欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2396-2407.doi: 10.3724/SP.J.1006.2024.31071

• 耕作栽培·生理生化 • 上一篇    下一篇

行距和种植方式对小麦光合特性和产量的影响

张振(), 何建宁, 石玉*(), 于振文, 张永丽   

  1. 山东农业大学农学院 / 小麦育种全国重点实验室 / 农业农村部作物生理生态与耕作重点实验室, 山东泰安 271018
  • 收稿日期:2023-11-22 接受日期:2024-04-01 出版日期:2024-09-12 网络出版日期:2024-04-30
  • 通讯作者: *石玉, E-mail: shiyu@sdau.edu.cn
  • 作者简介:E-mail: zhangzhenxiaomai@163.com
  • 基金资助:
    国家自然科学基金项目(32172114);财政部与农业农村部国家现代农业产业技术体系建设专项(CARS-03-18);泰山学者专项经费资助

Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat

ZHANG Zhen(), HE Jian-Ning, SHI Yu*(), YU Zhen-Wen, ZHANG Yong-Li   

  1. College of Agronomy, Shandong Agricultural University / National Key Laboratory of Wheat Breeding / Key Laboratory of Crop Physiology, Ecology and Farming, Ministry of Agriculture and Rural Affairs, Tai’ an 271018, Shandong, China
  • Received:2023-11-22 Accepted:2024-04-01 Published:2024-09-12 Published online:2024-04-30
  • Contact: *E-mail: shiyu@sdau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32172114);China Agriculture Research System of MOF and MARA(CARS-03-18);Special funds for Taishan Scholars Project

摘要:

为研究不同行距对宽幅精播小麦产量和干物质积累与转运的影响, 阐明其高产高效的生理机制, 给宽幅精播技术在黄淮海平原的进一步推广提供理论依据和技术支撑, 于2017—2019小麦生长季, 以‘济麦22’为试验材料, 在20 cm (R1)、25 cm (R2)和30 cm (R3) 3个行距下, 设置宽幅精播(K)和常规条播(T)两种种植方式, 分析不同行距下宽幅精播种植与常规条播种植对小麦旗叶光合特性、干物质积累与分配和旗叶13C同化物分配特性差异。结果表明: 在相同种植方式下, R2处理下小麦的旗叶净光合速率, 开花期和成熟期干物质积累量, 花后干物质在籽粒中的分配量和贡献率, 籽粒产量均显著高于行距R1和R3处理; 在R2行距下, K处理灌浆期叶面积指数、光合有效辐射截获率和开花后14、21和28 d旗叶净光合速率和蒸腾速率显著高于T处理, 两年度K处理通过增加穗数和粒重使得籽粒产量较T处理提高8.67%; 13C示踪结果显示, R2K处理旗叶13C同化物在籽粒的分配量和分配比例显著高于其他处理; R2K处理开花期和成熟期干物质积累量和单茎质量、开花后干物质向籽粒的分配量和对籽粒的贡献率最高, 均显著高于其他处理, 获得了最高的籽粒产量。综上所述, 行距25 cm、宽幅精播种植方式是本试验条件下小麦高产高效的最佳种植模式。

关键词: 宽幅精播, 光合特性, 干物质, 13C同化物积累与分配, 籽粒产量

Abstract:

To study the effects of different row spacings on wheat yield and dry matter accumulation and transport under wide-precision planting technology, clarify the physiological mechanism of high yield and high efficiency, and provide theoretical basis and technical support for the further promotion of wide-precision planting technology in Huang-Huai-Hai Plain, two planting methods of wide-precision planting (K) and conventional drilling (T) were set up with ‘Jimai 22’ as the experimental material under three row spacings of 20 cm (R1), 25 cm (R2) and 30 cm (R3) in the wheat growth season of 2017-2019. The differences of photosynthetic characteristics, dry matter accumulation and distribution, and 13C assimilation distribution characteristics of wheat flag leaves between wide precision sowing and conventional drilling planting under different row spacing were analyzed. The results showed that under the same planting method, the net photosynthetic rate of flag leaf, dry matter accumulation at anthesis and maturity, the distribution and contribution rate of dry matter in grain after anthesis, and grain yield of wheat under R2 treatment were significantly higher than those under R1 and R3 treatments. Under R2 row spacing, the leaf area index, photosynthetically active radiation interception rate at filling stage and the net photosynthetic rate and transpiration rate of flag leaves at 14, 21, and 28 days after flowering in K treatment were significantly higher than those in T treatment. In the two years, K treatment increased grain yield by 8.67% compared with T treatment by increasing panicle number and grain weight. The results of 13C tracing showed that the distribution amount and proportion of 13C assimilates in flag leaves of R2K treatment were significantly higher than those of other treatments. The dry matter accumulation and single stem weight at anthesis and maturity stages, the distribution of dry matter to grains after flowering and the contribution rate to grains were the highest in R2K treatment, which were significantly higher than other treatments, and the highest grain yield was obtained. In summary, the planting pattern of 25 cm row spacing and wide precision sowing is the best planting pattern for high yield and high efficiency of wheat under the conditions of this experiment.

Key words: wide precision broadcast, photosynthetic characteristics, dry matter, 13C assimilate accumulation and distribution, grain yield

图1

2017-2018年和2018-2019年月降雨量"

表1

播种前0~20 cm土层土壤养分含量"

生长季
Growth season
有机质
Organic matter
全氮
Total nitrogen
碱解氮
Available nitrogen
速效磷
Available phosphorus
速效钾
Available potassium
2017-2018 14.13 1.18 117.62 41.93 116.45
2018-2019 14.56 1.09 117.32 42.11 113.18

图2

不同处理拔节期和开花期灌溉量 R1K、R2K、R3K: 宽幅精播下行距为20、25、30 cm; R1T、R2T、R3T: 常规条播下行距为20、25、30 cm。"

图3

不同处理开花后叶面积指数 DAA: 开花后天数。不同字母表示处理间差异显著(P < 0.05)。"

图4

不同处理开花后冠层光合有效辐射截获率 不同字母表示处理间差异显著(P < 0.05)。"

图5

不同处理开花后旗叶净光合速率、蒸腾速率、气孔导度和瞬时水分利用效率"

图6

同处理开花期和成熟期干物质积累量和单茎质量 不同字母表示处理间差异显著(P < 0.05)。"

表2

同处理开花后营养器官同化物再分配量"

生长季
Growing
season
处理
Treatment
开花前营养器官贮藏同化物Pre-anthesis reserves 开花后干物质Post-anthesis assimilates
转运量
Translocation (kg hm-2)
对籽粒贡献率
Contribution to grain (%)
同化量
Accumulation (kg hm-2)
对籽粒贡献率
Contribution to grain (%)
2017-2018 R1K 2485±49.70 a 33.60±1.34 a 4911±98.22 c 66.40±1.33 c
R1T 2483±45.30 a 33.65±1.35 a 4895±97.90 c 66.35±1.32 c
R2K 2322±46.44 a 26.61±1.06 c 6403±128.06 a 73.39±1.47 a
R2T 2474±43.54 a 30.81±1.23 b 5555±111.10 b 69.19±1.38 b
R3K 2451±47.02 a 30.65±1.22 b 5545±103.90 b 69.35±1.39 b
R3T 2446±45.90 a 34.90±1.40 a 4562±91.24 d 65.10±1.30 c
2018-2019 R1K 2552±38.28 a 31.60±1.26 a 5523±110.46 c 68.40±1.37 c
R1T 2533±38.99 a 31.62±1.27 a 5477±108.54 c 68.38±1.34 c
R2K 2337±35.06 c 24.74±0.99 c 7108±142.16 a 75.26±1.51 a
R2T 2453±36.78 b 27.89±1.12 b 6342±126.84 b 72.11±1.44 b
R3K 2424±34.53 b 27.93±1.04 b 6256±123.12 b 72.07±1.41 b
R3T 2430±32.45 b 31.79±1.24 a 5215±104.30 d 68.21±1.36 c

表3

同处理成熟期 13C同化物各器官分配量和分配比例"

生长季Growing season 处理
Treatment
总量
Total
(g hm‒2)
分配量 Distribution amount (g hm‒2) 分配比例 Distribution ratio (%)

Leaf
茎杆+叶鞘
Stem+Sheath
穗轴+颖壳
Spike axis+Glume
籽粒
Grain

Leaf
茎杆+叶鞘
Stem+Sheath
穗轴+颖壳
Spike axis+Glume
籽粒
Grain
2017-2018 R1K 1935±39 c 126.1±2.5 b 213.2±4.3 b 97.6±1.5 b 1498±30 c 6.52±0.13 a 11.02±0.22 a 5.04±0.10 a 77.42±1.55 c
R1T 1914±38 c 124.7±2.5 b 211.5±4.2 b 97.4±1.5 b 1481±29 c 6.52±0.12 a 11.05±0.21 a 5.09±0.09 a 77.35±1.54 c
R2K 3046±61 a 136.1±2.7 a 230.0±4.6 a 106.5±3.5 a 2573±51 a 4.47±0.09 c 7.55±0.15 c 3.50±0.07 c 84.48±1.69 a
R2T 2428±49 b 132.3±2.6 a 227.9±4.5 a 103.1±4.2 a 1965±39 b 5.45±0.11 b 9.38±0.19 b 4.24±0.08 b 80.93±1.62 b
R3K 2413±43 b 132.4±2.5 a 226.3±4.1 a 102.5±4.1 a 1952±38 b 5.49±0.10 b 9.38±0.18 b 4.25±0.08 b 80.88±1.60 b
R3T 1787±46 d 118.3±2.4 c 198.4±3.9 c 91.9±1.4 c 1378±28 d 6.62±0.13 a 11.10±0.22 a 5.14±0.10 a 77.13±1.54 c
2018-2019 R1K 2285±46 c 148.0±3.0 b 237.7±4.8 b 104.7±2.0 b 1794±36 c 6.48±0.13 a 10.40±0.21 a 4.58±0.09 a 78.53±1.57 c
R1T 2267±45 c 147.3±2.9 b 236.9±4.7 b 104.6±2.1 b 1779±36 c 6.50±0.13 a 10.45±0.20 a 4.61±0.08 a 78.44±1.51 c
R2K 3557±71 a 159.0±3.1 a 254.6±5.1 a 112.1±2.2 a 3031±61 a 4.47±0.09 c 7.16±0.14 c 3.15±0.06 c 85.22±1.70 a
R2T 2865±57 b 155.4±3.1 a 249.0±5.0 a 109.5±2.2 a 2351±47 b 5.42±0.11 b 8.69±0.17 b 3.82±0.07 b 82.06±1.64 b
R3K 2841±56 b 154.6±3.1 a 248.1±4.7 a 109.1±2.1 a 2329±46 b 5.44±0.10 b 8.73±0.16 b 3.84±0.07 b 81.99±1.46 b
R3T 2093±42 d 136.1±2.7 c 218.9±4.4 c 97.2±1.9 c 1641±33 d 6.50±013 a 10.46±0.21 a 4.65±0.09 a 78.39±1.57 c

表4

同处理小麦籽粒产量及产量构成因素"

生长季
Growth
season
处理
Treatment
籽粒产量
Grain yield
(kg hm-2)
穗数
Spike number
(×104 spike hm-2)
穗粒数
Kernel number
(kernels spike-1)
千粒重
1000-kernel weight
(g)
2017-2018 R1K 7396±148 c 644±13 a 33.81±0.68 b 40.69±0.81 c
R1T 7378±147 c 641±13 a 33.94±0.67 b 40.58±0.80 c
R2K 8725±175 a 630±13 a 36.57±0.73 a 45.18±0.90 a
R2T 8029±161 b 606±12 b 36.55±0.70 a 43.15±0.86 b
R3K 7996±159 b 605±12 b 36.53±0.72 a 43.13±0.82 b
R3T 7008±140 d 570±11 c 36.54±0.71 a 40.34±0.81 c
2018-2019 R1K 8075±162 c 693±14 a 37.52±0.75 b 37.28±0.75 c
R1T 8010±160 c 691±14 a 37.39±0.74 b 37.26±0.72 c
R2K 9445±189 a 679±14 a 40.01±0.80 a 41.61±0.83 a
R2T 8795±176 b 651±13 b 40.39±0.81 a 39.79±0.80 b
R3K 8680±174 b 650±13 b 40.21±0.78 a 39.77±0.79 b
R3T 7645±153 d 607±12 c 40.48±0.81 a 37.25±0.74 c
[1] Xu X X, Liu S, Meng F A, Zhang X, Zhao J K, Qu W K, Shi Y, Zhao C X. Grain yield formation and nitrogen utilization efficiency of different winter wheat varieties under rainfed conditions in the Huang-Huai-Hai Plain. Agronomy (Basel), 2023, 13: 915-915.
[2] 何昕楠, 林祥, 谷淑波, 王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响. 作物学报, 2019, 45: 879-892.
doi: 10.3724/SP.J.1006.2019.81070
He X N, Lin X, Gu S B, Wang D. Effects of supplemental irrigation with micro-sprinkling hoses on soil physical properties, water consumption and grain yield of winter wheat. Acta Agron Sin, 2019, 45: 879-892 (in Chinese with English abstract).
[3] Han Y Y, Wang X Y, Zhou X B. Precision planting patterns effect on growth, photosynthetic characteristics and yield of winter wheat under deficit irrigation. Int J Agric Biol, 2016, 18: 741-746.
[4] Salah E H, Bazel A, Nabil M, Yahya R. Improving morpho-physiological indicators, yield, and water productivity of wheat through an optimal combination of mulching and planting patterns in arid farming systems. Agronomy (Basel), 2023, 13: 1660.
[5] Zhang J J, Mu J Y, Hu Y A, Ren A X, Lei B, Ding P C, Li L H, Sun M, Gao Z Q. Effect of planting patterns and seeding rate on dryland wheat yield formation and water use efficiency on the loess plateau, China. Agronomy (Basel), 2023, 13: 851.
[6] 吴祯, 张保军, 海江波, 董永利, 陈军晓, 马娟娟, 韩雪冰. 不同种植方式对冬小麦花后干物质积累与分配特征及产量的影响. 麦类作物学报, 2017, 37: 1377-1382.
Wu Z, Zhang B J, Hai J B, Dong Y L, Chen J X, Ma J J, Han X B. Effect of different planting patterns on dry matter accumulation and distribution post-anthesis and yield of winter wheat. J Triticeae Crops, 2017, 37: 1377-1382 (in Chinese with English abstract).
[7] Li Q Q, Bian C Y, Liu X H, Ma C J, Liu Q R. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain. Agric Water Manag, 2015, 153: 71-76.
[8] Fan Y L, Liu J M, Zhao J T, Ma Y Z, Li Q Q, Elsevier B V. Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns. Agric Water Manag, 2019, 221: 371-376.
[9] 孔令英, 赵俊晔, 张振, 石玉, 于振文. 宽幅播种下基本苗密度对小麦旗叶光合特性及叶片和根系衰老的影响. 应用生态学报, 2023, 34: 107-113.
doi: 10.13287/j.1001-9332.202301.016
Kong L Y, Zhao J Y, Zhang Z, Shi Y, Yu Z W. Effects of planting density on photosynthetic characteristics of flag leaf and senescence of leaf and root under wide-width sowing condition. J Appl Ecol, 2023, 34: 107-113 (in Chinese with English abstract).
[10] 李拴良, 任长宏, 格桑曲珍, 赵宗财, 张宗卷, 胡希远. 宽幅硬茬播种对冬小麦生长、产量及品质的效应. 麦类作物学报, 2015, 35: 80-85.
Li S L, Ren C H, Gesangquzhen, Zhao Z C, Zhang Z J, Hu X Y. Effect of no-tilled wide planting pattern on growth, yield and quality of winter wheat. J Triticeae Crops, 2015, 35: 80-85 (in Chinese with English abstract).
[11] 王鑫炜, 任爱霞, 孙敏, 林文, 张蓉蓉, 赵杰, 高志强. 播量对宽幅条播冬小麦群体结构和干物质积累分配的影响. 麦类作物学报, 2021, 41: 1272-1280.
Wang X W, Ren A X, Sun M, Lin W, Zhang R R, Zhao J, Gao Z Q. Effect of sowing rate on population structure and dry matter accumulation, distribution of winter wheat sowing in wide strip. J Triticeae Crops, 2021, 41: 1272-1280 (in Chinese with English abstract).
[12] 杨毅轩, 陈应枝, 唐芃, 林文, 孙敏, 高志强. 播种方式对黄淮海麦区西部冬小麦氮素利用与产量形成的影响. 应用生态学报, 2023, 34: 1572-1582.
doi: 10.13287/j.1001-9332.202306.016
Yang Y X, Chen Y Z, Tang P, Lin W, Sun M, Gao Z Q. Effects of sowing patterns on nitrogen utilization and yield formation of winter wheat in the western Huang-Huai-Hai region. J Appl Ecol, 2023, 34: 1572-1582 (in Chinese with English abstract).
[13] 初金鹏, 朱文美, 尹立俊, 石玉华, 邓淑珍, 张良, 贺明荣, 代兴龙. 宽幅播种对冬小麦 ‘泰农18’ 产量和氮素利用率的影响. 应用生态学报, 2018, 29: 2517-2524.
doi: 10.13287/j.1001-9332.201808.027
Chu J P, Zhu W M, Yin L J, Shi Y H, Deng S Z, Zhang L, He M R, Dai X L. Effects of wide-range planting on the yield and nitrogen use efficiency of winter wheat cultivar Tainong 18. J Appl Ecol, 2018, 29: 2517-2524 (in Chinese with English abstract).
[14] Fan Y L, Ma Y Z, Zaman A M, Zhang M M, Li Q Q. Delayed irrigation at the jointing stage increased the post-flowering dry matter accumulation and water productivity of winter wheat under wide-precision planting pattern. J Sci Food Agric, 2022, 103: 1925-1934.
[15] Liu X, Wang W X, Lin X, Gu S B, Wang D. The effects of intraspecific competition and light transmission within the canopy on wheat yield in a wide-precision planting pattern. J Integr Agric, 2020, 19: 1577-1585.
doi: 10.1016/S2095-3119(19)62724-3
[16] 熊淑萍, 曹文博, 张志勇, 张捷, 高明, 樊泽华, 沈帅杰, 王小纯, 马新明. 行距和播种量对冬小麦冠层光合有效辐射垂直分布、生物量和籽粒产量的影响. 应用生态学报, 2021, 32: 1298-1306.
doi: 10.13287/j.1001-9332.202104.026
Xiong S P, Cao W B, Zhang Z Y, Zhang J, Gao M, Fan Z H, Shen S J, Wang X C, Ma X M. Effects of row spacing and sowing rate on vertical distribution of photosynthetically active radiation, biomass, and grain yield in winter wheat canopy. J Appl Ecol, 2021, 32: 1298-1306 (in Chinese with English abstract).
[17] 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响. 植物生态学报, 2022, 46: 188-196.
doi: 10.17521/cjpe.2021.0165
Xiong S P, Cao W B, Cao R, Zhang Z Y, Fu X L, Xu S J, Pan H Q, Wang X C, Ma X M. Effects of horizontal structure on canopy vertical structure, microenvironment and yield of Triticum aestivum. J Plant Ecol, 2022, 46: 188-196 (in Chinese with English abstract).
[18] Hu H N, Lu C Y, Wang Q J, Li H W, He J, Xu D J, Wang X L. Influences of wide-narrow seeding on soil properties and winter wheat yields under conservation tillage in North China Plain. Int J Agric Biol Eng, 2018, 11: 54-60.
[19] Liu T N, Wang Z L, Cai T. Canopy apparent photosynthetic characteristics and yield of two spike-type wheat cultivars in response to row spacing under high plant density. PLoS One, 2017, 11: e01148582.
[20] Hussain M, Khan M B, Mehmood Z, Zia A B, Jabran K, Farooq M. Optimizing row spacing in wheat cultivars differing in tillering and stature for higher productivity. Arch Agron Soil Sci, 2013, 59: 1457-1470.
[21] He J N, Shi Y, Yu Z W. Subsoiling improves soil physical and microbial properties, and increases yield of winter wheat in the Huang-Huai-Hai Plain of China. Soil Tillage Res, 2019, 187: 182-193.
[22] Man J G, Yu Z W, Shi Y. Radiation interception, chlorophyll fluorescence and senescence of flag leaves in winter wheat under supplemental irrigation. Sci Rep, 2017, 7: 7767.
doi: 10.1038/s41598-017-07414-2 pmid: 28798391
[23] Feng S W, Gu S B, Zhang H B, Wang D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Res, 2017, 214: 131-141.
[24] 高春华, 冯波, 曹芳, 李升东, 王宗帅, 张宾, 王峥, 孔令安, 王法宏. 施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响. 中国农业科学, 2020, 53: 4365-4375.
doi: 10.3864/j.issn.0578-1752.2020.21.006
Gao C H, Feng B, Cao F, Li S D, Wang Z S, Zhang B, Wang Z, Kong L A, Wang F H. Effects of nitrogen application rate on assimilate accumulation, transportation and grain yield in wheat under high temperature stress after anthesis. Sci Agric Sin, 2020, 53: 4365-4375 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.21.006
[25] Zhang H B, Han K, Gu S B, Wang D. Effects of supplemental irrigation on the accumulation, distribution and transportation of 13C-photosynthate, yield and water use efficiency of winter wheat. Agric Water Manag, 2019, 214: 1-8.
[26] 何璐, 李浩然, 李东晓, 房琴, 何建宁, 王红光, 李瑞奇. 推迟拔节水对冬小麦群个体结构特征和产量的影响. 麦类作物学报, 2022, 42: 1019-1030.
He L, Li H R, Li D X, Fang Q, He J N, Wang H G, Li R Q. Effect of delayed irrigation at jointing stage on individual and population structure characteristics and yield of winter wheat. J Triticeae Crops, 2022, 42: 1019-1030 (in Chinese with English abstract).
[27] Zheng H Y, Wang J Y, Cui Y, Guan Z Y, Yang L, Tang Q Q, Sun Y F, Yang H S, Wen X Q, Mei N, Chen X F, Gu Y. Effects of row spacing and planting pattern on photosynthesis, chlorophyll fluorescence, and related enzyme activities of maize ear leaf in maize-soybean intercropping. Agronomy (Basel), 2022, 12: 2503.
[28] 薛盈文, 王志敏, 张英华. 行距对晚播冬小麦群体的调节效应. 生态学杂志, 2015, 34: 3072-3078.
Xue Y W, Wang Z M, Zhang Y H. Regulating effect of row spacing on the population of late-sowing winter wheat. J Ecol, 2015, 34: 3072-3078 (in Chinese with English abstract).
[29] 李娜娜, 李慧, 裴艳婷, 石玉华, 田奇卓, 谢连杰, 王树亮, 刘鑫, 徐凤娇. 行株距配置对不同穗型冬小麦品种光合特性及产量结构的影响. 中国农业科学, 2010, 43: 2869-2878.
Li N N, Li H, Pei Y T, Shi Y H, Tian Q Z, Xie L J, Wang S L, Liu X, Xu F J. Effects of allocations of row-spacing on photosynthetic characteristics and yield structure of winter wheat cultivars with different spike types. Sci Agric Sin, 2010, 43: 2869-2878 (in Chinese with English abstract).
[30] 张瑞, 于振文, 张永丽, 石玉, 赵俊晔. 越冬期测墒补灌对小麦耗水特性和光合有效辐射截获利用的影响. 应用生态学报, 2017, 28: 877-884.
doi: 10.13287/j.1001-9332.201703.037
Zhang R, Yu Z W, Zhang Y L, Shi Y, Zhao J Y. Effects of supplemental irrigation by measuring soil moisture on water consumption characteristics and radiation utilization in wheat. J Appl Ecol, 2017, 28: 877-884 (in Chinese with English abstract).
[31] 李艳大, 汤亮, 张玉屏, 朱相成, 曹卫星, 朱艳. 水稻冠层光截获与叶面积和产量的关系. 中国农业科学, 2010, 43: 3296-3305.
Li Y D, Tang L, Zhang Y P, Zhu X C, Cao W X, Zhu Y. Relationship of PAR interception of canopy to leaf area and yield in rice. Sci Agric Sin, 2010, 43: 3296-3305 (in Chinese with English abstract).
[32] Jiao F L, Hong S Z, Liu C Y, Ma Y Z, Zhang M M, Li Q Q. Wide-precision planting pattern under different tillage methods affects photosynthesis and yield of winter wheat. Arch Agron Soil Sci, 2022, 68: 1352-1368.
[33] 华一帆, 秦际远, 王洁, 张秀, 初金鹏, 郑飞娜, 于海涛, 贺明荣, 代兴龙. 播种方式与缓控释氮肥一次性基施对冬小麦干物质积累转运和产量的影响. 植物营养与肥料学报, 2022, 28: 2185-2200.
Hua Y F, Qin J Y, Wang J, Zhang X, Chu J P, Zheng F N, Yu H T, He M R, Dai X L. Effects of sowing pattern and one-time application of controlled-release fertilizer on dry matter accumulation, remobilization, and yield of winter wheat. J Plant Nutr Fer, 2022, 28: 2185-2200 (in Chinese with English abstract).
[34] 周玲, 王朝辉, 李富翠, 孟晓瑜, 李可懿, 李生秀. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析. 生态学报, 2012, 32: 4123-4131.
Zhou L, Wang Z H, Li F C, Meng X Y, Li K Y, Li S X. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland. Acta Ecol Sin, 2012, 32: 4123-4131 (in Chinese with English abstract).
[35] 郭明明, 赵广才, 郭文善, 常旭虹, 王德梅, 杨玉双, 陈凤, 樊继伟, 任立凯, 李强, 孙中伟, 王康君, 浦汉春, 易媛, 代丹丹, 王美, 亓振, 王雨, 刘孝成. 施氮量与行距互作对小麦群体质量的调控效应. 麦类作物学报, 2016, 36: 906-912.
Guo M M, Zhao G C, Guo W S, Chang X H, Wang D M, Yang Y S, Chen F, Fan J W, Ren L K, Li Q, Sun Z W, Wang K J, Pu H C, Yi Y, Dai D D, Wang M, Qi Z, Wang Y, Liu X C. Effect of nitrogen amount and row space on population quality of winter wheat. J Triticeae Crops, 2016, 36: 906-912 (in Chinese with English abstract).
[36] Wang Q, Noor H, Sun M, Ren A X, Feng Y, Qiao P, Zhang J J, Gao Z Q. Wide space sowing achieved high productivity and effective nitrogen use of irrigated wheat in South Shanxi, China. Front Plant Sci, 2022, 10: e13727.
[37] 陈桂平, 程辉, 范虹, 樊志龙, 胡发龙, 殷文. 绿洲灌区宽幅匀播和传统条播春小麦产量对水氮减量的适应性研究. 中国农业科学, 2023, 56: 2461-2473.
doi: 10.3864/j.issn.0578-1752.2023.13.003
Chen G P, Cheng H, Fan H, Fan Z L, Hu F L, Yin W. Study on adaptability of spring wheat yield to water and nitrogen reduction under wide-width uniform sowing and conventional strip sowing in oasis irrigated regions. Sci Agric Sin, 2023, 56: 2461-2473 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.13.003
[38] Liu P, Yin B Z, Liu X J, Gu L M, Guo J K, Yang M M, Zhen W C. Optimizing plant spatial competition can change phytohormone content and promote tillering, thereby improving wheat yield. Front Plant Sci, 2023, 14: 1147711.
[39] Hussain M, Farooq S, Jabran K, Ijaz M, Sattar A, Hassan W. Wheat sown with narrow spacing results in higher yield and water use efficiency under deficit supplemental irrigation at the vegetative and reproductive stage. Agronomy (Basel), 2016, 6: 22.
[1] 延飞龙, 张振, 赵俊晔, 石玉, 于振文. 宽幅精播下施氮量对冬小麦耗水特性和产量的影响[J]. 作物学报, 2024, 50(8): 2014-2024.
[2] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[3] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[4] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[5] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[6] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[7] 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990.
[8] 邹佳琪, 王仲林, 谭先明, 陈燎原, 杨文钰, 杨峰. 基于连续小波变换估测干旱胁迫下玉米籽粒产量[J]. 作物学报, 2024, 50(4): 1030-1042.
[9] 吴霞玉, 李盼, 韦金贵, 范虹, 何蔚, 樊志龙, 胡发龙, 柴强, 殷文. 减量灌水及有机无机肥配施对西北灌区玉米光合生理、籽粒产量及品质的影响[J]. 作物学报, 2024, 50(4): 1065-1079.
[10] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708.
[11] 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响[J]. 作物学报, 2024, 50(3): 686-694.
[12] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[13] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[14] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[15] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!