欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2323-2334.doi: 10.3724/SP.J.1006.2024.43002

• 耕作栽培·生理生化 • 上一篇    下一篇

有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响

张贵芹1(), 王洪章1, 郭新送2, 朱福军2, 高涵2, 张吉旺1, 赵斌1, 任佰朝1, 刘鹏1, 任昊1,*()   

  1. 1黄淮海区域玉米技术创新中心 / 山东农业大学农学院, 山东泰安 271018
    2山东农大肥业科技股份有限公司, 山东肥城 271600
  • 收稿日期:2024-01-09 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-06-07
  • 通讯作者: *任昊, E-mail: renhaosadu@126.com<
  • 作者简介:E-mail: zhangguiqinsy@163.com
  • 基金资助:
    山东省重点研发计划项目(LJNY202103);山东省现代农业产业技术体系建设项目(SDAIT-02-08);山东省重大科技创新工程计划项目(2021CXGC010804-05);山东省自然科学基金资助项目青年项目(ZR2022QC135)

Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land

ZHANG Gui-Qin1(), WANG Hong-Zhang1, GUO Xin-Song2, ZHU Fu-Jun2, GAO Han2, ZHANG Ji-Wang1, ZHAO Bin1, REN Bai-Zhao1, LIU Peng1, REN Hao1,*()   

  1. 1Huang-huai-hai Regional Maize Technology Innovation Center / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Shandong Agricultural University Fertilizer Technology Co., Ltd, Feicheng 271600, Shandong, China
  • Received:2024-01-09 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-06-07
  • Contact: *E-mail: renhaosadu@126.com
  • Supported by:
    Key Research and Development Project of Shandong Province(LJNY202103);Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08);Major Scientific and Technological Innovation Project in Shandong Province(2021CXGC010804-05);Shandong Provincial Natural Science Foundation(ZR2022QC135)

摘要:

探究不同有机物料投入对滨海盐碱地土壤理化性质及玉米生长发育的调控作用, 为滨海盐碱地夏玉米生产提供理论依据。试验于2021—2022年夏玉米生长季在山东省滨州市无棣县滨海盐碱型农田进行。有机物料类型及用量分别为腐植酸(3000 kg hm-2, HA)、生物炭(15,000 kg hm-2, BC)、生物有机肥(15,000 kg hm-2, BO), 以不添加有机物料为对照(CK), 探究0~40 cm土层土壤容重、总孔隙度、田间持水量、pH值、电导率及总有机碳含量的变化, 分析不同有机物料投入对玉米地上部干物质积累和产量形成的影响。结果表明, 腐植酸、生物炭和生物有机肥的施用均可在一定程度上改善盐碱土理化性质。3种有机物料连续处理能有效降低表层土壤容重, 增加土壤总孔隙度和田间持水量; 可显著降低0~10 cm土层pH, 分别平均降低0.17、0.08和0.20。连续施用2年后, 腐植酸显著降低0~40 cm土层电导率, 平均降低32.74%; 3种有机物料显著增加0~20 cm土层中总有机碳的含量, 其中生物炭处理能显著增加57.99%。腐植酸和生物有机肥处理显著增加夏玉米地上部干物质积累量和产量; 连续使用2年后腐植酸处理产量显著增加了11.01%, 表现较好。综上所述, 本试验条件下腐植酸施用后能改善土壤物理结构、降低0~10 cm土层pH、提高土壤中有机碳含量、显著降低土壤电导率, 促进夏玉米地上部干物质积累、提高籽粒产量, 且连续施用2年后较CK增加纯收益。故而腐植酸可作为改良滨海盐碱地土壤理化性状、促进夏玉米生长发育的有机物料。生物有机肥的施用可改善土壤理化性状, 但仍需进行定位试验以验证其长期经济效应。

关键词: 滨海盐碱地, 有机物料, 土壤理化性状, 产量

Abstract:

This study investigates the regulatory effects of different organic material inputs on soil physicochemical properties, as well as maize growth and development, in coastal saline-alkali land. The objective is to provide a theoretical basis for summer maize production in such environments. The experiment was conducted during the summer maize growing seasons of 2021-2022 in coastal saline-alkali farmland located in Wudi county, Binzhou city, Shandong province. The organic materials used included humic acid (3000 kg hm-2, HA), biochar (15,000 kg hm-2, BC), and bio-organic fertilizer (15,000 kg hm-2, BO), while the control (CK) had no organic materials added. The study examined changes in soil bulk density, total porosity, field capacity, pH value, electrical conductivity, and total organic carbon content in the 0-40 cm soil layer. Additionally, the effects of different organic material inputs on aboveground dry matter accumulation and maize yield formation were assessed. The results demonstrated that the application of humic acid, biochar, and bio-organic fertilizer can improve the physicochemical properties of saline-alkali soil. All three organic material treatments significantly reduced the bulk density of the surface soil, increased total porosity and field capacity, and reduced the pH value of the 0-10 cm soil layer by 0.17, 0.08, and 0.20, respectively. After two years of continuous application, humic acid significantly decreased soil electrical conductivity in the 0-40 cm soil layer by an average of 32.74%. Furthermore, all three organic materials significantly increased the total organic carbon content in the 0-20 cm soil layer, with the biochar treatment exhibiting a significant increase of 57.99%. Both humic acid and bio-organic fertilizer treatments significantly increased aboveground biomass and yield of summer maize. After two consecutive years of application, the humic acid treatment showed a significant yield increase of 11.01%, indicating superior performance. In conclusion, comprehensive analysis showed that the application of humic acid can improve soil physical structure, reduce the pH of the 0-10 cm soil layer, increase organic carbon content, decrease soil electrical conductivity, promote aboveground biomass accumulation in summer maize, and enhance grain yield under the conditions of this study. Moreover, humic acid application demonstrated increased net yield compared to the control after two consecutive years. Therefore, humic acid can be employed as an organic material to improve soil physical and chemical properties in coastal saline-alkali land, while promoting the growth and development of summer maize. Although bio-organic fertilizer also enhances soil physical and chemical properties, further localized experiments are necessary to verify its long-term economic effects.

Key words: coastal saline-alkali land, organic material, soil physical and chemical properties, yield

图1

试验点夏玉米季降雨量和气温变化情况"

图2

不同有机物料投入下盐碱土壤的pH值 CK、HA、BC和BO分别表示不添加有机物料、添加腐植酸(3000 kg hm-2)、添加生物炭(15,000 kg hm-2)和添加生物有机肥(15,000 kg hm-2)。误差线为标准误。图注上标以不同小写字母表示同一年份、同一土层不同处理间差异显著(P < 0.05)。"

图4

不同有机物料投入下盐碱土壤的总有机碳含量 CK、HA、BC和BO分别表示不添加有机物料、添加腐植酸(3000 kg hm-2)、添加生物炭(15,000 kg hm-2)和添加生物有机肥(15,000 kg hm-2)。误差线为标准误。图注上标以不同小写字母表示同一年份、同一土层不同处理间差异显著(P < 0.05)。"

图5

不同有机物料投入下盐碱地夏玉米的干物质积累量 CK、HA、BC和BO分别表示不添加有机物料、添加腐植酸(3000 kg hm-2)、添加生物炭(15,000 kg hm-2)和添加生物有机肥(15,000 kg hm-2)。误差线为标准误。"

图6

玉米地上部生物量、产量及产量构成因素与土壤理化性状的相关性分析 **表示差异极显著(P < 0.01), *表示差异显著(P < 0.05)。"

表1

不同有机物料投入下盐碱土壤的容重、总孔隙度和田间持水量"

土层
Soil layer
(cm)
处理
Treatment
2021 2022
容重
Bulk density
(g cm-3)
总孔隙度
Total porosity
(%)
田间持水量
Field capacity
(%)
容重
Bulk density
(g cm-3)
总孔隙度
Total porosity (%)
田间持水量
Field capacity
(%)
0-10 CK 1.43±0.01 a 40.25±1.07 b 25.78±0.54 a 1.17±0.01 a 48.75±0.01 b 36.08±0.36 b
HA 1.41±0.01 a 42.70±0.64 a 26.78±0.57 a 1.11±0.03 bc 49.77±0.12 a 38.49±1.02 a
BC 1.41±0.01 a 42.57±0.33 a 25.40±1.35 a 1.08±0.01 c 49.85±0.51 a 38.09±0.37 a
BO 1.42±0.01 a 42.62±0.32 a 27.12±0.40 a 1.14±0.01 ab 49.38±0.56 ab 37.71±0.69 a
10-20 CK 1.57±0.01 a 33.84±0.78 b 20.22±0.63 b 1.56±0.01 a 39.39±0.40 c 24.49±0.49 c
HA 1.50±0.01 b 37.19±0.26 a 25.09±0.19 a 1.33±0.02 c 42.07±0.62 b 30.69±2.80 b
BC 1.49±0.02 b 39.44±0.06 a 25.39±0.37 a 1.28±0.01 d 45.30±0.19 a 34.55±0.02 a
BO 1.45±0.01 c 38.32±0.31 a 24.81±0.51 a 1.44±0.02 b 41.55±0.92 b 27.81±0.80 b
20-30 CK 1.56±0.01 a 29.27±1.65 bc 16.95±0.40 c 1.48±0.03 a 40.30±0.34 a 26.02±0.06 b
HA 1.52±0.01 b 27.77±0.64 c 17.91±0.36 bc 1.50±0.01 a 40.49±0.29 a 25.94±0.42 b
BC 1.55±0.01 a 31.71±1.10 b 20.04±0.61 b 1.35±0.06 b 42.26±0.88 a 30.03±1.88 a
BO 1.47±0.01 c 36.43±2.05 a 24.29±1.66 a 1.45±0.01 a 42.11±0.18 a 27.97±0.31 ab
30-40 CK 1.44±0.01 c 33.01±0.46 b 23.66±1.43 a 1.39±0.02 a 43.96±0.63 a 30.26±0.73 ab
HA 1.56±0.01 a 26.27±0.70 c 16.51±0.45 c 1.38±0.01 a 41.89±0.24 b 29.31±0.16 b
BC 1.47±0.01 b 36.18±1.41 a 20.93±0.79 b 1.37±0.01 a 42.76±0.25 b 31.61±0.21 a
BO 1.47±0.01 b 34.48±0.21 ab 21.92±1.17 ab 1.32±0.05 a 42.61±0.01 b 29.00±0.74 b

图3

不同有机物料投入下盐碱土壤的电导率 CK、HA、BC和BO分别表示不添加有机物料、添加腐植酸(3000 kg hm-2)、添加生物炭(15,000 kg hm-2)和添加生物有机肥(15,000 kg hm-2)。误差线为标准误。图注上标以不同小写字母表示同一年份、同一土层不同处理间差异显著(P < 0.05)。"

表2

不同有机物料投入下盐碱地夏玉米的产量及其构成因素"

年份
Year
处理
Treatment
公顷穗数
Actual ears (ear hm-2)
穗粒数
Grains per ear
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
2021 CK 60,558.58±1170.72 a 511.18±3.43 a 255.36±0.97 b 7903.65±193.57 c
HA 62,225.33±1644.46 a 495.91±5.71 ab 257.05±2.00 b 8217.70±96.26 b
BC 61,114.17±1575.40 a 487.89±10.27 b 256.05±3.43 b 7732.01±215.66 c
BO 62,780.92±962.30 a 504.83±7.37 ab 286.31±4.49 a 9015.42±73.83 a
2022 CK 56,113.92±962.30 a 556.98±2.67 b 321.67±5.84 bc 10,051.57±109.61 c
HA 57,225.08±962.30 a 582.98±4.09 a 334.52±5.57 a 11,157.90±111.07 a
BC 56,669.50±0.00 a 577.87±10.81 ab 315.26±4.83 c 10,324.06±251.87 bc
BO 57,225.08±962.30 a 582.98±17.89 a 331.18±3.65 ab 11,050.37±473.17 ab

表3

不同有机物料投入下玉米各项投入与产出情况"

年份
Year
处理
Treatment
生产成本 Production cost (Yuan hm-2) 产值
Output value (Yuan hm-2)
纯收益
Net income (Yuan hm-2)
较CK增加纯收益
Increase net income compared with CK (Yuan hm-2)
种子
Seed
农药
Pesticide
肥料
Fertilizer
机械
Machine
合计
Summation
2021 CK 750 320 2250 1500 4820 21,735.03 16,915.03
HA 750 320 3750 1500 6320 22,598.67 16,278.67 -636.36
BC 750 320 74,250 1500 76,820 21,263.03 -55,557.97 -72,472.00
BO 750 320 12,750 1500 15,320 24,792.45 9472.41 -7442.62
2022 CK 750 400 2250 1300 4700 25,813.87 21,113.87
HA 750 400 3750 1300 6200 29,109.97 22,909.97 1796.10
BC 750 400 74,250 1300 76,700 26,864.55 -49,835.45 -70,949.32
BO 750 400 12,750 1300 15,200 27,482.41 12,282.41 -8831.46
[1] 李金彪, 陈金林, 刘广明, 杨劲松. 滨海盐碱地绿化理论技术研究进展. 土壤通报, 2014, 45: 246-251.
Li J B, Chen J L, Liu G M, Yang J S. Progress of greening theory and technology for coastal saline land. Chin J Soil Sci, 2014, 45: 246-251 (in Chinese with English abstract).
[2] 杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59: 10-27.
Yang J S, Yao R J, Wang X P, Xie W P, Zhang X, Zhu W, Zhang L, Sun R J. Research on salt-affected soils in China: history, status quo and prospect. Acta Pedol Sin, 2022, 59: 10-27 (in Chinese with English abstract).
[3] 刘淼, 王志春, 杨福, 李景鹏, 梁正伟. 生物炭在盐碱地改良中的应用进展. 水土保持学报, 2021, 35(3): 1-8.
Liu M, Wang Z C, Yang F, Li J P, Liang Z W. Application progress of biochar in amelioration of saline-alkaline soil. J Soil Water Conserv, 2021, 35(3): 1-8 (in Chinese with English abstract).
[4] 杨易, 黄立华, 肖扬, 黄金鑫, 刘伯顺, 杨靖民. 苏打盐碱化稻田土壤氮素矿化和硝化特征及其影响因子. 植物营养与肥料学报, 2022, 28: 1816-1827.
Yang Y, Huang L H, Xiao Y, Huang J X, Liu B S, Yang J M. Characteristics and influencing factors of soil nitrogen mineralization and nitrification in saline-sodic paddy fields. J Plant Nutr Fert, 2022, 28: 1816-1827 (in Chinese with English abstract).
[5] He K, He G, Wang C P, Zhang H P, Xu Y, Wang S M, Kong Y Z, Zhou G K, Hu R B. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl Soil Ecol, 2020, 155: 103674.
[6] Li J G, Pu L J, Han M F, Zhu M, Zhang R S, Xiang Y Z. Soil salinization research in China: advances and prospects. J Geog Sci, 2014, 24: 943-960.
[7] 崔倩, 夏江宝, 刘京涛, 杨红军, 彭玲. 生物炭和EM菌对黄河三角洲盐碱地田菁生长和光合特性的影响. 应用生态学报, 2020, 31: 3101-3110.
doi: 10.13287/j.1001-9332.202009.006
Cui Q, Xia J B, Liu J T, Yang H J, Peng L. Effects of biochar and EM application on growth and photosynthetic characteristics of Sesbania cannabina in saline-alkali soil of the Yellow River Delta, China. Chin J Appl Ecol, 2020, 31: 3101-3110 (in Chinese with English abstract).
[8] Pamela C, Louise N, Joseph W K. Agricultural uses of plant biostimulants. Plant Soil, 2014, 383: 3-41.
[9] Hu Y W, Li Q K, Song C J, Jin X. Effect of humic acid combined with fertilizer on the improvement of saline-alkali land and cotton growth. Appl Ecol Environ Res, 2021, 19: 1279-1294.
[10] 高亮, 潘修强, 孟宪东, 赵岩, 刘丽丽. 活化腐植酸改良苏打盐碱地及对水稻生长发育的影响. 腐植酸, 2023, (2): 34-37.
Gao L, Pan X Q, Meng X D, Zhao Y, Liu L L. Improvement of soda saline alkali land with activated humic acid and effects on the growth and development of rice. Humic Acid, 2023, (2): 34-37 (in Chinese with English abstract).
[11] Motojima H, Yamada P, Irie M, Ozaki M, Shigemori H, Isoda H. Amelioration effect of humic acid extracted from solubilized excess sludge on saline-alkali soil. J Mater Cycles Waste Manag, 2012, 14: 169-180.
[12] Liang J P, Li Y, Si B C, Wang Y Z, Chen X G, Wang X F, Chen H R, Wang H R, Zhang F C, Bai Y G, Biswas A. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Sci Total Environ, 2021, 771: 144802.
[13] 李毅, 梁嘉平, 王小芳, 杨哲, 樊向阳. 改善土壤理化性质和作物出苗率的最佳生物炭施用量. 土壤学报, 网络首发[2023-08-31], https://link.cnki.net/urlid/32.1119.P.20230831.1257.002.
Li Y, Liang J P, Wang X F, Yang Z, Fan X Y. The most appropriate biochar application rate for improving soil physicochemical properties and crop germination rates. Acta Pedol Sin, Published online [2023-08-31], https://link.cnki.net/urlid/32.1119.P.20230831.1257.002.
[14] Lian F, Liu X W, Gao M L, Li H Z, Qiu W W, Song Z G. Effects of Fe-Mn-Ce oxide-modified biochar on as accumulation, morphology, and quality of rice (Oryza sativa L.). Environ Sci Pollut Res, 2020, 27: 18196-18207.
[15] 徐敏, 伍钧, 张小洪, 杨刚. 生物炭施用的固碳减排潜力及农田效应. 生态学报, 2018, 38: 393-404.
Xu M, Wu J, Zhang X H, Yang G. Impact of biochar application on carbon sequestration, soil fertility and crop productivity. Acta Ecol Sin, 2018, 38: 393-404 (in Chinese with English abstract).
[16] 邵孝候, 张宇杰, 常婷婷, 叶欢, 张展羽. 生物有机肥对盐渍土壤水盐动态及番茄产量的影响. 河海大学学报(自然科学版), 2018, 46: 153-160.
Shao X H, Zhang Y J, Chang T T, Ye H, Zhang Z Y. Effects of different fertilizer treatments on soil water, salt and crop yield formation in saline soils. J Hohai Univ (Nat Sci Edn), 2018, 46: 153-160 (in Chinese with English abstract).
[17] Lu P, Bainard L D, Ma B, Liu J G. Bio-fertilizer and rotten straw amendments alter the rhizosphere bacterial community and increase oat productivity in a saline-alkaline environment. Sci Rep, 2020, 10: 19896.
doi: 10.1038/s41598-020-76978-3 pmid: 33199781
[18] Peng Y Y, Zhang H, Lian J S, Zhang W, Li G H, Zhang J F. Combined application of organic fertilizer with microbial inoculum improved aggregate formation and salt leaching in a secondary salinized soil. Plants (Basel), 2023, 12: 2945.
[19] 田家明, 张冠初, 罗庄田, 袁光, 梁新波, 李泽伦, 石书兵, 姜常松, 张智猛. 生物有机肥对盐碱土花生农艺性状及荚果发育的影响. 花生学报, 2020, 49(1): 66-71.
Tian J M, Zhang G C, Luo Z T, Yuan G, Liang X B, Li Z L, Shi S B, Jiang C S, Zhang Z M. Effect of bio-organic fertilizer on agronomic traits and pod development of peanut in saline-alkali soil. J Peanut Sci, 2020, 49(1): 66-71 (in Chinese with English abstract).
[20] Naher U A, Biswas J C, Maniruzzaman M, Khan F H, Sarkar M I U, Jahan A, Hera M H R, Hossain M B, Islam A, Islam M R, Kabir M S. Bio-organic fertilizer: a green technology to reduce synthetic N and P fertilizer for rice production. Front Plant Sci, 2021, 12: 602052.
[21] 简尊吉, 雷蕾, 倪妍妍, 朱建华, 曾立雄, 肖文发. 砾石对马尾松人工林土壤有机碳密度评估的影响. 应用生态学报, 2023, 34: 2073-2081.
doi: 10.13287/j.1001-9332.202308.010
Jian Z J, Lei L, Ni Y Y, Zhu J H, Zeng L X, Xiao W F. Effects of gravel on the evaluation of soil organic carbon density in Pinus massoniana plantations. Chin J Appl Ecol, 2023, 34: 2073-2081 (in Chinese with English abstract).
[22] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 25-38.
Bao S D. Soil Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25-38 (in Chinese).
[23] Spohn M, Giani L. Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time. Soil Biol Biochem, 2011, 43: 1081-1088.
[24] 史东梅, 吕刚, 蒋光毅, 卢喜平. 马尾松林地土壤物理性质变化及抗蚀性研究. 水土保持学报, 2005, 19: 35-39.
Shi D M, Lyu G, Jiang G Y, Lu X P. Study on anti-erodibility and change of soil physical property in Pinus massoniana woodland. J Soil Water Conserv, 2005, 19: 35-39 (in Chinese with English abstract).
[25] 杨建君, 盖浩, 张梦璇, 蔡育蓉, 王力艳, 王立刚. 深松结合秸秆还田对黑土孔隙结构的影响. 中国农业科学, 2023, 56: 892-906.
doi: 10.3864/j.issn.0578-1752.2023.05.007
Yang J J, Gai H, Zhang M X, Cai Y R, Wang L Y, Wang L G. Effect of subsoiling combined with straw returning measure on pore structure of black soil. Sci Agric Sin, 2023, 56: 892-906 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.05.007
[26] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响. 作物学报, 2023, 49: 2517-2527.
doi: 10.3724/SP.J.1006.2023.24212
Yang Y, He Z Q, Lin J H, Li Y, Chen F, Lyu C W, Tang D B, Zhou Q L, Wang J C. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield. Acta Agron Sin, 2023, 49: 2517-2527 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24212
[27] 王璐, 朱占玲, 刘照霞, 马玉婷, 孙福, 葛顺峰, 姜远茂. 多种有机物料混施对苹果幼苗生长、氮素利用及土壤特性的影响. 水土保持学报, 2021, 35: 362-368.
Wang L, Zhu Z L, Liu Z X, Ma Y T, Sun F, Ge S F, Jiang Y M. Effects of mixtures of different organic materials on apple seedling growth, nitrogen utilization and soil properties. J Soil Water Conserv, 2021, 35: 362-368 (in Chinese with English abstract).
[28] Kaje V V, Sharma D K, Shivay Y S. Long-term impact of organic and conventional farming on soil physical properties under rice (Oryza sativa)-wheat (Triticum aestivum) cropping system in north-western Indo-Gangetic plains. Indian J Agric Sci, 2018, 88: 107-113.
[29] 张伟明, 管学超, 黄玉威, 孙大荃, 孟军, 陈温福. 生物炭与化学肥料互作的大豆生物学效应. 作物学报, 2015, 41: 109-122.
doi: 10.3724/SP.J.1006.2015.00109
Zhang W M, Guan X C, Huang Y W, Sun D Q, Meng J, Chen W F. Biological effects of biochar and fertilizer interaction in soybean plant. Acta Agron Sin, 2015, 41: 109-122 (in Chinese with English abstract).
[30] 刘东兴. 改良物质对盐碱土的改良作用及对植被生长发育的影响.东北林业大学硕士学位论文, 黑龙江哈尔滨, 2009.
Liu D X. Effected of Soil Ameliorant on Growth Characteristics of Plants and Salinized Soil. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2009 (in Chinese with English abstract).
[31] 邱吟霜, 王西娜, 李培富, 侯贤清, 王艳丽, 吴鹏年, 霍文斌. 不同种类有机肥及用量对当季旱地土壤肥力和玉米产量的影响. 中国土壤与肥料, 2019, (6): 182-189.
Qiu Y S, Wang X N, Li P F, Hou X Q, Wang Y L, Wu P N, Huo W B. Different kinds of organic fertilizers and amounts on dryland soil fertility and corn yield in the current season. Soil Fert Sci China, 2019, (6): 182-189 (in Chinese with English abstract).
[32] Zhou Z X, Li Z Y, Zhang Z Q, You L R, Xu L F, Huang H Y, Wang X P, Gao Y, Cui X J. Treatment of the saline-alkali soil with acidic corn stalk biochar and its effect on the sorghum yield in western Songnen Plain. Sci Total Environ, 2021, 797: 149190.
[33] 王舒华, 陈爽, 王悦, 李圆宾, 徐璐瑶, 王强, 李莹飞, 薛鹏飞, 焦加国, 李辉信, 胡锋. 不同有机物料对盐碱土的淋洗效果研究. 水土保持学报, 2021, 35: 376-383.
Wang S H, Chen S, Wang Y, Li Y B, Xu L Y, Wang Q, Li Y F, Xue P F, Jiao J G, Li H X, Hu F. Study on leaching effect of different organic materials on saline-alkali soil. J Soil Water Conserv, 2021, 35: 376-383 (in Chinese with English abstract).
[34] Song J S, Zhang H Y, Chang F D, Yu R, Zhang X Q, Wang X Q, Wang W N, Liu J M, Zhou J, Li Y Y. Humic acid plus manure increases the soil carbon pool by inhibiting salinity and alleviating the microbial resource limitation in saline soils. Catena (Amst), 2023, 233: 107527.
[35] 王倩姿, 王玉, 孙志梅, 刘佳, 牛劭斌, 薛澄, 马文奇. 腐植酸类物质的施用对盐碱地的改良效果. 应用生态学报, 2019, 30: 1227-1234.
doi: 10.13287/j.1001-9332.201904.001
Wang Q Z, Wang Y, Sun Z M, Liu J, Niu S B, Xue C, Ma W Q. Amelioration effect of humic acid on saline-alkali soil. Chin J Appl Ecol, 2019, 30: 1227-1234 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.201904.001
[36] 屈忠义, 孙慧慧, 杨博, 高晓瑜, 王利明, 王丽萍. 不同改良剂对盐碱地土壤微生物与加工番茄产量的影响. 农业机械学报, 2021, 52: 311-318.
Qu Z Y, Sun H H, Yang B, Gao X Y, Wang L M, Wang L P. Effects of different amendments on soil microorganisms and yield of processing tomato in saline alkali soil. Trans CSAM, 2021, 52: 311-318 (in Chinese with English abstract).
[37] Liu M L, Wang C, Liu X L, Lu Y C, Wang Y F. Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl Soil Ecol, 2020, 156: 103705.
[38] Liang X Q, Ji Y J, He M M, Su M M, Liu C L, Tian G M. Simple N balance assessment for optimizing the biochar amendment level in paddy soils. Commun Soil Sci Plant Anal, 2014, 45: 1247-1258.
[39] 张伟明, 修立群, 吴迪, 孙媛媛, 顾闻琦, 张鈜贵, 孟军, 陈温福. 生物炭的结构及其理化特性研究回顾与展望. 作物学报, 2021, 47: 1-18.
doi: 10.3724/SP.J.1006.2021.02021
Zhang W M, Xiu L Q, Wu D, Sun Y Y, Gu W Q, Zhang H G, Meng J, Chen W F. Review of biochar structure and physicochemical properties. Acta Agron Sin, 2021, 47: 1-18 (in Chinese with English abstract).
[40] Gu Y Y, Zhang H Y, Liang X Y, Fu R, Li M, Chen C J. Effect of different biochar particle sizes together with bio-organic fertilizer on rhizosphere soil microecological environment on saline-alkali land. Front Environ Sci, 2022, 10: 949190.
[41] Mukherjee A, Lal R. The biochar dilemma. Soil Res, 2014, 52: 217-230.
[42] Chen M M, Zhang S R, Liu L L, Liu J G, Ding X D. Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant Soil, 2022, 474: 233-249.
[43] 曲成闯, 陈效民, 张志龙, 闾婧妍, 嵇晨, 张俊. 生物有机肥提高设施土壤生产力减缓黄瓜连作障碍的机制. 植物营养与肥料学报, 2019, 25: 814-823.
Qu C C, Chen X M, Zhang Z L, Lyu J Y, Ji C, Zhang J. Mechanism of bio-organic fertilizer on improving soil productivity for continuous cucumber in greenhouse. J Plant Nutr Fert, 2019, 25: 814-823 (in Chinese with English abstract).
[44] 孟婷婷, 杨亮彦, 孔辉, 刘金宝. 生物有机肥施用量对土壤有机碳组分及酶活性的影响. 北方园艺, 2022, (17): 86-91.
Meng T T, Yang L Y, Kong H, Liu J B. Effects of application amount of bio-organic fertilizer on soil organic carbon components and enzyme activities. North Hortic, 2022, (17): 86-91 (in Chinese with English abstract).
[45] 沈其荣. 中国有机(类)肥料. 北京: 中国农业出版社, 2021.
Shen Q R. Organic-based Fertilizers in China. Beijing: China Agriculture Press, 2021 (in Chinese).
[46] 刘艳, 唐亚福, 杨越超, 姜远茂, 程冬冬. 大颗粒活化腐植酸肥对苹果土壤团聚体和有机碳的影响. 应用生态学报, 2022, 33: 1021-1026.
doi: 10.13287/j.1001-9332.202204.012
Liu Y, Tang Y F, Yang Y C, Jiang Y M, Cheng D D. Effects of large-grained activated humic acid fertilizer on soil aggregates and organic carbon in apple orchard soil. Chin J Appl Ecol, 2022, 33: 1021-1026 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202204.012
[47] 李春越, 常顺, 钟凡心, 薛英龙, 苗雨, 王益, 党廷辉. 种植模式和施肥对黄土旱塬农田土壤团聚体及其碳分布的影响. 应用生态学报, 2021, 32: 191-200.
doi: 10.13287/j.1001-9332.202101.027
Li C Y, Chang S, Zhong F X, Xue Y L, Miao Y, Wang Y, Dang T H. Effects of fertilization and planting patterns on soil aggregate and carbon distribution in farmland of the Loess Plateau, northwest China. Chin J Appl Ecol, 2021, 32: 191-200 (in Chinese with English abstract).
[48] 张斯梅, 段增强, 顾克军, 张传辉, 张恒敢. 稻秸还田下减量化施氮对小麦产量、养分吸收及土壤理化性质的影响. 土壤, 2023, 55: 537-543.
Zhang S M, Duan Z Q, Gu K J, Zhang C H, Zhang H G. Effects of reduced nitrogen fertilization on wheat yield, nutrient uptake and soil physicochemical properties under rice straw returning. Soil, 2023, 55: 537-543 (in Chinese with English abstract).
[49] 赵隽, 董树亭, 刘鹏, 张吉旺, 赵斌. 有机无机肥长期定位配施对冬小麦群体光合特性及籽粒产量的影响. 应用生态学报, 2015, 26: 2362-2370.
pmid: 26685599
Zhao J, Dong S T, Liu P, Zhang J W, Zhao B. Effects of long-term mixed application of organic and inorganic fertilizers on canopy apparent photosynthesis and yield of winter wheat. Chin J Appl Ecol, 2015, 26: 2362-2370 (in Chinese with English abstract).
pmid: 26685599
[50] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响. 作物学报, 2021, 47: 2511-2521.
doi: 10.3724/SP.J.1006.2021.04279
Lu H Q, Tang W, Luo Z, Kong X Q, Li Z H, Xu S Z, Xin C S. Effects of commercial organic fertilizer substituting chemical fertilizer partially on soil nutrients, plant development, and yield in cotton. Acta Agron Sin, 2021, 47: 2511-2521 (in Chinese with English abstract).
[51] Zhang L H, Zhao H X, Xu C, Yan W P, Sun N, Tan G B, Yu J, Meng X M, Li F, Bian S F. Effects of straw returning on soil moisture and maize yield in semi-humid area. Cereal Res Commun, 2022, 50: 539-548.
[52] Chen J, Wu J H, Si H P, Lin K Y, Li H X, Li Y. Application of bio-organic fertilizer inoculated with IAA-producing rhizobacterium on growth of peanut plants in red soil. Oxid Met, 2016, 39: 1917-1927.
[53] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响. 作物学报, 2021, 47: 2522-2531.
doi: 10.3724/SP.J.1006.2021.01101
Zhang F, Yang X. Effects of combined application of organic materials and chemical fertilizers in barley-double cropping rice rotation system on barley resource utilization efficiency and yield. Acta Agron Sin, 2021, 47: 2522-2531 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01101
[54] Shan Y Y, Li G, Bai Y G, Liu H B, Zhang J H, Wei K, Wang Q J, Cao L. Effects of of gypsum combined with different amounts of biochemical humic acid on soil improvement and cotton (Gossypium hirsutum L.) yield on saline-alkali land. Appl Ecol Environ Res, 2022, 20: 841-854.
[55] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响. 作物学报, 2024, 50: 695-708.
doi: 10.3724/SP.J.1006.2024.34097
Li B Y, Ye Y, Chu R W, Jing M, Zhang S Q, Yan J K. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties. Acta Agron Sin, 2024, 50: 695-708 (in Chinese with English abstract).
[56] Norby R, Cotrufo M F. Global change: a question of litter quality. Nature, 1998, 396: 17-18.
[57] 陈晓东, 吴景贵, 范围, 朱文悦, 李晓航. 有机物料对原生盐碱土微团聚体特征及稳定性的影响. 水土保持学报, 2020, 34: 201-207.
Chen X D, Wu J G, Fan W, Zhu W Y, Li X H. Effect of organic materials on the characteristics and stability of micro-aggregates in the native saline-alkali soil. J Soil Water Conserv, 2020, 34: 201-207 (in Chinese with English abstract).
[58] 张小栋, 刘绍雄, 孙宇, 胡爱双, 李凯超, 陈亚恒. 滨海盐碱地不同改良年限土壤理化性质的变化特征. 水土保持研究, 2022, 29: 113-118.
Zhang X D, Liu S X, Sun Y, Hu A S, Li K C, Chen Y H. Variation characteristics of soil physicochemical properties of coastal saline-alkali lands with different improvement years. Res Soil Water Conserv, 2022, 29: 113-118 (in Chinese with English abstract).
[1] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[2] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[3] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[4] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[5] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[6] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[7] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[8] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[9] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[10] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[11] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[12] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[13] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[14] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
[15] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!