欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 2001-2013.doi: 10.3724/SP.J.1006.2024.33059

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析

郭思语1,2(), 赵克勇2(), 代正罡1,2, 邹华文1,*(), 吴忠义2,*(), 张春2,*()   

  1. 1长江大学农学院, 湖北荆州 434025
    2北京市农林科学院生物技术研究所 / 农业基因资源与生物技术北京市重点实验室, 北京 100097
  • 收稿日期:2023-10-17 接受日期:2024-01-31 出版日期:2024-08-12 网络出版日期:2024-02-28
  • 通讯作者: * 张春, E-mail: spring2007318@163.com;邹华文, E-mail: zouhuawen@yangtzeu.edu.cn;吴忠义, E-mail: zwu22@126.com
  • 作者简介:郭思语, E-mail: 1030997671@qq.com;
    赵克勇, E-mail: zhaokeyong@baafs.net.cn
    ** 同等贡献
  • 基金资助:
    国家自然科学基金项目(32001430);国家自然科学基金项目(32171952);国家自然科学基金项目(31971839)

Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress

GUO Si-Yu1,2(), ZHAO Ke-Yong2(), DAI Zheng-Gang1,2, ZOU Hua-Wen1,*(), WU Zhong-Yi2,*(), ZHANG Chun2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2023-10-17 Accepted:2024-01-31 Published:2024-08-12 Published online:2024-02-28
  • Contact: * E-mail: spring2007318@163.com;E-mail: zouhuawen@yangtzeu.edu.cn;E-mail: zwu22@126.com
  • About author:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32001430);National Natural Science Foundation of China(32171952);National Natural Science Foundation of China(31971839)

摘要:

GNAT (Gcn5-related N-acetyltransferase)家族蛋白在调控植物生长发育和响应逆境胁迫等过程中发挥着重要作用。目前GNAT家族基因在多个物种中的生物学功能已有报道, 但在玉米(Zea mays L.)中的功能验证研究却很少。探究玉米GNAT家族基因的功能, 不仅能丰富我国的玉米育种基因资源, 同时也可为玉米的新种质资源创制提供重要依据。本研究克隆了ZmNAT1基因(Gene ID: 541936, GRMZM2G123159), 通过生物信息学分析发现, 该基因CDS全长为519 bp, 编码172个氨基酸, 具有GNAT家族特有的保守结构域。通过对ZmNAT1基因在玉米不同时期不同组织中的表达量和不同逆境胁迫下表达模式分析发现: ZmNAT1在成熟根中的表达量最高, 在不同非生物逆境胁迫处理下, ZmNAT1基因均有不同程度的诱导表达。通过异源表达获得了3株独立的表达量较高的转基因拟南芥(Arabidopsis thaliana L.)纯合株系, 对其进行了不同逆境胁迫处理下表型鉴定实验, 结果表明, 转基因拟南芥相对于野生型拟南芥有更好的表型, 在盐胁迫、渗透胁迫和干旱条件下的转基因株系的根显著长于野生型, 且植株较野生型植株的绿叶率和叶绿素含量均升高、丙二醛含量降低, 差异均达到显著水平。由此推测, ZmNAT1基因可能参与玉米对干旱、盐等非生物逆境胁迫的应答。本研究为进一步解析ZmNAT1在玉米中的生物学功能提供了重要的参考依据。

关键词: 玉米, ZmNAT1, 根系, 生长发育, 逆境胁迫

Abstract:

The GNAT (Gcn5-related N-acetyltransferase) family proteins play a crucial role in regulating plant growth and development, and responding to stress. At present, the biological functions of GNAT family genes have been reported in many species, but there are few studies on its function validation in maize (Zea mays L.). Exploring the functions of maize GNAT family genes not only enriches the genetic resources for maize breeding in China, but also provides an important basis for the creation of new germplasm resources of maize. In this study, the ZmNAT1 gene (Gene ID: 541936, GRMZM2G123159) was cloned. Bioinformatics analysis showed that the CDS of this gene was 519 bp, encoding 172 amino acids. ZmNAT1 contained a conserved domain unique to GNAT family. The relative expression level of ZmNAT1 gene in different tissues of maize at different stages under different stress conditions showed that the expression level of ZmNAT1 was the highest in mature roots, and the relative expression of ZmNAT1 gene could be induced in different degrees under different abiotic adversity stress conditions. Three independent transgenic Arabidopsis (Arabidopsis thaliana L.) pure lines with higher expression were obtained by heterologous expression, and phenotypic characterisation experiments under different adversity stress treatments were carried out on them, the results showed that transgenic Arabidopsis had a better phenotype relative to wild-type Arabidopsis, and the roots of transgenic plants under salt stress, osmotic stress, and drought were significantly longer than those of the wild-type,and the plants showed higher green leaf rate and chlorophyll content, and lower malondialdehyde content than the wild-type plants, which were significant difference. We speculated that ZmNAT1 gene may be involved in response to abiotic stress such as drought and salt in maize. This study provides an important reference for further analysis of the biological functions of ZmNAT1 in maize.

Key words: maize (Zea mays L.), ZmNAT1, root system, growth and development, adversity stress

表1

引物信息"

引物名称Primer name 引物序列Primer sequence (5'-3')
pZmNAT1-F CCCGGGCTGCAGAATTCATGACGACAATCCGTCGGTTCTG
pZmNAT1-R CCATGGTACCCTCGAGAAGCTTGTTCAAAAATAAACTAGTGG
pZmNAT1RT-F AAGGGTGCTCCGGTACTACT
pZmNAT1RT-R AGTGGACGACAAATATTCGAGA
pGAPDHRT-F CCCTTCATCACCACGGACTAC
pGAPDHRT-R AACCTTCTTGGCACCACCCT
pActinRT-F GGTAACATTGTGCTCAGTGGTGG
pActinRT-R AACGACCTTAATCTTCATGCTGC

图1

ZmNAT1生物信息学和进化分析 A: 保守结构域分析; B: 跨膜结构预测; C: ZmNAT1启动子序列分析; D: 拟南芥、水稻和玉米HAT家族蛋白的系统发育树。"

图2

ZmNAT1在玉米中不同发育时期不同组织中的相对表达量的分析 不同小写字母表示差异显著(P < 0.05)。"

图3

不同非生物胁迫下玉米地上部和根部中ZmNAT1的相对表达量 A: 脱水处理; B: 高盐处理; C : 渗透处理; D: 低温处理。*: P < 0.05; **: P < 0.01。"

图4

T3代ZmNAT1转基因拟南芥阳性鉴定及相对表达量分析 A: T3代转基因拟南芥ZmNAT1基因PCR鉴定; B: T3代转基因拟南芥ZmNAT1基因RT-qPCR鉴定。M: DL2000 marker; P: 阳性对照; N: 阴性对照; W: 水对照; WT: 野生型拟南芥; L-1~L-6: T3代ZmNAT1转基因拟南芥; **: P < 0.01。"

图5

ZmNAT1转基因拟南芥在不同盐浓度处理下的生长发育情况和根长统计 A~E: ZmNAT1转基因拟南芥和野生型拟南芥在0、0.10、0.12、0.15和0.18 mol L-1盐处理下的生长发育情况; F: 转基因拟南芥和野生型拟南芥在不同浓度盐处理下的平均主根长统计和比较; WT: 野生型拟南芥; L-2, L-5, L-6: 转ZmNAT1基因拟南芥; 标尺为1.5 cm。 *: P < 0.05; **: P < 0.01。"

图6

ZmNAT1转基因拟南芥在不同甘露醇浓度处理下的生长发育情况和根长统计 缩写同图5。A~D: ZmNAT1转基因拟南芥和野生型拟南芥在0、0.15、0.20和0.30 mol L-1甘露醇处理下的生长发育情况; E: 转基因拟南芥和野生型拟南芥在不同浓度甘露醇处理下的平均主根长统计和比较。标尺为1.5 cm。*: P < 0.05; **: P < 0.01。"

图7

ZmNAT1转基因拟南芥在干旱处理下的生长发育情况和生理指标分析 A: 分别是正常条件、干旱处理、复水后野生型拟南芥和转基因拟南芥在土壤中的生长情况; B: 对照组和实验组WT和转基因拟南芥MDA含量; C: 对照组和实验组WT和转基因拟南芥总叶绿素含量; D: 干旱处理后WT和转基因拟南芥绿叶率统计; E: 复水处理2 d后WT和转基因拟南芥绿叶率统计。缩写同图5。*: P < 0.05; **: P < 0.01。"

图8

ZmNAT1转基因拟南芥在盐处理下的生长发育情况和生理指标分析 A: 分别是正常条件、盐处理后野生型拟南芥和转基因拟南芥在土壤中的生长情况; B: 对照组和实验组WT和转基因拟南芥MDA含量; C: 对照组和实验组WT和转基因拟南芥总叶绿素含量; D: 盐处理后WT和转基因拟南芥绿叶率统计。缩写同图5。*: P < 0.05; **: P < 0.01。"

[1] Goharrizi K J, Meru G, Kermani S G, Heidarinezhad A, Salehi F. Short-term cold stress affects physiological and biochemical traits of pistachio rootstocks. S Afr J Bot, 2021, 141: 90-98.
[2] 何含杰, 唐丽, 邓华凤, 邹志刚. 植物蛋白酪氨酸磷酸酶的生理功能研究进展. 植物生理学报, 2017, 53: 531-535.
He H J, Tang L, Deng H F, Zou Z G. Recent advance on the physiological functions of protein tyrosine phosphatases in plant. Acta Physiol Sin, 2017, 53: 531-535 (in Chinese with English abstract).
[3] 石永春, 杨永银, 薛瑞丽, 刘巧真. 植物中抗坏血酸的生物学功能研究进展. 植物生理学报, 2015, 51: 1-8.
Shi Y C, Yang Y Y, Xue R L, Liu Q Z. Research advance of biological functions of ascorbic acid in plants. Acta Physiol Sin, 2015, 51: 1-8 (in Chinese with English abstract).
[4] 王佺珍, 刘倩, 高娅妮, 柳旭. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37: 5565-5577.
Wang Q Z, Liu Q, Gao Y N, Liu X. Review on the mechanisms of response to salinity-alkalinity stress in plants. Acta Ecol Sin, 2017, 37: 5565-5577 (in Chinese with English abstract).
[5] 计淑霞, 戴绍军, 刘炜. 植物应答低温胁迫机制的研究进展. 生命科学, 2010, 22: 1013-1019.
Ji S X, Dai S J, Liu W. The advances of plants in response and adaption to low temperature stress. Life Sci, 2010, 22: 1013-1019 (in Chinese with English abstract).
[6] 冯鹏, 廖菲, 农向. 植物组蛋白乙酰转移酶研究进展. 乐山师范学院学报, 2022, 37(8): 8-14.
Feng P, Liao F, Nong X. Progress in plant histone acetyltransferases. J Leshan Norm Univ, 2022, 37(8): 8-14 (in Chinese).
[7] Eberharter A, Becker P B. Histone acetylation: a switch between repressive and permissive chromatin. EMBO Rep, 2002, 3: 224-229.
doi: 10.1093/embo-reports/kvf053 pmid: 11882541
[8] Kuo M H, Allis C D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays, 1998, 20: 615-626.
doi: 10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H pmid: 9780836
[9] Sterner D E, Berger S L. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev, 2000, 64: 435-459.
[10] Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev, 1998, 12: 599-606.
[11] Mai A, Rotili D, Tarantino D, Nebbioso A, Castellano S, Sbardella G, Tini M, Altucci L. Identification of 4-hydroxyquinolines inhibitors of p300/CBP histone acetyltransferases. Bioorg Med Chem Lett, 2009, 19: 1132-1135.
doi: 10.1016/j.bmcl.2008.12.097 pmid: 19144517
[12] Kikuchi H, Nakayama T. GCN5 and BCR signalling collaborate to induce pre-mature B cell apoptosis through depletion of ICAD and IAP2 and activation of caspase activities. Gene, 2008, 419: 48-55.
doi: 10.1016/j.gene.2008.04.014 pmid: 18538956
[13] Boycheva I, Vassileva V, Iantcheva A. Histone acetyltransferases in plant development and plasticity. Curr Genomics, 2014, 15: 28-37.
doi: 10.2174/138920291501140306112742 pmid: 24653661
[14] Neuwald A F, Landsman D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci, 1997, 22: 154-155.
pmid: 9175471
[15] 夏德安, 刘春娟, 吕世博, 张彦妮, 刘奕佳, 马旭俊. 植物组蛋白乙酰基转移酶的研究进展. 生物技术通报, 2015, 31(7): 18-25.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.07.003
Xia D A, Liu C J, Lyu S B, Zhang Y N, Liu Y J, Ma X J. Research progress of plant histone acetyltransferases. Biotechnol Bull, 2015, 31(7): 18-25 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2015.07.003
[16] Servet C, Silva N C, Zhou D X. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol Plant, 2010, 3: 670-677.
[17] Bertrand C, Bergounioux C, Domenichini S, Delarue M, Zhou D X. Arabidopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway. J Biol Chem, 2003, 278: 28246-28251.
doi: 10.1074/jbc.M302787200 pmid: 12740375
[18] Cohen R, Schocken J, Kaldis A, Vlachonasios K E, Hark A T, Mccain E R. The histone acetyltransferase GCN5 affects the inflorescence meristem and stamen development in Arabidopsis. Planta, 2009, 230: 1207-1221.
doi: 10.1007/s00425-009-1012-5 pmid: 19771450
[19] Kornet N, Scheres B. Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis. Plant Cell, 2009, 21: 1070-1079.
[20] Papaefthimiou D, Likotrafiti E, Kapazoglou A, Bladenopoulos K, Tsaftaris A. Epigenetic chromatin modifiers in barley: III. Isolation and characterization of the barley GNAT-MYST family of histone acetyltransferases and responses to exogenous ABA. Plant Physiol Bioch, 2010, 48: 98-107.
[21] Fang H, Liu X, Thorn G, Duan J, Tian L. Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Bioph Res Commun, 2014, 443: 400-405.
[22] Zheng M, Lin J C, Liu X B, Chu W, Li J P, Gao Y J, A K X, Song W J, Xin M M, Yao Y Y, Peng H R, Ni Z F, Sun Q X, Hu Z R. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiol, 2021, 186: 1951-1969.
doi: 10.1093/plphys/kiab187 pmid: 33890670
[23] Wang T Y, Xing J W, Liu Z S, Zheng M, Yao Y Y, Hu Z R, Peng H R, Xin M M, Zhou D X, Ni Z F. Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. J Exp Bot, 2019, 70: 6337-6348.
[24] Gan L, Wei Z Z, Yang Z R, Li F G, Wang Z. Updated mechanisms of GCN5: the monkey king of the plant kingdom in plant development and resistance to abiotic stresses. Cells, 2021, 10: 979.
[25] Eberharter A, Lechner T, Goralik-Schramel M, Loidl P. Purification and characterization of the cytoplasmic histone acetyltransferase B of maize embryos. FEBS Lett, 1996, 386: 75-81.
pmid: 8635608
[26] Lechner T, Lusser A, Brosch G, Eberharter A, Goralik-Schramel M, Loidl P. A comparative study of histone deacetylases of plant, fungal and vertebrate cells. Biochim Biophy Acta Prot Struct Mol Enzymolog, 1996, 1296: 181-188.
[27] Stockinger E J, Mao Y, Regier M K, Triezenberg S J, Thomashow M F. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res, 2001, 29: 1524-1533.
doi: 10.1093/nar/29.7.1524 pmid: 11266554
[28] Bhat R A, Riehl M, Santandrea G, Velasco R, Slocombe S, Donn G, Steinbiss H H, Thompson R D, Becker H A. Alteration of GCN5 levels in maize reveals dynamic responses to manipulating histone acetylation. Plant J, 2003, 33: 455-469.
pmid: 12581304
[29] Georgieva E I, Lopez-Rodas G, Hittmair A, Feichtinger H, Brosch G, Loidl P. Maize embryo germination. Planta, 1993, 192: 118-124.
[30] Chang L, Loranger S S, Mizzen C, Ernst S G, Allis C D, Annunziato A T. Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry, 1997, 36: 469-480.
pmid: 9012662
[31] 马宇馨, 杜璇玥, 李肖慧, 任莹, 张林旺, 邢继红, 张康, 董金皋. 玉米组蛋白乙酰转移酶的鉴定与表达规律分析. 河北农业大学学报, 2020, 43(5): 20-26.
doi: 10.13320/j.cnki.jauh.2020.0089
Ma Y X, Du X Y, Li X H, Ren Y, Zhang L W, Xing J H, Zhang K, Dong J G. Identification and expression analysis of histone acetyltransferase in maize. J Hebei Agric Univ, 2020, 43(5): 20-26 (in Chinese with English abstract).
[32] 余娇娇, 沈涛, 张晓东, 王雅妮. 缺氮胁迫下玉米组蛋白乙酰化相关酶的动态表达特征. 玉米科学, 2021, 29(6): 50-58.
Yu J J, Shen T, Zhang X D, Wang Y N. Dynamic expression patterns of corresponding enzymes of histone acetylation modification in maize under nitrogen deficiency. J Maize Sci, 2021, 29(6): 50-58 (in Chinese with English abstract).
[33] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract).
[34] Song Z T, Chen X J, Luo L, Yu F F, Liu J X, Han J J. UBA domain protein SUF1 interacts with NatA-complex subunit NAA15 to regulate thermotolerance in Arabidopsis. J Integr Plant Biol, 2022, 64: 1297-1302.
[35] Huber M, Bienvenut W V, Linster E, Stephan I, Armbruster L, Sticht C, Layer D, Lapouge K, Meinnel T, Sinning I, Giglione C, Hell R, Wirtz M. NatB-mediated N-terminal acetylation affects growth and biotic stress responses. Plant Physiol, 2020, 182: 792-806.
doi: 10.1104/pp.19.00792 pmid: 31744933
[36] Liu X, Luo M, Zhang W, Zhao J H, Zhang J X, Wu K Q, Tian L I, Duan J. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biol, 2012, 12: 145.
[37] Fang H, Liu X, Thorn G, Duan J, Tian L. Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Bioph Res Commun, 2014, 443: 400-405.
[38] Wang Z B, Zang C Z, Cui K R, Schones D E, Barski A, Peng W Q, Zhao K J. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell, 2009, 138: 1019-1031.
doi: 10.1016/j.cell.2009.06.049 pmid: 19698979
[39] Li S, Lin Y C J, Wang P Y, Zhang B F, Li M, Chen S, Shi R, Tunlaya-Anukit S, Liu X Y, Wang Z F, Dai X F, Yu J, Zhou C G, Liu B G, Wang J P, Chiang V L, Li W. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell, 2019, 31: 663-686.
[40] Bertrand C, Benhamed M, Li Y F, Ayadi M, Lemonnier G, Renou J P, Delarue M, Zhou D X. Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth. J Biol Chem, 2005, 280: 1465-1473.
doi: 10.1074/jbc.M409000200 pmid: 15525647
[41] Li H, Yan S H, Zhao L, Tan J J, Zhang Q, Gao F, Wang P, Hou H L, Li L J. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol, 2014, 14: 105.
doi: 10.1186/1471-2229-14-105 pmid: 24758373
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[3] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[4] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[5] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[6] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[7] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[8] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[9] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[10] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[11] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[12] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[13] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[14] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[15] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[2] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[3] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[4] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[5] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[6] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[7] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[8] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[9] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[10] 邱崇力. 普通小麦与六倍体小黑麦杂交不亲和性的研究 Ⅰ.杂种的胚胎发育[J]. 作物学报, 1986, (01): 49 -56 .