欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2383-2395.doi: 10.3724/SP.J.1006.2024.43001

• 耕作栽培·生理生化 • 上一篇    下一篇

叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响

孙照华1(), 任昊1, 王洪章1, 王子强2, 姚海燕3, 辛爱美4, 赵斌1, 张吉旺1, 任佰朝1, 刘鹏1,*()   

  1. 1黄淮海区域玉米技术创新中心 / 山东农业大学农学院, 山东泰安 271018
    2滨州市农业科学研究院, 山东滨州 256603
    3无棣县农业农村局, 山东无棣 251900
    4肥城市农村经济管理服务中心, 山东肥城 271600
  • 收稿日期:2024-01-04 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-06-05
  • 通讯作者: *刘鹏, E-mail: liup@sdau.edu.cn
  • 作者简介:E-mail: sunzh0228@163.com
  • 基金资助:
    山东省重点研发计划项目(LJNY202103);山东省现代农业产业技术体系建设项目(SDAIT-02-08);山东省重大科技创新工程计划项目(2021CXGC010804-05)

Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil

SUN Zhao-Hua1(), REN Hao1, WANG Hong-Zhang1, WANG Zi-Qiang2, YAO Hai-Yan3, XIN Ai-Mei4, ZHAO Bin1, ZHANG Ji-Wang1, REN Bai-Zhao1, LIU Peng1,*()   

  1. 1Huang-Huai-Hai Regional Maize Technology Innovation Center / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Academy of Agricultural Sciences of Binzhou, Binzhou 256603, Shandong, China
    3Agriculture and rural Bureau of Wudi County, Wudi 251900, Shandong, China
    4Rural Economic Management Service Center of Feicheng, Feicheng 271600, Shandong, China
  • Received:2024-01-04 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-06-05
  • Contact: *E-mail: liup@sdau.edu.cn
  • Supported by:
    Key Research and Development Project of Shandong Province(LJNY202103);Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08);Major Scientific and Technological Innovation Project in Shandong Province(2021CXGC010804-05)

摘要:

硅是作物生长的有益元素, 有助于缓解作物遭受的盐胁迫。本试验以大田试验种植的登海605为试验材料, 分别于小喇叭口期(V9)、大喇叭口期(V12)和抽雄期(VT)进行喷施硅制剂(8 g L-1 SiO2)处理, 并以同期喷施等量清水为对照, 旨在探讨不同时期叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响, 为滨海盐碱地夏玉米抗逆增产提供理论依据。结果表明, 与对照相比, 不同时期喷施叶面硅制剂, 均能够显著增加盐碱地夏玉米叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性, 降低丙二醛(MDA)含量, 缓解光合器官的损伤和光合色素的降解; V9、V12、VT期叶面喷施硅制剂处理R6期, 叶面积指数2年平均分别提高6.28%、7.16%、6.66%, 2023年R3期叶绿素含量分别提高6.62%、7.52%、7.47%。喷施硅制剂提高了叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)以及胞间CO2浓度(Ci); V9、V12、VT期叶面喷施硅制剂处理R3期Pn两年平均分别提高11.64%、11.73%、16.39%。光合速率提升促进了干物质积累及其向籽粒的转运, R6期干物质积累量分别提高8.46%、8.88%、9.67%, 穗粒数和千粒重显著提高, 最终籽粒产量在2022年和2023年分别提升了7.24%、10.47%、12.94%和6.23%、7.99%、11.25%; 综上, 本试验条件下, 滨海轻中度盐碱地夏玉米生产过程中以VT期喷施叶面硅制剂的增产效果最佳, 主要是缓解了氧化胁迫、提升了光合性能、促进了干物质积累与转运。

关键词: 夏玉米, 滨海盐碱地, 硅, 光合性能, 产量

Abstract:

Silicon is a beneficial element for crop growth and can effectively alleviate salt stress in crops. This study aims to explore the alleviating effect of foliar spraying of silicon on salt stress in coastal saline-alkali summer maize in China, providing a theoretical basis for enhancing stress resistance and increasing yield in coastal saline-alkali summer maize. Denghai 605, planted in the field test, was selected as the test material. A silicon preparation (8 g L-1 SiO2) was sprayed at the V9, V12, and VT stages, while the control group was sprayed with the same amount of water. The effects of foliar spraying with silicon preparation at different stages on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil were investigated. The results demonstrated that foliar spraying of silicon preparations at different stages significantly increased the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in saline-alkali summer maize leaves compared to the control group. It also reduced the content of malondialdehyde (MDA), alleviating the damage to photosynthetic organs and the degradation of photosynthetic pigments. The leaf area index at the R6 stage increased by 6.28%, 7.16%, and 6.66% in the V9, V12, and VT stages, respectively, while the chlorophyll content at the R3 stage increased by 6.62%, 7.52%, and 7.47% in 2023. Silicon spraying increased the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of leaves. Foliar spraying of silicon preparation at the V9, V12, and VT stages increased the Pn of the R3 stage by 11.64%, 11.73%, and 16.39%, respectively. The biomass at the R6 stage increased by 8.46%, 8.88%, and 9.67%, respectively, and there was a significant increase in the number of grains per spike and 1000-grain weight. Ultimately, the grain yield increased by 7.24%, 10.47%, 12.94%, 6.23%, 7.99%, and 11.25% in 2022 and 2023, respectively. In summary, under the conditions of this experiment, foliar spraying of silicon preparations at the VT stage had the most significant effect on increasing yield in summer maize production in coastal light to moderate saline-alkali soil. This effect was mainly attributed to the alleviation of oxidative stress, improvement of photosynthetic performance, and promotion of biomass accumulation and transportation.

Key words: summer maize, coastal saline-alkali soil, silicon, photosynthetic performance, yield

表1

不同浓度硅制剂对滨海盐碱地夏玉米叶面积指数、SPAD值和净光合速率的影响"

处理
Treatment
叶面积指数
Leaf area index
SPAD值
SPAD value
净光合速率
Net photosynthetic rate (Pn)
CK 0.98 e 42.17 b 25.77 c
S0.5 1.00 e 42.33 b 25.93 c
S1 1.07 d 43.60 ab 26.60 bc
S2 1.09 cd 44.13 ab 26.63 bc
S4 1.14 bc 45.13 a 28.17 ab
S8 1.21 a 45.07 a 28.93 a
S12 1.19 ab 44.10 ab 28.27 ab
S16 1.12 cd 42.87 b 25.43 c

图1

叶面喷施硅制剂对滨海盐碱地夏玉米叶面积指数的影响 V9-W: 小喇叭口期喷施清水; V9-Si: 小喇叭口期喷施硅制剂; V12-W: 大喇叭口期喷施清水; V12-Si: 大喇叭口期喷施硅制剂; VT-W: 抽雄期喷施清水; VT-Si: 抽雄期喷施硅制剂。V9+7 d、V12+7 d、VT+7 d、R3和R6分别代表小喇叭口期处理后7 d、大喇叭口期处理后7 d、抽雄期处理后7 d、乳熟期和成熟期。S: 硅制剂; P: 喷施时期。*: P < 0.05; **: P < 0.01; NS: 无显著差异。"

图2

叶面喷施硅制剂对滨海盐碱地夏玉米叶绿素含量的影响 处理同图1。V9+7 d、V12+7 d、VT+7 d和R3分别代表小喇叭口期处理后7 d、大喇叭口期处理后7 d、抽雄期处理后7 d和乳熟期。S: 硅制剂; P: 喷施时期。*: P < 0.05; **: P < 0.01; NS: 无显著差异。"

图3

叶面喷施硅制剂对滨海盐碱地夏玉米气体交换参数的影响 处理同图1。VT+7 d和R3分别代表抽雄期处理后7 d和乳熟期。图中不同小写字母表示不同处理间在0.05概率水平差异显著。"

图4

叶面喷施硅制剂对滨海盐碱地夏玉米SOD、POD、CAT活性和MDA含量的影响 处理同图1。VT+7 d和R3分别代表抽雄期处理后7 d和乳熟期。图中不同小写字母表示不同处理间在0.05概率水平差异显著。"

图5

叶面喷施硅制剂对滨海盐碱地夏玉米单株干物质积累量的影响 处理同图1。V9+7 d、V12+7 d、VT+7 d、R3和R6分别代表小喇叭口期处理后7 d、大喇叭口期处理后7 d、抽雄期处理后7 d、乳熟期和成熟期。S: 硅制剂; P: 喷施时期。*: P < 0.05; **: P < 0.01; NS: 无显著差异。"

表2

叶面喷施硅制剂对滨海盐碱地夏玉米产量及产量构成因素的影响"

年份
Year
处理
Treatment
单位面积穗数
Ears (×104 ear hm-2)
穗粒数
Grains per ear
千粒重
1000-grain weight (g)
籽粒产量
Grain yield (t hm-2)
2022 V9-W 6.22 a 543.69 c 337.89 c 9.72 c
V9-Si 6.11 a 570.05 b 353.26 ab 10.46 b
V12-W 6.22 a 537.58 c 339.83 c 9.66 c
V12-Si 6.22 a 575.64 ab 353.93 a 10.77 ab
VT-W 6.33 a 544.23 c 337.39 c 9.88 c
VT-Si 6.33 a 583.42 a 350.81 b 11.02 a
2023 V9-W 6.56 a 508.06 c 311.29 b 8.81 c
V9-Si 6.52 a 528.47 b 318.95 a 9.34 b
V12-W 6.59 a 506.77 c 310.20 b 8.81 c
V12-Si 6.56 a 534.23 b 318.91 a 9.49 ab
VT-W 6.52 a 506.04 c 312.11 b 8.75 c
VT-Si 6.59 a 543.37 a 321.17 a 9.78 a
方差分析ANOVA
年份Year (Y) ** ** ** **
硅制剂Silicon (S) NS ** ** **
喷施时期Spraying stage (P) NS ** NS *
Y×S NS ** ** NS
Y×P NS NS NS NS
S×P NS ** NS *
Y×S×P NS NS ** NS

图6

叶面喷施硅制剂后产量与各指标间的相关性 Yield: 产量; Ear: 单位面积穗数; GPE: 穗粒数; GW: 千粒重; DMA: 干物质积累量; Chl: 叶绿素含量。Pn: 净光合速率; Tr: 蒸腾速率; Gs: 气孔导度; Ci: 胞间CO2浓度; SOD: 超氧化物歧化酶; POD: 过氧化物酶; CAT: 过氧化氢酶; MDA: 丙二醛。*: P < 0.05; **: P < 0.01。"

[1] 刘绍熹, 刘帅. 我国玉米进出口市场势力的变化分析. 玉米科学, 2022, 30(2): 183-190.
Liu S X, Liu S. Analysis of the changes in the power of China’s maize import and export market. J Maize Sci, 2022, 30(2): 183-190 (in Chinese with English abstract).
[2] 陈印军, 易小燕, 方琳娜, 杨瑞珍. 中国耕地资源与粮食增产潜力分析. 中国农业科学, 2016, 49: 1117-1131.
doi: 10.3864/j.issn.0578-1752.2016.06.008
Chen Y J, Yi X Y, Fang L N, Yang R Z. Analysis of cultivated land and grain production potential in China. Sci Agric Sin, 2016, 49: 1117-1131 (in Chinese with English abstract).
[3] 王佺珍, 刘倩, 高娅妮, 柳旭. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37: 5565-5577.
Wang Q Z, Liu Q, Gao Y N, Liu X. Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecol Sin, 2017, 37: 5565-5577 (in Chinese with English abstract).
[4] 王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66: 673-684.
Wang J L, Huang X J, Zhong T Y, Chen Z G. Review on sustainable utilization of salt-affected land. Acta Geograph Sin, 2011, 66: 673-684 (in Chinese with English abstract).
[5] 杨久涛, 孙红滨, 王桂峰, 汪丽, 邢晓飞, 杨武杰. 山东盐碱地农业综合开发利用现状与展望. 中国农业综合开发, 2023, (6): 7-12.
Yang J T, Sun H B, Wang G F, Wang L, Xing X F, Yang W J. Current situation and prospect of comprehensive agricultural development and utilization of saline-alkali land in Shandong. Agric Compr Dev China, 2023, (6): 7-12 (in Chinese).
[6] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响. 作物学报, 2022, 48: 1235-1247.
doi: 10.3724/SP.J.1006.2022.14064
Yan X Y, Guo W J, Qin D L, Wang S L, Nie J J, Zhao N, Qi J, Song X L, Mao L L, Sun X Z. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil. Acta Agron Sin, 2022, 48: 1235-1247 (in Chinese with English abstract).
[7] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24- 2基因在盐胁迫应答中的功能研究. 作物学报, 2020, 46: 1351-1358.
doi: 10.3724/SP.J.1006.2020.03008
Li J, Wang Y R, Zhang L X, Sun M H, Qin Y, Zheng J. Functional analysis of ZmCIPK24-2 gene from maize in response to salt stress. Acta Agron Sin, 2020, 46: 1351-1358 (in Chinese with English abstract).
[8] 陆安桥, 张峰举, 许兴, 王学琴, 姚姗. 盐胁迫对湖南稷子苗期生长及生理特性的影响. 草业学报, 2021, 30(5): 84-93.
doi: 10.11686/cyxb2020209
Lu A Q, Zhang F J, Xu X, Wang X Q, Yao S. Effects of salt stress on growth and physiological characteristics of Echinochloa frumentacea seedlings. Acta Pratac Sin, 2021, 30(5): 84-93 (in Chinese with English abstract).
[9] Nazdar L, Tehranifara A, Nezami A. Physiological and anatomical responses of calendula (Calendula officinalis L.) cultivars to heat-stress duration. J Hortic Sci Biotechnol, 2019, 94: 400-411.
[10] 辛承松, 董合忠, 唐薇, 张冬梅, 罗振, 李维江. 滨海盐渍土抗虫棉养分吸收和干物质积累特点. 作物学报, 2008, 11: 2033-2040.
Xin C S, Dong H Z, Tang W, Zhang D M, Luo Z, Li W J. Characteristics of nutrient assimilation and dry matter accumulation of Bt cotton (Gossypium hirsutum L.) in coastal saline soil. Acta Agron Sin, 2008, 11: 2033-2040 (in Chinese with English abstract).
[11] 张楠, 闫国超, 叶木军, 樊小平, 肖卓熙, 陈好, 彭苗, 梁永超. 野生型水稻及其低硅突变体中植硅体和植硅体碳的含量与分布特征. 植物营养与肥料学报, 2019, 25: 45-54.
Zhang N, Yan G C, Ye M J, Fan X P, Xiao Z X, Chen H, Peng M, Liang Y C. The contents and distributions of phytolith and phytolith-occluded carbon in different rice genotypes. J Plant Nutr Fert, 2019, 25: 45-54 (in Chinese with English abstract).
[12] 朱永兴, 夏雨晨, 刘乐承, 尹军良, 马东方. 外源硅对植物抗盐性影响的研究进展. 植物营养与肥料学报, 2019, 25: 498-509.
Zhu Y X, Xia Y C, Liu L C, Yin J L, Ma D F. Beneficial effects of silicon on salt tolerance in plants. J Plant Nutr Fert, 2019, 25: 498-509 (in Chinese with English abstract).
[13] Sharma J, Verma S, Sharma A. Importance of silicon in combating a variety of stresses in plants: a review. J Appl Nat Sci, 2022, 14: 607-630.
[14] 林翰志, 陈涛, 蒋少军, 周洋, 黄祖率, 肖贤明, 徐文彬, 晏波. 活性硅缓解植物重金属胁迫及其生物学机制研究进展. 生态科学, 2022, 41(5): 243-251.
Lin H Z, Chen T, Jiang S J, Zhou Y, Huang Z S, Xiao X M, Xu W B, Yan B. Research progress on biological mechanism of active silicon alleviating heavy metal stress in plants. Ecol Sci, 2022, 41(5): 243-251 (in Chinese with English abstract).
[15] Ma J F, Naoki Y. Silicon uptake and accumulation in higher plants. Trends Plant Sci, 2006, 11: 392-397.
doi: 10.1016/j.tplants.2006.06.007 pmid: 16839801
[16] Zia A, Hegazy H S, Hassan N S, Naguib D M, AbdelHaliem M E. Biochemical responses of wheat to silicon application under salinity. J Plant Nutr Soil Sci, 2021, 184: 255-262.
[17] 龚金龙, 张洪程, 龙厚元, 胡雅杰, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 水稻中硅的营养功能及生理机制的研究进展. 植物生理学报, 2012, 48: 1-10.
Gong J L, Zhang H C, Long H Y, Hu Y J, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Progress in research of nutrition functions and physiological mechanisms of silicon in rice. J Plant Physiol, 2012, 48: 1-10 (in Chinese with English abstract).
[18] Neera G, Purnima B. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul, 2016, 78: 371-387.
[19] Naguib M D, Abdalla H. Metabolic status during germination of nano silica primed Zea mays seeds under salinity stress. J Crop Sci Biotechnol, 2019, 22: 415-423.
[20] Alzahrani Y, Alpaslan K, Hesham F A, Sebnem K, Mostafa M R. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotox Environ Safe, 2018, 154: 187-196.
doi: S0147-6513(18)30144-1 pmid: 29475124
[21] Liang Y, Urano D, Liao K L, Hedrick T L, Gao Y, Jones A M. A nondestructive method to estimate the chlorophyll content of Arabidopsis seedlings. Plant Methods, 2017, 13: 26.
doi: 10.1186/s13007-017-0174-6 pmid: 28416964
[22] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164-167, 184, 258-260.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 164-167, 184, 258-260 (in Chinese).
[23] 林植芳, 李双顺, 林桂珠, 孙谷畴, 郭俊彦. 水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系. 植物学报, 1984, 26: 605-615.
Lin Z F, Li S S, Lin G Z, Sun G H, Guo J Y. Relationship between senescence and superoxide dismutase activity and lipid peroxidation in rice leaves. Acta Bot Sin, 1984, 26: 605-615 (in Chinese).
[24] Pedro G C, Luigi D F, Alvina G, Mirza H, Munir O, Volkan A, María T L. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev, 2020, 87: 1-46.
[25] Morton M J L, Awlia M, Altamimi N, Saade S, Pailles Y, Negrão S, Tester M. Salt stress under the scalpel-dissecting the genetics of salt tolerance. Plant J, 2019, 97: 148-163.
[26] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应. 作物学报, 2022, 48: 1210-1221.
doi: 10.3724/SP.J.1006.2022.11040
Lei X H, Wan C Q, Tao J C, Leng J J, Wu Y X, Wang J L, Wang P K, Yang Q H, Feng B L, Gao J F. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress. Acta Agron Sin, 2022, 48: 1210-1221 (in Chinese with English abstract).
[27] Ferchichi S, Hessini K, Dell A E, Amelia L D, Woodrow P, Ciarmiello L F, Fuggi A, Carillo P. Hordeum vulgare and hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Funct Plant Biol, 2018, 45: 1096-1109.
doi: 10.1071/FP18046 pmid: 32290971
[28] 李润枝, 靳晴, 李召虎, 王晔, 彭真, 段留生. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应. 作物学报, 2020, 46: 1810-1816.
doi: 10.3724/SP.J.1006.2020.04080
Li R Z, Jin Q, Li Z H, Wang Y, Peng Z, Duan L S. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis fisch during seed germination and seedling growth stages. Acta Agron Sin, 2020, 46: 1810-1816 (in Chinese with English abstract).
[29] Kumara K, Ampitiyawatta D A, Padmaperuma A. Alleviation of salt-induced adverse effects on gas exchange, photosynthetic pigments content and chloroplast ultrastructure in Gerbera jamesonii L. by exogenous salicylic acid application. Asian J Res Agric For, 2021, 7: 1-13.
[30] 周晓瑾, 黄海霞, 张君霞, 马步东, 陆刚, 齐建伟, 张婷, 朱珠. 盐胁迫对裸果木幼苗光合特性的影响. 草业学报, 2022, 32(2): 75-83.
Zhou X J, Huang H X, Zhang J X, Ma B D, Lu G, Qi J W, Zhang T, Zhu Z. Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings. Acta Pratac Sin, 2022, 32(2): 75-83 (in Chinese with English abstract).
[31] Shen Z H, Pu X Z, Wang S M, Dong X X, Cheng X J, Cheng M X. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake. Sci Rep, 2022, 12: 5089.
[32] Sun Y K, Xu J Q, Miao X Y, Lin X S, Liu W Z, Ren H Y. Effects of exogenous silicon on maize seed germination and seedling growth. Sci Rep, 2021, 11: 1014.
doi: 10.1038/s41598-020-79723-y pmid: 33441695
[33] Ali A, Basra S M A, Iqbal J, Hussain S, Subhani M N, Sarwar M, Haji A. Silicon mediated biochemical changes in wheat under salinized and non salinzed solution cultures. Afr J Biotechnol, 2012, 11: 606-615.
[34] Yin L N, Wang S W, Li J Y, Kiyoshi T, Mariko O. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of sorghum bicolor. Acta Physiol Plant, 2013, 35: 3099-3107.
[35] Rana M, Mark T. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[36] Liu P, Yin L N, Wang S W, Zhang M J, Deng X P, Zhang S Q, Kiyoshi T. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot, 2015, 111: 42-51.
[37] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响. 作物学报, 2023, 49: 1616-1629.
doi: 10.3724/SP.J.1006.2023.23045
Zhang Z B, Jia C L, Ren B Z, Liu P, Zhao B, Zhang J W. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize. Acta Agron Sin, 2023, 49: 1616-1629 (in Chinese with English abstract).
[38] 李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏, 李琦, 侯立白. 播期和密度对玉米干物质积累动态的影响及其模型的建立. 作物学报, 2010, 36: 2143-2153.
doi: 10.3724/SP.J.1006.2010.02143
Li X L, Zhao M, Li C F, Ge J Z, Hou H P, Li Q, Hou L B. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize. Acta Agron Sin, 2010, 36: 2143-2153 (in Chinese with English abstract).
[39] 张乃丹, 宋付朋, 张喜琦, 左世福, 王文杰. 速缓效氮肥配施有机肥对滨海盐渍土供氮能力及小麦产量的影响. 水土保持学报, 2020, 34(6): 337-344.
Zhang N D, Song F P, Zhang X Q, Zuo S F, Wang W J. Effect of available and slow-released nitrogen fertilizer combined with organic fertilizer on soil nitrogen supply capacity and wheat yield in coastal saline soil. Res Soil Water Conserv, 2020, 34(6): 337-344 (in Chinese with English abstract).
[40] 王茂莹, 王慧桥, 司庆臣, 张倩, 朱营营, 董元杰. 不同浓度外源-氧化氮对盐胁迫下小麦幼苗生理特性的影响. 土壤通报, 2019, 50: 1426-1433.
Wang M Y, Wang H Q, Si Q C, Zhang Q, Zhu Y Y, Dong Y J. Effects of exogenous nitric-oxide at different concentrations on physiological characteristics of wheat seedlings under salt stress. Chin J Soil Sci, 2019, 50: 1426-1433 (in Chinese with English abstract).
[41] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性. 作物学报, 2023, 49: 1339-1349.
doi: 10.3724/SP.J.1006.2023.22031
Wei H M, Tao W K, Zhou Y, Yan F Y, Li W W, Ding Y F, Liu Z H, Li G H. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance. Acta Agron Sin, 2023, 49: 1339-1349 (in Chinese with English abstract).
[42] 王力, 孙影, 张洪程, 魏海燕, 朱大伟, 朱盈, 徐栋, 霍中洋. 不同时期施用锌硅肥对优良食味粳稻产量和品质的影响. 作物学报, 2017, 43: 885-898.
doi: 10.3724/SP.J.1006.2017.00885
Wang L, Sun Y, Zhang H C, Wei H Y, Zhu D W, Zhu Y, Xu D, Huo Z Y. Effect of Zn and Si fertilizers applied at different stages on yield and quality of japonica rice with good eating quality. Acta Agron Sin, 2017, 43: 885-898 (in Chinese with English abstract).
[43] Coskun D, Deshmukh R, Sonah H, Menzies J G, Reynolds O, Ma J F, Kronzucker H J, Bélanger R R. The controversies of silicon's role in plant biology. New Phytol, 2019, 221: 67-85.
doi: 10.1111/nph.15343 pmid: 30007071
[44] Yan G C, Miroslav N, Ye M J, Xiao Z X, Liang Y C. Silicon acquisition and accumulation in plant and its significance for agriculture. J Integr Agric, 2018, 17: 2138-2150.
[45] Vahideh R, Movahhedi D M, Balouchi H, Yadavi A, Hamidian M. Silicon can improve nutrient uptake and performance of black cumin under drought and salinity stresses. Commun Soil Sci Plan, 2023, 54: 297-310.
[46] Kalyani M, Biswarup M, Prateek K. Effect of zinc and foliar application of silicon on growth and yield of maize (Zea mays L.). Int J Plant Soil Sci, 2023, 35: 141-146.
[1] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[2] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[3] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[4] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[5] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[6] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[7] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[8] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[9] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[10] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[11] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[12] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[13] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[14] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[15] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!