欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 2014-2024.doi: 10.3724/SP.J.1006.2024.41004

• 耕作栽培·生理生化 • 上一篇    下一篇

宽幅精播下施氮量对冬小麦耗水特性和产量的影响

延飞龙1(), 张振1, 赵俊晔2,*(), 石玉1, 于振文1   

  1. 1山东农业大学 / 农业农村部作物生理生态与耕作重点实验室, 山东泰安 271018
    2中国农业科学院农业信息研究所 / 农业农村部农业信息服务技术重点实验室, 北京 100081
  • 收稿日期:2024-01-20 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-26
  • 通讯作者: * 赵俊晔, E-mail: zhaojunye@caas.cn
  • 作者简介:E-mail: yflxiaomai@163.com
  • 基金资助:
    国家自然科学基金项目(32172114);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-03);泰山学者工程专项经费资助。

Effect of nitrogen application on water consumption characteristics and grain yield of winter wheat under wide width sowing

YAN Fei-Long1(), ZHANG Zhen1, ZHAO Jun-Ye2,*(), SHI Yu1, YU Zhen-Wen1   

  1. 1Key Laboratory of Crop Physiology, Ecology and Farming, Ministry of Agriculture and Rural Affairs / Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Key Laboratory of Agricultural Information Service Technology, Ministry of Agriculture and Rural Affairs / Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-01-20 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-26
  • Contact: * E-mail: zhaojunye@caas.cn
  • Supported by:
    National Natural Science Foundation of China(32172114);China Agriculture Research System of MOF and MARA(CARS-03);Special Funds for Taishan Scholars Project.

摘要:

为明确宽幅精播条件下冬小麦高产高效的适宜施氮量, 于2020—2022年在山东省兖州小麦试验站进行田间试验, 供试品种为济麦22。在宽幅精播条件下, 设置5个处理, 分别为不施氮(N0)、施氮150 kg hm-2 (N1)、180 kg hm-2 (N2)、210 kg hm-2 (N3)、240 kg hm-2 (N4), 研究施氮量对冬小麦耗水特性、旗叶衰老特性、荧光特性和籽粒产量的影响。结果表明, N2处理显著增加了60~120 cm土层土壤水分的吸收利用, 与N3和N4处理相比, N2处理有效减少了开花前无效分蘖的水分消耗, 降低了总耗水量。N2处理开花后日耗水量高, 显著增加了旗叶抗氧化酶活性, 其开花后14~28 d旗叶荧光参数显著高于其他处理。N2和N3处理籽粒产量和水分利用效率显著高于其他处理, 但N2处理氮肥农学效率最高, 较N1、N3、N4处理分别高6.88%、10.60%、45.37% (2020—2021年)和7.03%、13.56%、43.71% (2021—2022年)。综上所述, 施氮180 kg hm-2处理可提高冬小麦对深层土壤水分的吸收利用, 增加开花至成熟期阶段耗水量, 延缓旗叶衰老, 提高籽粒产量与水氮利用效率, 是本试验条件下的最优处理。

关键词: 宽幅精播, 施氮量, 耗水特性, 水氮利用效率

Abstract:

In order to clarify the optimal nitrogen application rate for sustainable and efficient utilization of water and nitrogen under wide width sowing, a field experiments were conducted at the Wheat Experiment Station in Yanzhou, Shandong province, during the growth period of 2020?2022, and using the variety Jimai 22 as the experimental material. The effects of nitrogen application on water consumption characteristics, flag leaf senescence and fluorescence characteristics, and grain yield of winter wheat were investigated by five treatments including no N (N0), 150 (N1), 180 (N2), 210 (N3), and 240 (N4) kg N hm-2, under wide width sowing. The results showed that the N2 treatment significantly increased the absorption and utilization of soil water in the 60?120 cm soil layer. Compared with N3 and N4 treatments, the N2 treatment effectively reduced the water consumption of ineffective tillers before anthesis and reduced the total water consumption. The high daily water consumption after anthesis in the N2 treatment significantly increased the antioxidant enzyme activities of the flag leaf, and its fluorescence parameters of the flag leaf were significantly higher than those of the other treatments from 14 to 28 days after anthesis. Grain yield and water use efficiency of N2 and N3 treatments were significantly higher than those of the other treatments, while N2 treatment had the highest nitrogen fertilizer agronomic efficiency, which was 6.88%, 10.60%, and 45.37% (2020?2021) and 7.03%, 13.56%, and 43.71% (2021?2022) higher than N1, N3, and N4 treatments, respectively. In conclusion, the N2 treatment can improve the absorption and utilization of deep soil water of winter wheat, increase the water consumption from anthesis to maturity, delay the senescence of flag leaves, and improve grain yield and water and nitrogen use efficiency, which is the optimal treatment under this experiment.

Key words: wide width sowing, nitrogen application, water consumption characteristics, water-nitrogen use efficiency

表1

播种前0~20 cm土层土壤养分含量"

年份
Year
有机质
Organic matter
(g kg-1)
全氮
Total nitrogen
(g kg-1)
碱解氮
Available nitrogen
(mg kg-1)
速效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
2020-2021 14.18 1.11 119.45 38.25 121.35
2021-2022 14.19 1.13 123.36 37.15 119.70

图1

小麦全生育期降雨量和日平均气温"

图2

不同处理拔节期至成熟期群体总茎数"

表2

不同处理耗水来源及其占总耗水量的比例"

年份
Year
处理
Treatment
耗水来源
Water source (mm)
总耗水量
Total water
consumption (mm)
占总耗水量比例
Proportion to total water consumption (%)
灌溉
Irrigation
降雨
Precipitation
土壤贮水
Soil storage
灌溉
Irrigation
降雨
Precipitation
土壤贮水
Soil storage
2020-2021 N0 65.90 e 202.5 125.80 c 394.20 d 16.72 d 51.37 a 31.91 a
N1 72.55 d 202.5 146.64 b 421.69 c 17.21 c 48.02 b 34.77 a
N2 77.21 c 202.5 152.48 a 432.19 b 17.87 c 46.85 c 35.28 a
N3 86.10 b 202.5 151.68 a 440.28 a 19.56 b 45.99 c 34.45 a
N4 92.95 a 202.5 152.56 a 448.01 a 20.75 a 45.20 c 34.05 a
2021-2022 N0 101.33 d 79.5 192.23 c 373.06 d 27.16 b 22.31 a 50.53 a
N1 111.55 c 79.5 212.57 b 403.62 c 27.64 b 19.69 a 52.67 a
N2 113.59 c 79.5 222.96 a 416.05 b 27.30 b 19.11 a 53.59 a
N3 120.95 b 79.5 225.19 a 425.64 a 28.42 a 18.68 b 52.91 a
N4 127.60 a 79.5 225.81 a 432.91 a 29.48 a 18.36 b 52.16 a

表3

不同处理阶段耗水量、日耗水量和耗水模系数"

年份
Year
处理
Treatment
播种-拔节 Sowing-Jointing 拔节-开花 Jointing-Anthesis 开花-成熟 Anthesis-Maturity
CW
(mm)
PW
(%)
DW
(mm d-1)
CW
(mm)
PW
(%)
DW
(mm d-1)
CW
(mm)
PW
(%)
DW
(mm d-1)
2020-2021 N0 195.64 b 49.63 a 1.08 b 72.90 c 18.49 c 3.04 c 125.66 c 31.88 b 2.86 c
N1 206.77 a 49.03 a 1.14 a 75.07 c 17.80 c 3.13 c 139.85 b 33.16 a 3.18 c
N2 207.16 a 47.93 a 1.14 a 76.93 c 17.80 c 3.21 c 148.10 a 34.27 a 3.37 a
N3 210.40 a 47.79 a 1.16 a 87.29 b 19.83 b 3.64 b 142.59 b 32.39 a 3.24 b
N4 212.50 a 47.43 a 1.17 a 92.97 a 20.75 a 3.87 a 142.54 b 31.82 b 3.24 b
2021-2022 N0 161.80 b 43.37 a 0.98 b 85.65 d 22.96 c 3.72 d 125.61 c 33.67 b 2.85 c
N1 173.29 a 42.93 a 1.05 a 93.44 c 23.15 c 4.06 c 136.89 b 33.92 b 3.11 b
N2 173.94 a 41.81 a 1.05 a 95.79 c 23.02 c 4.16 c 146.32 a 35.17 a 3.33 a
N3 177.60 a 41.73 a 1.08 a 104.93 b 24.65 b 4.48 b 143.11 a 33.62 b 3.25 b
N4 182.30 a 42.11 a 1.10 a 111.61 a 25.78 a 4.85 a 139.00 b 32.11 b 3.16 b

图3

不同处理0~200 cm土层土壤贮水消耗量"

图4

不同处理成熟期0~200 cm土层土壤相对含水量"

图5

不同处理开花后旗叶超氧化物歧化酶活性"

图6

不同处理开花后旗叶丙二醛含量"

图7

不同处理开花后旗叶叶绿素荧光参数"

表4

不同处理籽粒产量和水氮利用效率"

年份
Year
处理
Treatment
穗数
Spike number
(×104 hm-2)
穗粒数
Kernel number
(kernel spike-1)
千粒重
1000-grain weight
(g)
籽粒产量
Grain yield
(kg hm-2)
IWUE
(kg hm-2 mm-1)
WUE
(kg hm-2 mm-1)
NAE
(kg kg-1)
2020-2021 N0 504.65 b 38.4 b 37.20 c 6196.80 d 94.03 c 15.71 c
N1 615.94 a 39.5 a 40.09 b 8378.25 c 115.48 a 19.86 b 14.54 b
N2 626.05 a 39.8 a 42.43 a 8995.05 a 116.50 a 20.81 a 15.54 a
N3 635.27 a 40.2 a 42.05 a 9147.75 a 106.24 b 20.77 a 14.05 b
N4 648.56 a 39.3 a 40.34 b 8764.05 b 94.28 c 19.56 b 10.69 c
2021-2022 N0 477.65 b 35.2 b 40.25 c 5773.55 d 56.97 d 15.47 c
N1 605.23 a 37.4 a 45.21 b 8718.20 c 78.15 b 21.60 b 19.63 b
N2 615.38 a 37.9 a 48.03 a 9555.37 a 84.12 a 22.97 a 21.01 a
N3 621.74 a 38.1 a 47.54 a 9659.13 a 79.86 b 22.69 a 18.50 c
N4 628.88 a 37.6 a 46.05 b 9283.55 b 72.75 c 21.44 b 14.62 d

表5

籽粒产量与开花后旗叶抗氧化酶和叶绿素荧光参数的相关分析"

参数Parameter GY SOD MDA Fv/Fm ΦPSII
籽粒产量GY 0.887 -0.916 0.847 0.765
超氧化物歧化酶SOD ** -0.911 0.897 0.770
丙二醛MDA ** ** -0.982 -0.931
最大光化学效率Fv/Fm ** ** ** 0.965
有效光化学效率ΦPSII ** ** ** **
[1] Zhang M M, Dong B D, Qiao Y Z, Shi C H, Yang H, Wang Y K, Liu M Y. Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain. J Integr Agric, 2018, 17: 1194-1206.
doi: 10.1016/S2095-3119(17)61883-5
[2] Zhai J N, Han B, Li H Q, Ren W X, Xue B. Accounting for the nitrogen footprint of food production in Chinese provinces during 1998-2018. J Clean Prod, 2023, 389: 136011.
[3] Yang M, Hou Z H, Guo N X, Yang E, Sun D, Fang Y T. Effects of enhanced-efficiency nitrogen fertilizers on CH4 and CO2 emissions in a global perspective. Field Crops Res, 2022, 288: 108694.
[4] 赵刚, 樊廷录, 李兴茂, 张建军, 党翼, 李尚中, 王磊, 王淑英, 程万莉, 倪胜利. 宽幅精播旱作冬小麦幅间距与基因型对产量和水分利用效率的影响. 中国农业科学, 2020, 53: 2171-2181.
doi: 10.3864/j.issn.0578-1752.2020.11.004
Zhao G, Fan T L, Li X M, Zhang J J, Dang Y, Li S Z, Wang L, Wang S Y, Cheng W L, Ni S L. Effects of wide range distance and genotype on yield and water use efficiency of winter wheat. Sci Agric Sin, 2020, 53: 2171-2181 (in Chinese with English abstract).
[5] Wang Q, Noor H, Sun M, Ren A X, Feng Y, Qiao P, Zhang J J, Gao Z Q. Wide space sowing achieved high productivity and effective nitrogen use of irrigated wheat. PeerJ, 2022, 10: e13727.
[6] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响. 作物学报, 2023, 49: 211-224.
doi: 10.3724/SP.J.1006.2023.11100
Wang H Q, Wang R R, Jiang G Y, Yin H J, Yan S J, Che Z Q. Effect of amount of nitrogen fertilizer applied on photosynthetic physiological characteristics of drip irrigated spring wheat leaves. Acta Agron Sin, 2023, 49: 211-224 (in Chinese with English abstract).
[7] Shen H Z, Gao Y H, Sun K X, Gu Y H, Ma X Y. Effects of differential irrigation and nitrogen reduction replacement on winter wheat yield and water productivity and nitrogen-use efficiency. Agric Water Manag, 2023, 282: 108289.
[8] 赵凯男, 常旭虹, 王德梅, 陶志强, 杨玉双, 马瑞琦, 朱英杰, 徐哲莉, 张保军, 赵广才. 立体匀播和施氮量对冬小麦产量构成及旗叶光合性能的影响. 作物杂志, 2019, (1): 103-110.
Zhao K N, Chang X H, Wang D M, Tao Z Q, Yang Y S, Ma R Q, Zhu Y J, Xu Z L, Zhang B J, Zhao G C. Effects of tridimensional uniform sowing and fertilizer on grain and physiological characteristics of winter wheat. Crops, 2019, (1): 103-110 (in Chinese with English abstract).
[9] Li J P, Wang Y Q, Zhang M, Liu Y, Xu X X, Lin G, Wang Z M, Yang Y M, Zhang Y H. Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat. Agric Water Manag, 2019, 211: 59-69.
[10] Hou Y P, Xu X P, Kong L L, Zhang Y T, Zhang L, Wang L C. Film-mulched drip irrigation achieves high maize yield and low N losses in semi-arid areas of northeastern China. Eur J Agron, 2023, 146: 126819.
[11] 安婷婷, 侯小畔, 周亚男, 刘卫玲, 王群, 李潮海, 张学林. 氮肥用量对小麦开花后根际土壤特性和产量的影响. 中国农业科学, 2017, 50: 3352-3364.
doi: 10.3864/j.issn.0578-1752.2017.17.010
An T T, Hou X P, Zhou Y N, Liu W L, Wang Q, Li C H, Zhang X L. Effects of nitrogen fertilizer rates on rhizosphere soil characteristics and yield after anthesis of wheat. Sci Agric Sin, 2017, 50: 3352-3364 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.17.010
[12] 韩占江, 于振文, 王东, 张永丽. 测墒补灌对冬小麦干物质积累与分配及水分利用效率的影响. 作物学报, 2010, 36: 457-465.
doi: 10.3724/SP.J.1006.2010.00457
Han Z J, Yu Z W, Wang D, Zhang Y L. Effects of supplemental irrigation based on testing soil moisture on dry matter accumulation and distribution and water use efficiency in winter wheat. Acta Agron Sin, 2010, 36: 457-465 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.00457
[13] 王艳萍, 王力, 韩雪, 杨文强. 黄土塬区不同土地利用方式土壤水分消耗与补给变化特征. 生态学报, 2015, 35: 7571-7579.
Wang Y P, Wang L, Han X, Yang W Q. Dynamics of soil moisture depletion and replenishment in different land use types of the Loess Tableland. Acta Ecol Sin, 2015, 35: 7571-7579 (in Chinese with English abstract).
[14] Seckin B, Turkan I, Sekmen A H, Ozfidan C. The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barley grass) and Hordeum vulgare L. (cultivated barley). Environ Exp Bot, 2010, 69: 76-85.
[15] 谷晓博, 李援农, 黄鹏, 杜娅丹, 陈朋朋, 方恒. 水氮互作对冬油菜氮素吸收和土壤硝态氮分布的影响. 中国农业科学, 2018, 51: 1283-1293.
doi: 10.3864/j.issn.0578-1752.2018.07.006
Gu X B, Li Y N, Huang P, Du Y D, Chen P P, Fang H. Effects of irrigation and nitrogen coupling on nitrogen absorption and soil nitrate content of winter oilseed rape. Sci Agric Sin, 2018, 51: 1283-1293 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.07.006
[16] Mon J, Bronson K F, Hunsaker D J, Thorp K R, White J W, French A N. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated durum wheat. Field Crops Res, 2016, 191: 54-65.
[17] 栗丽, 洪坚平, 王宏庭, 谢英荷, 张璐. 水氮互作对冬小麦耗水特性和水分利用效率的影响. 水土保持学报, 2012, 26(6): 291-296.
Li L, Hong J P, Wang H T, Xie Y H, Zhang L. Effects of nitrogen and irrigation interaction on water consumption characteristics and use efficiency in winter wheat. J Soil Water Conserv, 2012, 26(6): 291-296 (in Chinese with English abstract).
[18] 曹永刚, 徐龙龙, 柴强, 胡发龙, 殷文, 樊志龙, 王琦明, 赵财. 水氮减量条件下地膜玉米免耕轮作小麦的水分利用特征. 中国农业科学, 2023, 56: 2660-2672.
doi: 10.3864/j.issn.0578-1752.2023.14.003
Cao Y G, Xu L L, Chai Q, Hu F L, Yin W, Fan Z L, Wang Q M, Zhao C. Water use characteristics of wheat rotated after no tillage plastic film mulching maize with reduced water and nitrogen. Sci Agric Sin, 2023, 56: 2660-2672 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.14.003
[19] Zhang L, He X M. Tiller development affected by nitrogen fertilization in a high-yielding wheat production system. Crop Sci, 2020, 60: 1034-1047.
[20] Wang C Y, Liu W X, Li Q X, Ma D Y, Lu H F, Feng W, Xie Y X, Zhu Y J, Guo T C. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res, 2014, 165: 138-149.
[21] Si Z Y, Zain M, Mehmood F, Wang G S, Gao Y, Duan A W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric Water Manag, 2020, 231: 106002.
[22] 李倩, 齐凌云, 殷俐娜, 王仕稳, 邓西平. 低氮诱导小麦灌浆期旗叶衰老与膜脂的关系. 作物学报, 2018, 44: 1221-1228.
doi: 10.3724/SP.J.1006.2018.01221
Li Q, Qi L Y, Yin L N, Wang S W, Deng X P. Relationship between lipid and flag leaf senescence induced by low nitrogen stress during grain filling of wheat. Acta Agric Sin, 2018, 44: 1221-1228 (in Chinese with English abstract).
[23] Xing H L, Zhou W B, Wang C, Li L, Li X N, Cui N B, Hao W P, Liu F L, Wang Y S. Excessive nitrogen application under moderate soil water deficit decreases photosynthesis, respiration, carbon gain and water use efficiency of maize. Plant Physiol Biochem, 2021, 166: 1065-1075.
[24] Zhong Y Q W, Shangguan Z P. Water consumption characteristics and water use efficiency of winter wheat under long-term nitrogen fertilization regimes in Northwest China. PLoS One, 2014, 9: e98850.
[25] Du Y D, Niu W Q, Zhang Q, Cui B J, Zhang Z H, Wang Z, Sun J. A synthetic analysis of the effect of water and nitrogen inputs on wheat yield and water- and nitrogen-use efficiencies in China. Field Crops Res, 2021, 265: 108105.
[26] Gao R P, Pan Z H, Zhang J, Chen X, Qi Y L, Zhang Z Y, Chen S Q, Xu X R. Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China. Agric Water Manag, 2023, 283: 108326.
[27] Lu D J, Lu F F, Pan J X, Cui Z L, Zou C Q, Chen X P. The effects of cultivar and nitrogen management on wheat yield and nitrogen use efficiency in the North China Plain. Field Crops Res, 2015, 171: 157-164.
[28] Li J P, Zhang Z, Yao C S, Liu Y, Wang Z M, Fang B T, Zhang Y H. Improving winter wheat grain yield and water-/nitrogen- use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. J Integr Agric, 2021, 20: 606-621.
[29] Ma G, Liu W X, Li S S, Zhang P P, Wang C Y, Lu H F, Wang L F, Xie Y X, Ma D Y, Kang G Z. Determining the optimal N input to improve grain yield and quality in winter wheat with reduced apparent N loss in the North China Plain. Front Plant Sci, 2019, 10: 181.
doi: 10.3389/fpls.2019.00181 pmid: 30853966
[1] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[2] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[3] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[4] 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311.
[5] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[6] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[7] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[8] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[9] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制[J]. 作物学报, 2023, 49(6): 1630-1642.
[10] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[11] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[12] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[13] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 秸秆还田配施氮肥对土壤性质及玉米水氮利用效率的影响[J]. 作物学报, 2023, 49(10): 2820-2832.
[14] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
[15] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点[J]. 作物学报, 2022, 48(9): 2285-2299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[3] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[4] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[5] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[6] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[7] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[8] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .
[9] 赵辉;荆奇;戴廷波;姜东;曹卫星. 花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响[J]. 作物学报, 2007, 33(12): 2021 -2027 .
[10] 王东;于振文;王旭东. 硫素对冬小麦籽粒蛋白质积累的影响[J]. 作物学报, 2003, 29(06): 878 -883 .