萌发期各单项指标为评价指标, 分析莠去津胁迫条件下大豆发芽势、发芽率、发芽指数、活力指数、根长等性状的变化, 建立大豆莠去津耐受性室内生测方法, 确定3.5 mL L-1是大豆萌发期莠去津耐受性筛选的适宜浓度; 对159份大豆种质进行萌发期莠去津耐受性鉴定表明, 各指标相对值的变异系数为发芽相对莠去津胁迫率>相对芽长>相对发芽指数>相对活力指数>相对发芽势>相对发芽率; 根据T值的聚类分析, 将供试种质分为4个莠去津耐性级别, 共鉴定出高耐种质9份、中耐种质50份、低耐种质70份和敏感种质30份; 黄豆、花色豆、垦丰13、南农99-6等9个种质为莠去津耐受性综合能力优异的种质资源。采用多元逐步回归分析法, 建立大豆萌发期耐莠去津评价模型Y = -0.155+0.004X2+0.001X3+0.001X4+0.002X5 (P=0.000)。本研究为培育耐莠去津育种的亲本选配、后代选择及大豆耐莠去津相关基因挖掘提供了理论依据、材料和技术支撑。

关键词: 大豆, 种质资源, 莠去津耐性, 萌发期, 综合评价

Abstract:

Laboratory bioassay is a common method to identify crop herbicide tolerance, which was widely used in soybean, cotton, and other crops to study the tolerance of glyphosate, chlorsulfuron and other herbicides, but there are few reports on laboratory bioassay method and soybean tolerance to atrazine. In this study, the effects of atrazine on the germination stage of soybean were evaluated, and the changes of germination potential, germination rate, germination index, vitality index, and root length of soybean under atrazine stress were analyzed. A laboratory bioassay method was established for the atrazine tolerance of soybean, and 3.5 mL L-1 was determined as the appropriate concentration for screening atrazine tolerance of soybean at germination stage. The tolerance of atrazine to 159 soybean germplasms at germination stage was identified. The results showed that the relative coefficient of variation of each index was the relative atrazine stress rate, the relative bud length, the relative germination index, the relative vitality index, the relative germination potential, and the relative germination rate. According to the T-value cluster analysis, the tested germplasm was divided into 4 atrazine tolerance grades, and 9 high-tolerant, 50 medium-tolerant, 70 low-tolerant, and 30 sensitive germplasm were identified. Nine germplasm, including soybean, fancy bean, Kenfeng 13, and Nannong 99-6, had excellent tolerance to atrazine. This study provides the theoretical basis, material and technical support for the selection of parents, the selection of progeny and the mining of genes related to atrazine tolerance in soybean.

Key words: soybean, germplasm resources, atrazine tolerance, germination stage, comprehensive evaluation

附表1

供试材料"

序号
Number
统一编号
Unified number
序号
Number
统一编号
Unified number
序号
Number
统一编号
Unified number
序号
Number
统一编号
Unified number
1 WDD00329 41 ZDD24640 81 ZDD03257 121 ZDD12325
2 WDD00596 42 ZDD25261 82 ZDD03281 122 ZDD12403
3 WDD01511 43 华夏10 Huaxia 10 83 ZDD03289 123 ZDD12845
4 WDD01944 44 华夏14 Huaxia 14 84 ZDD03481 124 WDD03020
5 WDD01945 45 ZLD1501 85 ZDD03555 125 ZDD15708
6 WDD02225 46 ZLD1510 86 ZDD03663 126 WDD01607
7 ZDD00383 47 ZLD2109 87 ZDD03901 127 ZDD17283
8 ZDD01400 48 ZDD22643 88 WDD01594 128 ZDD20127
9 ZDD01881 49 ZDD24374 89 ZDD09985 129 ZDD20186
10 ZDD02990 50 WDD00573 90 ZDD10039 130 ZDD20332
11 ZDD03138 51 ZDD00196 91 ZDD18642 131 WDD01665
12 ZDD03533 52 ZDD00296 92 ZDD18657 132 WDD01650
13 ZDD05451 53 ZDD00303 93 ZDD19107 133 ZDD22123
14 ZDD05514 54 ZDD00485 94 ZDD19410 134 ZDD06290
15 ZDD06270 55 ZDD00554 95 ZDD04395 135 ZDD14472
16 ZDD06354 56 ZDD00978 96 ZDD06514 136 ZDD14780
17 ZDD06418 57 ZDD01010 97 ZDD12436 137 ZDD21387
18 ZDD08981 58 ZDD07186 98 ZDD12500 138 ZDD01421
19 ZDD09417 59 ZDD07191 99 ZDD13117 139 ZDD03026
20 ZDD10060 60 ZDD07307 100 ZDD20005 140 ZDD03293
21 ZDD10080 61 ZDD07353 101 ZDD20886 141 ZDD08146
22 ZDD11575 62 ZDD07685 102 ZDD21030 142 ZDD00772
23 ZDD12801 63 ZDD17728 103 ZDD21053 143 ZDD01612
24 ZDD15031 64 ZDD17882 104 ZDD21852 144 ZDD03428
25 ZDD16869 65 ZDD18378 105 ZDD06595 145 ZDD00076
26 ZDD16872 66 ZDD22640 106 ZDD06669 146 ZDD03733
27 ZDD18856 67 ZDD23645 107 ZDD14182 147 ZDD04429
28 ZDD19368 68 ZDD23650 108 ZDD15213 148 ZDD16682
29 ZDD19804 69 ZDD24317 109 ZDD16700 149 ZDD23915
30 ZDD20303 70 ZDD24326 110 ZDD16914 150 ZDD23089
31 ZDD21781 71 WDD01630 111 ZDD18394 151 ZDD11465
32 ZDD21920 72 ZDD01637 112 ZDD25258 152 ZDD16362
33 ZDD24145 73 ZDD01668 113 ZDD04653 153 ZDD08033
34 ZDD24342 74 ZDD02277 114 ZDD04864 154 WDD02262
35 ZDD24801 75 WDD02183 115 ZDD05525 155 WDD00602
36 黑河43 Heihe 43 76 ZDD18847 116 ZDD05879 156 WDD00640
37 黑农84 Heinong 84 77 WDD00412 117 ZDD05921 157 WDD01664
38 齐小粒Qixiaoli 78 ZDD23891 118 ZDD06039 158 WDD00853
39 中吉602 Zhongji 602 79 ZDD24065 119 ZDD06066 159 WDD02282
40 齐黄34 Qihuang 34 80 ZDD02826 120 ZDD12017

图1

大豆对不同浓度莠去津的耐受性"

表1

不同浓度莠去津处理下4个大豆种质的发芽指数"

材料
Material
发芽指数Germination index
0 mL L-1 1 mL L-1 2 mL L-1 2.5 mL L-1 3 mL L-1 3.5 mL L-1 4 mL L-1 4.5 mL L-1 5 mL L-1
MY526 8.14±0.97 a 7.00±0.73 ab 6.47±1.46 ab 6.33±1.17 ab 5.17±1.61 ab 4.39±1.26 b 5.11±0.19 ab 4.58±0.8 b 4.5±0.6 b
中黄13 Zhonghuang 13 4.11 ±0.67 a 3.56±0.98 ab 3.42±0.74 ab 4.00±0.44 ab 3.75±0.58 ab 1.86 ±0.05 b 2.19±0.17 ab 1.89±0.69 ab 1.83±0.04 b
ZLD1505 8.61±0.67 a 8.33 ±0.58 ab 7.72 ±0.35 abc 8.22±0.84 ab 7.61±0.67 abc 7.17±0.6 abc 6.89±1.39 abc 6.39±0.92 bc 5.94 ±0.42 c
中豆41 Zhongdou 41 4.67 ±1.3 a 5.61±0.99 a 5.17 ±0.83 a 4.39 ±2.36 a 4.33±0.67 a 3.75±1.04 a 3.78±0.48 a 3.61±1.46 a 3.47 ±1.28 a

表2

不同浓度莠去津处理下4个大豆种质的活力指数"

材料
Material
活力指数Vitality index
0 mL L-1 1 mL L-1 2 mL L-1 2.5 mL L-1 3 mL L-1 3.5 mL L-1 4 mL L-1 4.5 mL L-1 5 mL L-1
MY526 406.20±7.56 a 239.63±6.15 ab 204.45±3.86 ab 196.59 ±11.3 ab 166.9±13.76 b 98.23±4.61 b 135.93±3.2 b 111.47±5.14 b 111.90±4.5 b
中黄13 Zhonghuang 13 102.74±1.77 a 70.64 ±3.82 ab 60.55±7.97 ab 87.42 ±6.43 ab 69.62±3.01 ab 15.95±2.5 b 34.24±2.06 ab 23.19±2.87 b 35.67±6.25 ab
ZLD1505 459.79±6.77 a 361.93±7.6 abc 348.83±6.08 abc 403.04 ±4.39 ab 338.09 ±8.26 abc 289.33±6.93 bc 272.62 ±2/03 bc 239.14 ±2.78 bc 201.47±5.44 c
中豆41 Zhongdou 41 162.20±8.84 a 217.41±7.79 a 194.79 ±13.24 a 163.23±18.86 a 169.36±9.71 a 119.44±6.08 a 96.83±3.32 a 81.00±5.01 a 118.57 ±12.22 a

表3

3.5 mL L-1的莠去津胁迫下大豆种质萌发期各指标的相对值(部分显示)"

编号Number 材料
Material
相对发芽势
Relative germination potential
相对
发芽率
Relative germination rate
相对
发芽指数
Relative germination index
相对根长
Relative root length
相对活力
指数
Relative vitality index
发芽相对
胁迫率
Relative stress rate of germination
35 南农99-6 Nannong 99-6 108.84 119.89 92.91 124.05 119.33 -19.89
51 秃荚子Tujiazi 135.00 138.33 162.91 56.43 126.69 -38.33
56 铁荚子Tiejiazi 113.89 113.89 114.29 66.67 18.65 -13.89
60 九台薄地高Jiutaibodigao 62.38 49.54 57.29 78.66 45.66 50.46
61 汪清神仙洞Wangqingshenxiandong 51.59 47.98 47.80 121.65 84.69 52.02
78 中豆27 Zhongdou 27 100.00 100.00 102.35 102.68 106.78 0
96 湘豆3号Xiangdou 3 113.69 113.69 167.92 113.98 191.10 -13.69
129 八月黄Bayuehuang 48.62 55.29 60.77 48.00 32.10 44.71
149 五星1号 Wuxing 1 106.61 116.93 113.55 82.59 96.08 -16.93
159 丹丽Danli 56.55 56.55 51.43 48.61 26.66 43.45
最大值Max. 135.00 138.33 203.11 132.07 191.10 52.02
最小值Min. 48.62 47.98 47.08 10.75 5.87 -38.33
平均值Mean 89.51 90.12 87.31 78.15 70.84 9.91
标准差Standard deviation 14.46 14.60 22.29 19.19 29.05 14.61
变异系数Coefficient of variation (%) 16.15 16.20 25.53 24.55 41.01 147.38

图2

3.5 mL L-1的莠去津胁迫下大豆各指标相对值的相关分析 对角线位置的柱状图表示每个性状的分布情况; 对角线的左下角表示性状之间的相关散点图, 对角线右上角的数量表示对应性状之间的参数统计, 同时红线表示相关的趋势。***表示在0.001概率水平显著相关。"

附表2

莠去津胁迫下大豆萌发期各指标的主成分及贡献率"

主成分
Principal component
特征值
Eigenvalue
贡献率
Contribution rate
累计贡献率
Cumulative contribution rate
1 4.189 69.817 69.817
2 1.155 19.251 89.068
3 0.412 6.866 95.934
4 0.180 2.994 98.928
5 0.038 0.636 99.564
6 0.026 0.436 100.000

表4

莠去津胁迫条件下大豆萌发期各指标的因子载荷矩阵"

指标Index 主成分1 Principal component 1 主成分2 Principal component 2
相对发芽势Relative germination potential 0.221 -0.219
相对发芽率Relative germination rate 0.223 -0.242
相对发芽指数Relative germination index 0.210 -0.043
相对活力指数Relative vitality index 0.123 0.702
相对根长Relative root length 0.201 0.420
发芽相对莠去津指数Germination relative to atrazine index -0.201 0.296

表5

高耐种质的综合指标值(Kj)、权重、隶属函数值R(Kj)、T值及综合评价"

序号Number 统一编号
Unified
number
材料
Material
K1 K2 R(K1) R(K2) T
T-value
耐药性
Herbicide resistance
18 ZDD08981 黄豆Huangdou 1.744 1.085 0.735 0.648 0.716 高耐High tolerance
22 ZDD11575 花色豆Huasedou 1.865 1.253 0.753 0.670 0.735 高耐High tolerance
34 ZDD24342 垦丰13 Kenfeng 13 1.413 1.502 0.685 0.702 0.689 高耐High tolerance
35 ZDD24801 南农99-6 Nannong 99-6 1.761 1.116 0.737 0.652 0.719 高耐High tolerance
50 ZDD00303 秃荚子Tujiazi 2.916 -2.385 0.910 0.197 0.756 高耐High tolerance
51 ZDD00296 宝青绿大豆Baolvqingdadou 2.324 1.551 0.821 0.708 0.797 高耐High tolerance
57 ZDD07186 宾县黑豆Binxianheidou 1.045 2.874 0.630 0.880 0.684 高耐High tolerance
89 ZDD10039 爬蔓黑豆Pamanheidou 3.519 -0.103 1.000 0.493 0.891 高耐High tolerance
95 ZDD06514 湘豆3号Xiangdou 3 2.815 1.768 0.895 0.737 0.861 高耐High tolerance
[1] Liu Y, Fan X X, Zhang T, He W Y, Song F Q. Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in China. Environ Pollut, 2020, 262: 114264.
[2] Mueller T C, Kincer D R, Steckel L E. Atrazine residues in flooded and nonflooded soil and effects on soybean. Weed Technol, 2021, 35: 196-201.
[3] Zhu L J, Zhao Y, Chen Y N, Cui H Y, Wei Y Q, Liu H L, Chen X M, Wei Z M. Characterization of atrazine binding to dissolved organic matter of soil under different types of land use. Ecotoxicol Environ Saf, 2018, 147: 1065-1072.
[4] Williams M M, Boerboom C M, Rabaey T L. Significance of atrazine in sweet corn weed management systems. Weed Technol, 2010, 24: 139-142.
[5] Zhang Y, Yang C, Zheng Z, Cao B, You F Y, Liu Y Y, Jiang Z. Mechanism for various phytotoxicity of atrazine in soils to soybean: insights from soil sorption abilities and dissolved organic matter properties. J Environ Manag, 2021, 297: 113220.
[6] 魏建辉, 管仪庆, 夏冬梅, 张丹蓉. 模拟农药莠去津在原状土柱中的运移研究. 安徽农业科学, 2010, 38: 4118-4120.
Wei J H, Guan Y Q, Xia D M, Zhang D R. Modelling of atrizine migration in undisturbed soil columns. J Anhui Agric Sci, 2010, 38: 4118-4120 (in Chinese with English abstract).
[7] Sun C, Xu Y F, Hu N T, Ma J, Sun S Q, Cao W X, Klobucar G, Hu C W, Zhao Y J. To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Chemosphere, 2020, 244: 125514.
[8] 何冬雪. 不同大豆品种对阿特拉津耐性机制研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022.
He D X. Varieties to Atrazine Research on Tolerance Mechanism of Different Soybean. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2022 (in Chinese with English abstract).
[9] Chen Y K, Jiang Z, Wu D, Wang H L, Li J J, Bi M C, Zhang Y. Development of a novel bio-organic fertilizer for the removal of atrazine in soil. J Environ Manag, 2019, 233: 553-560.
[10] 王曌. 吉林省主要玉米种植区莠去津的土壤残留情况及其对后茬作物的影响. 广西大学硕士学位论文, 广西南宁, 2019.
Wang Z. Atrazine Residues in Soil and Its Impacts on Succeeding Crops in Jinlin’s Major Corn-Growing Areas. MS Thesis of Guangxi University, Nanning, Guangxi, 2019 (in Chinese with English abstract).
[11] 陈建军, 李明锐, 张坤, 李元. 几种植物对土壤中阿特拉津的吸收富集特征及去除效率研究. 农业环境科学学报, 2014, 33: 2368-2373.
Chen J J, Li M R, Zhang K, Li Y. Uptake and removal efficiency of atrazine in soil by several weeds. J Agro-Environ Sci, 2014, 33: 2368-2373 (in Chinese with English abstract).
[12] 吴奇. 阿特拉津胁迫下苜蓿菌根共生体生理指标和蛋白质组学研究. 黑龙江大学硕士学位论文, 黑龙江哈尔滨, 2017.
Wu Q. Physiological Indexes and Proteomics of Alfalfa Mycorrhizal Symbiont under Atrazine Stress. MS Thesis of Heilongjiang University, Harbin, Heilongjiang, China, 2017 (in Chinese with English abstract).
[13] 孙凯. 农田除草剂飘移对菜豆生理特性影响的研究. 吉林农业大学硕士学位论文, 吉林长春, 2012.
Sun K. Effects of Herbicide Drift Physiological Characteristics of Common Bean. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2012 (in Chinese with English abstract).
[14] 陈乐, 赵莹莹, 王媛媛, 朱晓峰, 陈立杰, 段玉玺. 细菌SnebYK诱导大豆抗阿特拉津的效果评价. 中国油料作物学报, 2014, 36: 641-647.
doi: 10.7505/j.issn.1007-9084.2014.05.013
Chen L, Zhao Y Y, Wang Y Y, Zhu X F, Chen L J, Duan Y X. Evaluation of bacterial strain SnebYK induced soybean against atrazine. Chin J Oil Crop Sci, 2014, 36: 641-647 (in Chinese with English abstract).
[15] Alla M N, Younis M E. Herbicide effects on phenolic metabolism in maize (Zea mays L.) and soybean (Glycine max L.) seedling. J Exp Bot, 1995, 46: 1731-1736.
[16] Bullock D G. Crop rotation. Crit Rev Plant Sci, 1992, 11: 309-326.
[17] Zhao J, Yang Y D, Zhang K, Jeong J, Zeng Z H, Zang H D. Does crop rotation yield more in China? A meta-analysis. Field Crops Res, 2020, 245: 107659.
[18] Stetson S J, Osborne S L, Schumacher T E, Eynard A, Chilom G, Rice J, Nichols K A, Pikul J L. Corn residue removal impact on topsoil organic carbon in a corn-soybean rotation. Soil Sci Soc Am J, 2012, 76: 1399-1406.
[19] Hall S J, Russell A E, Moore A L R. Do corn-soybean rotations enhance decomposition of soil organic matter? Plant Soil, 2019, 444: 427-442.
doi: 10.1007/s11104-019-04292-7
[20] Konda L N, Pásztor Z. Environmental distribution of acetochlor, atrazine, chlorpyrifos, and propisochlor under field conditions. J Agric Food Chem, 2001, 49: 3859-3863.
[21] 陈玉坤. 新型功能生物有机肥的制备及其缓解黑土中残留阿特拉津对大豆幼苗胁迫的机制. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2020.
Chen Y K. Preparation of a Novel Functional Bio-organic Fertilizer and Its Alleviation Mechanism of Atrazine Stress on Soybean Seedlings in Black Soil. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2020 (in Chinese with English abstract).
[22] 杨万明, 王敏, 李贵全, 杜维俊. PEG胁迫下大豆BIL群体芽期性状与耐旱性评价. 中国油料作物学报, 2013, 35: 564-571.
doi: 10.7505/j.issn.1007-9084.2013.05.015
Yang W M, Wang M, Li G Q, Du W J. Germination traits of soybean BIL population under PEG stress and assessment of their drought tolerance. Chin J Oil Crop Sci, 2013, 35: 564-571 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2013.05.015
[23] 王雨婷, 苗兴芬, 王帝. 萌发期耐莠去津谷子种质资源筛选及评价. 作物杂志, 2021, (5): 194-204.
Wang Y T, Miao X F, Wang D. Screening and evaluation of atrazine-resistant germplasm resources of foxtail millet at germination stage. Crops, 2021, (5): 194-204 (in Chinese with English abstract).
[24] 李佳佳, 龙群, 朱尚尚, 单雅敬, 吴美燕, 鲁云, 支现管, 廖威, 陈浩然, 赵振邦, 苗龙, 高慧慧, 李英慧, 王晓波, 邱丽娟. 大豆芽期耐高温评价方法构建及耐高温种质资源筛选. 作物学报, 2023, 49: 2863-2875.
doi: 10.3724/SP.J.1006.2023.34025
Li J J, Long Q, Zhu S S, Shan Y J, Wu M Y, Lu Y, Zhi X G, Liao W, Chen H R, Zhao Z B, Miao L, Gao H H, Li Y H, Wang X B, Qiu L J. Construction of evaluation method for tolerance to high-temperature andscreening of heat-tolerant germplasm resources of bud stage in soybean. Acta Agron Sin, 2023, 49: 2863-2875 (in Chinese with English abstract).
[25] 沈红秋, 段玉玺, 陈立杰, 朱晓峰, 王媛媛, 黄珊珊. 不同耐性大豆品种阿特拉津处理后的防御酶反应. 大豆科学, 2011, 30: 259-262.
Shen H Q, Duan Y X, Chen L J, Zhu X F, Wang Y Y, Huang S S. Defense enzmatic reaction of different tolerant soybean varieties after treated with Atrazine. J Soybean Sci, 2011, 30: 259-262 (in Chinese with English abstract).
[26] 洪慧龙, 郭兵福, 任洪雷, 金龙国, 陶波. 麦草畏室内生测方法建立及大豆对麦草畏耐受性分析. 植物遗传资源学报, 2017, 18: 179-185.
doi: 10.13430/j.cnki.jpgr.2017.02.002
Hong H L, Guo B F, Ren H L, Jin L G, Tao B. Establishment of an indoor-dicamba bioassay and tolerance analysis of soybean. J Plant Genet Resour, 2017, 18: 179-185 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2017.02.002
[27] 郭兵福, 蒋凌雪, 李脉泉, 顾海蓝, 金龙国, 邱丽娟. 不同大豆品种对触杀型除草剂的耐受性. 中国油料作物学报, 2012, 34: 551-555.
Guo B F, Jiang L X, Li M Q, Gu H L, Jin L G, Qiu L J. Tolerance of different soybean cultivars to contact herbicides. Chin J Oil Crop Sci, 2012, 34: 551-555 (in Chinese with English abstract).
[28] 苏锋. 砷和草甘膦复合污染对水稻生长的影响及其机制研究. 华中农业大学硕士学位论文, 湖北武汉, 2015.
Su F. The Effects of Arsenic and Glyphosate Combined Pollution on Rice Growth and Its Mechanism. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[29] 范润珍. 莠去津的药害问题及药害防范技术研究概述. 农药科学与管理, 2003, (1): 20-23.
Fan R Z. Summarization of phytotoxicity of atrazine and method of elimination. Pestic Sci Admin, 2003, (1): 20-23 (in Chinese with English abstract).
[30] 王锦, 陈雅琳, 刘丹竹, 武婷婷, 崔娟, 史树森. 玉米田残留除草剂对后茬大豆苗期药害的研究. 大豆科技, 2016, (5): 23-26.
Wang J, Chen Y L, Liu D Z, Wu T T, Cui J, Shi S S. Phytotoxicity of herbicide residued in corn field on succeeding soybean seedlings. Soybean Sci Technol, 2016, (5): 23-26 (in Chinese with English abstract).
[31] 王帅, 张子戌, 胡刘涛, 卢静妍, 朴世领, 王玉民. 田间残留阿特拉津对小粒大豆苗期生理影响及抗性品种筛选. 延边大学农学学报, 2018, 40(3): 95-101.
Wang S, Zhang Z X, Hu L T, Lu J Y, Piao S L, Wang Y M. Physiological effects of field residual atrazine on seedlings of smallgrain soybean and screening of resistant varieties. Agric Sci J Yanbian Univ, 2018, 40(3): 95-101 (in Chinese with English abstract).
[32] 宋日, 刘利, 马丽艳, 赵福临, 吴春胜, 牟金明, 陈喜凤, 王振民. 阿特拉津对不同种子大小品种大豆的危害. 中国油料作物学报, 2013, 35: 207-210.
Song R, Liu L, Ma L Y, Zhao F L, Wu C S, Mou J M, Chen X F, Wang Z M. Effect of atrazine on soybeans with various seed size varieties. Chin J Oil Crop Sci, 2013, 35: 207-210 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2013.02.016
[33] 赵银月, 詹和明, 代希茜, 单丹丹, 王铁军. 云南间作大豆耐荫性综合评价及鉴定指标筛选. 中国油料作物学报, 2019, 41: 81-91.
doi: 10.7505/j.issn.1007-9084.2019.01.011
Zhao Y Y, Zhan H M, Dai X Q, Shan D D, Wang T J. Comprehensive evaluation and screening identification index of shade tolerance of intercropping soybean. Chin J Oil Crop Sci, 2019, 41: 81-91 (in Chinese with English abstract).
[34] Greenacre M, Groenen P J F, Hastie T, D’Enza A L, Markos A, Tuzhilina E. Principal component analysis. Nat Rev Method Prime, 2022, 2: 100.
[35] 任雪松, 于秀林. 多元统计分析. 北京: 中国统计出版社, 2010. pp 184-194.
Ren X S, Yu X L. Multivariate Statistical Analysis. Beijing: China Statistics Press, 2010. pp 184-194 (in Chinese).
[36] 王健, 钟雪梅, 吕香玲, 李凤海, 史振声. 不同品种玉米对烟嘧磺隆的耐药性研究进展. 农药学学报, 2016, 18: 282-290.
Wang J, Zhong X M, Lyu X L, Li F H, Shi Z S. Advances in research on tolerance of differential corn cultivars to the nicosulfuron. Chin J Pestic Sci, 2016, 18: 282-290 (in Chinese with English abstract).
[37] 王丹丹. 不同小麦品种对甲基二磺隆等药剂的耐药性差异研究. 山东农业大学硕士学位论文, 山东泰安, 2019.
Wang D D. Study on the Didderence of Mesosulfuron-Methyl and other Herbicides Tolerance of Various Wheat Varieties. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2019 (in Chinese with English abstract).
[38] Prakash N R, Chaudhary J R, Tripathi A, Joshi N, Padhan B K, Yadav S, Kumar S, Kumar R. Breeding for herbicide tolerance in crops: a review. Res J Biotechnol, 2020, 15: 154-162.
[39] 石小堰, 李凤海. 玉米苗前除草剂种质抗性评价及鉴定指标筛选. 玉米科学, 2017, 25(4): 48-54.
Shi X Y, Li F H. Herbicide resistant germplasm evaluation of maize seedling stage and screening of herbicide resistance appraisal index. J Maize Sci, 2017, 25(4): 48-54 (in Chinese with English abstract).
[40] 张丽娟, 闵庚梅, 陆建英, 王昶, 邵扬, 杨晓明. 蚕豆抗除草剂咪唑乙烟酸种质资源鉴定. 中国植保导刊, 2023, 43(2): 56-59.
Zhang L J, Min G M, Lu J Y, Wang C, Shao Y, Yang X M. Identification of faba bean germplasm resource resistant to herbicide imazethapyr. China Plant Prot, 2023, 43(2): 56-59 (in Chinese with English abstract).
[1] 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130.
[2] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[3] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[4] 苗龙, 舒阔, 李娟, 黄茹, 王业杏, Soltani Muhammad YOUSOF, 许竞好, 吴传磊, 李佳佳, 王晓波, 邱丽娟. 大豆根茎过渡区弯曲突变体Mrstz的鉴定与基因定位[J]. 作物学报, 2024, 50(5): 1091-1103.
[5] 李航, 刘丽, 黄乾, 刘文豪, 司爱君, 孔宪辉, 王旭文, 赵福相, 梅拥军, 余渝. 棉花种质资源萌发期耐盐性鉴定及筛选[J]. 作物学报, 2024, 50(5): 1147-1157.
[6] 王亚琪, 徐海风, 李曙光, 傅蒙蒙, 余希文, 赵志鑫, 杨加银, 赵团结. 大豆类病变皱叶突变体NT301遗传分析和2对基因定位[J]. 作物学报, 2024, 50(4): 808-819.
[7] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[8] 刘薇, 王玉斌, 李伟, 张礼凤, 徐冉, 王彩洁, 张彦威. 过量表达大豆异丙基苹果酸脱氢酶基因GmIPMDH促进植株开花和生长[J]. 作物学报, 2024, 50(3): 613-622.
[9] 宋健, 熊亚俊, 陈伊洁, 徐瑞新, 刘康林, 郭庆元, 洪慧龙, 高华伟, 谷勇哲, 张丽娟, 郭勇, 阎哲, 刘章雄, 关荣霞, 李英慧, 王晓波, 郭兵福, 孙如建, 闫龙, 王好让, 姬月梅, 常汝镇, 王俊, 邱丽娟. 大豆巢式关联作图(NAM)群体构建及花色和种皮色遗传分析[J]. 作物学报, 2024, 50(3): 556-575.
[10] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[11] 李世宽, 洪慧龙, 付佳祺, 谷勇哲, 孙如建, 邱丽娟. BSA-Seq结合RNA-Seq技术挖掘大豆叶片提前黄化衰老基因[J]. 作物学报, 2024, 50(2): 294-309.
[12] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[13] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[14] 石宇欣, 刘欣玥, 孙建强, 李晓菲, 郭潇阳, 周雅, 邱丽娟. 利用CRISPR/Cas9技术编辑GmBADH1基因改变大豆耐盐性[J]. 作物学报, 2024, 50(1): 100-109.
[15] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[2] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[3] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[4] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[9] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[10] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .