欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 2053-2066.doi: 10.3724/SP.J.1006.2024.33071

• 耕作栽培·生理生化 • 上一篇    下一篇

不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征

梁璐1(), 周宝元1,*(), 高卓晗2, 王瑞3, 王新兵1, 赵明1, 李从锋1,*()   

  1. 1中国农业科学院作物科学研究所 / 农业农村部作物生理生态重点实验室, 北京 100081
    2内蒙古农业大学农学院, 内蒙古呼和浩特 010019
    3河北科技师范学院农学与生物科技学院 / 河北省作物逆境生物学重点实验室, 河北秦皇岛 066004
  • 收稿日期:2023-12-01 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-17
  • 通讯作者: * 周宝元, E-mail: zhoubaoyuan@caas.cn;李从锋, E-mail: licongfeng@caas.cn.
  • 作者简介:E-mail: 82101212196@caas.cn
  • 基金资助:
    国家自然科学基金项目(31971851);国家重点研发计划项目(2022YFD2300803);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-14)

Root and shoot growth of different maize varieties in response to soil compaction stress

LIANG Lu1(), ZHOU Bao-Yuan1,*(), GAO Zhuo-Han2, WANG Rui3, WANG Xin-Bing1, ZHAO Ming1, LI Cong-Feng1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    3College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology / Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao 066004, Hebei, China
  • Received:2023-12-01 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-17
  • Contact: * E-mail: zhoubaoyuan@caas.cn;E-mail: licongfeng@caas.cn.
  • Supported by:
    National Natural Science Foundation of China(31971851);National Key Research and Development Program of China(2022YFD2300803);China Agriculture Research System of MOF and MARA(CARS-02-14)

摘要:

黄淮海地区农业集约化和机械化发展导致土壤紧实问题日益加重, 限制玉米产量的进一步提升。明确不同品种玉米根系和地上部生长对土壤紧实胁迫的差异性响应特征, 可为该区玉米高产栽培提供理论依据。本研究选用3个玉米品种, 采用机械碾压的方法在同一田块模拟无紧实胁迫(NC: no compaction stress, 容重1.0~1.3 g cm-3)、中度紧实胁迫(MC: moderate compaction stress, 容重1.4~1.5 g cm-3)和重度紧实胁迫(HC: heavy compaction stress, 容重>1.6 g cm-3) 3个紧实程度处理, 定量解析不同程度土壤紧实胁迫下不同品种玉米根冠生长各指标及产量的变化规律。结果表明, 与NC相比, MC和HC处理导致玉米减产3.8%~10.3%和12.5%~33.3%。玉米根冠生长及产量形成对土壤紧实胁迫的响应存在基因型差异。MC处理下, DK517的根长、根干重及根冠比较ZD958和DH605分别提高6.0%和14.0%、15.7%和29.6%、18.8%和24.8%, 但最大叶面积指数、植株总干物重和产量无显著差异; HC处理下, DK517的根长和根干重较ZD958和DH605分别提高8.4%和22.5%、29.6%和57.8%, 且最大叶面积指数、植株总干物重和根冠比分别提高4.6%和15.5%、3.7%和20.9%、28.0%和32.1%, 因此产量分别增加7.5%和27.2%。相关分析表明, 土壤容重和贯穿阻力与玉米根冠生长各指标和产量呈显著负相关关系(P<0.01)。综上所述, 土壤紧实胁迫会显著抑制玉米根系和地上部生长而造成减产, 但不同品种玉米根冠生长对不同程度土壤紧实胁迫的响应存在着差异, 重度土壤紧实胁迫下根冠生长均具有优势的品种能够维持较高的产量, 研究结果可为玉米品种改良和土壤紧实下耕作措施优化提供理论依据。

关键词: 玉米, 根-冠生长, 土壤紧实胁迫, 响应特征

Abstract:

Soil compaction has become a limiting factor for further increasing maize yield as the development of intensification and mechanization in agriculture in the Huang-Huai-Hai region. Understanding the characteristics of root and shoot growth of different maize varieties under soil compaction stress is benefit for maize high-yield cultivation. To analyse the root and shoot growth and yield of different maize varieties under different levels of soil compaction stress, in this study, three maize varieties were selected, and three soil compaction levels [no compaction stress (NC: no compaction stress, bulk density 1.0-1.3 g cm-3), moderate compaction stress (MC: moderate compaction stress, bulk density 1.4-1.5 g cm-3), and heavy compaction stress (HC: heavy compaction stress, bulk density > 1.6 g cm-3)] were simulated by mechanical rolling in the same field. The results showed that compared with NC, maize yield under MC and HC treatments decreased by 3.8%-10.3% and 12.5%-33.3%, respectively. There were differences in maize root and shoot growth and yield formation under soil compaction stress among three varieties. Under MC treatment, root length, root dry matter, and root-shoot ratio of DK517 increased by 6.0% and 14.0%, 15.7% and 29.6%, 18.8% and 24.8%, respectively, compared to ZD958 and DH605. However, there was no significant difference in the maximum leaf area index, total dry matter, and yield. Under HC treatment, root length and root dry matter of DK517 increased by 8.4% and 22.5%, 29.6% and 57.8%, respectively, compared to ZD958 and DH605, and the maximum leaf area index, total dry matter, and root-shoot ratio increased by 4.6% and 15.5%, 3.7% and 20.9%, 28.0% and 32.1%, respectively, resulting in an increase in yield of 7.5% and 27.2%, respectively. The correlation analysis showed that soil bulk density and penetration resistance were negatively correlated with maize root and shoot growth and yield (P < 0.01). In summary, soil compaction stress could significantly inhibit the growth of maize roots and shoot, resulting in the reduced yields. However, there were differences in maize root and shoot growth under soil compaction stress among different varieties, and the variety with advantages in both root and shoot growth and coordination could maintain higher yields under heavy soil compaction stress. The results provide the theoretical basis for maize breeding improvement and cultivation measures optimization with root architecture as the goal.

Key words: maize, root and shoot growth, soil compaction stress, response

图1

2022年和2023年玉米生长季的日降水量、平均温度和辐射状况"

图2

不同紧实胁迫处理下土壤容重和贯穿阻力 NC: 无紧实胁迫; MC: 中度紧实胁迫; HC: 重度紧实胁迫。"

图3

土壤紧实胁迫下不同玉米品种根系形态指标 NC: 无紧实胁迫; MC: 中度紧实胁迫; HC: 重度紧实胁迫。DK517: 迪卡517; ZD958: 郑单958; DH605: 登海605。不同小写字母表示处理间在0.05概率水平差异显著。"

表1

土壤紧实胁迫下不同玉米品种株高和穗位高"

年份
Year
紧实胁迫处理
Compaction treatment
品种
Variety
株高Plant height (cm) 穗位高
Ear height
(cm)
拔节期
Jointing stage
大喇叭口期
Male tetrad stage
开花期
Tasseling stage
2022 无紧实胁迫NC DK517 64.67±0.58 d 155.00±8.00 fg 201.33±1.53 e 64.00±2.65 ij
ZD958 74.00±1.00 bc 181.33±6.66 bc 206.33±6.81 e 83.00±5.57 g
DH605 73.67±7.51 bc 165.00±6.00 def 204.00±4.58 e 75.33±0.58 gh
中度紧实胁迫MC DK517 33.33±3.21 ef 94.00±2.00 i 197.00±3.61 e 60.00±0.00 ij
ZD958 37.00±1.73 e 104.00±12.17 h 201.33±1.53 e 67.33±3.06 hi
DH605 33.00±3.00 ef 93.67±1.53 i 183.33±1.53 f 48.33±0.58 k
重度紧实胁迫HC DK517 30.67±8.39 ef 93.67±1.53 i 187.67±4.04 f 58.67±3.79 ij
ZD958 29.67±2.31 ef 89.00±2.65 i 187.33±3.06 f 55.67±1.15 jk
DH605 25.33±2.08 f 77.67±10.97 j 179.00±1.00 f 47.33±3.06 k
2023 无紧实胁迫NC DK517 75.00±0.00 bc 187.00±2.65 ab 255.00±7.00 b 113.33±5.13 bc
ZD958 82.83±7.52 a 196.33±1.53 a 269.33±10.12 a 132.00±7.55 a
DH605 79.33±3.21 ab 187.33±1.53 ab 255.33±6.66 b 117.33±3.79 b
中度紧实胁迫MC DK517 73.33±4.16 bc 175.00±6.56 cd 240.67±6.81 c 104.33±9.24 de
ZD958 78.33±0.58 ab 178.00±7.00 bc 254.00±2.65 b 108.33±6.66 cd
DH605 73.00±7.55 bc 161.00±4.00 ef 237.33±0.58 c 91.67±8.02 f
重度紧实胁迫HC DK517 72.00±1.73 bcd 165.67±3.06 de 235.67±2.89 c 100.33±5.51 de
ZD958 71.00±1.00 bcd 157.33±3.79 efg 231.67±6.35 c 99.00±4.00 ef
DH605 67.33±6.03 cd 148.67±4.73 g 218.33±11.58 d 83.33±4.04 g
变异来源Source of variation
年份Year (Y) ** ** ** **
紧实胁迫Compaction (C) ** ** ** **
品种Variety (V) * ** ** **
年份×紧实胁迫Y×C ** ** ** NS
年份×品种Y×V NS * NS NS
紧实胁迫×品种C×V * ** ** **
年份×紧实胁迫×品种Y×C×V NS NS NS NS

图4

土壤紧实胁迫下不同玉米品种叶面积指数 处理和品种同图3。*和**分别表示处理间在0.05和0.01概率水平差异显著。"

表2

土壤紧实胁迫下不同玉米品种植株干物质积累"

年份
Year
紧实胁迫处理
Compaction treatment
品种
Variety
拔节期
Jointing stage
大喇叭口期
Male tetrad stage
开花期
Tasseling stage
灌浆期
Grain-filling stage
成熟期
Mature stage
2022 无紧实胁迫NC DK517 5.76±0.06 gh 45.33±1.05 g 105.93±4.90 e 185.02±2.51 g 273.70±9.41 c
ZD958 6.42±0.15 de 59.16±1.15 d 122.03±5.50 bcd 219.14±5.80 de 282.65±9.78 bc
DH605 6.04±0.05 fg 46.30±1.12 g 114.62±9.20 de 210.02±3.52 ef 293.26±7.55 b
中度紧实胁迫MC DK517 5.24±0.11 i 32.16±1.92 j 83.53±2.51 fg 151.58±8.57 h 197.39±14.63 f
ZD958 5.54±0.05 h 32.34±0.74 j 85.93±1.21 f 159.35±6.10 h 202.70±13.42 ef
DH605 4.88±0.03 j 28.16±0.16 k 80.05±3.72 g 136.36±6.19 i 175.08±2.23 g
重度紧实胁迫HC DK517 4.82±0.04 j 25.08±0.48 l 70.35±4.69 h 125.98±7.88 j 179.63±3.60 g
ZD958 4.14±0.06 k 25.03±0.63 l 68.99±8.72 h 113.91±4.87 k 168.31±11.80 h
DH605 3.59±0.04 l 21.15±0.25 m 59.28±0.94 i 99.58±3.22 l 150.43±9.00 i
2023 无紧实胁迫NC DK517 6.99±0.28 cd 65.19±1.34 c 134.76±6.35 ab 245.14±5.07 b 291.06±4.82 b
ZD958 8.25±0.23 a 83.03±1.93 a 139.23±11.07 a 273.83±13.36 a 307.92±14.16 a
DH605 7.85±0.35 ab 75.18±1.83 b 135.02±14.11 ab 273.29±10.58 a 286.86±7.78 bc
中度紧实胁迫MC DK517 6.88±0.97 d 56.26±1.14 e 129.67±1.49 abc 226.33±5.87 cd 276.36±14.50 bc
ZD958 7.51±0.39 bc 60.80±0.28 d 131.93±3.36 ab 231.74±5.13 c 288.96±5.74 bc
DH605 6.82±0.62 d 55.70±1.92 e 118.58±6.29 cde 207.93±6.99 ef 260.76±6.70 d
重度紧实胁迫HC DK517 6.21±0.12 ef 52.23±1.78 f 115.03±11.79 de 224.15±2.47 cd 273.65±14.70 c
ZD958 5.92±0.72 fg 40.09±1.82 h 105.76±10.10 e 222.05±3.58 cd 250.31±14.32 d
DH605 5.75±0.19 gh 35.15±1.85 i 85.07±6.29 f 203.61±7.16 f 227.61±11.86 e
变异来源Source of variation
年份Year (Y) ** ** ** ** **
紧实胁迫Compaction (C) ** ** ** ** **
品种Variety (V) ** ** ** * **
年份×紧实胁迫Y×C NS ** ** ** **
年份×品种Y×V NS NS NS NS NS
紧实胁迫×品种C×V ** ** ** ** **
年份×紧实胁迫×品种Y×C×V NS ** NS NS NS

图5

土壤紧实胁迫下不同玉米品种根冠比 处理和品种同图3。不同小写字母表示处理间在0.05概率水平差异显著。"

表3

土壤紧实胁迫下不同玉米品种产量及产量构成"

年份
Year
紧实胁迫处理
Compaction treatment
品种
Variety
穗粒数
Kernel number per ear
百粒重
100-kernel weight (g)
产量
Grain yield (kg hm-2)
2022 无紧实胁迫NC DK517 408.24±18.51 e 34.32±0.15 b 8458.37±393.64 ef
ZD958 400.42±8.76 e 34.81±0.13 a 8609.04±373.23 ef
DH605 400.91±15.90 e 34.59±0.19 ab 8803.56±182.68 e
中度紧实胁迫MC DK517 378.33±8.86 f 33.56±0.11 cd 8277.62±234.98 fg
ZD958 376.90±4.29 f 33.80±0.16 c 8371.95±117.45 f
DH605 409.40±4.16 e 30.66±0.17 f 7773.35±63.56 hi
重度紧实胁迫HC DK517 351.67±3.13 g 32.47±0.21 e 7496.81±73.70 i
ZD958 331.47±2.29 h 32.43±0.61 e 6844.16±154.91 j
DH605 339.86±5.69 gh 27.94±0.19 i 5820.43±138.80 k
2023 无紧实胁迫NC DK517 543.16±4.62 b 33.25±0.14 d 11,559.28±162.36 a
ZD958 539.28±12.66 b 33.61±0.10 cd 11,625.43±331.27 a
DH605 589.04±8.45 a 34.33±0.14 b 11,824.37±218.24 a
2023 中度紧实胁迫MC DK517 522.25±4.15 c 29.78±0.16 g 10,934.52±154.29 b
ZD958 546.50±10.51 b 32.15±0.17 e 10,976.43±219.32 b
DH605 520.43±6.77 c 32.13±0.21 e 10,771.29±194.19 b
重度紧实胁迫HC DK517 538.14±1.14 b 28.61±0.12 h 9980.36±25.93 c
ZD958 500.64±1.97 d 28.03±0.16 i 9463.59±123.11 d
DH605 501.94±2.54 d 25.17±0.18 j 7950.09±27.01 gh
变异来源Source of variation
年份Year (Y) ** ** **
紧实胁迫Compaction (C) ** ** **
品种Variety (V) ** ** **
年份×紧实胁迫Y×C ** ** **
年份×品种Y×V NS ** NS
紧实胁迫×品种C×V ** ** **
年份×紧实胁迫×品种Y×C×V ** ** NS

表4

土壤物理性质与玉米根系形态、地上部性状、产量及产量构成的相关性"

BD PR RL RSA RV RDM PH EH LAI SDM R/S KN HKW Y
容重Bulk density (BD) 1
贯穿阻力Penetration resistance (PR) 0.89** 1
根长Root length (RL) -0.55** -0.53** 1
根表面积Root surface area (RSA) -0.53** -0.50** 0.99** 1
根体积Root volume (RV) -0.57** -0.54** 0.99** 0.98** 1
根干重Root dry weight (RDW) -0.61** -0.63** 0.94** 0.94** 0.94** 1
株高Plant height (PH) -0.50** -0.48** 0.96** 0.96** 0.94** 0.90** 1
穗位高Ear height (EH) -0.53** -0.47** 0.93** 0.93** 0.91** 0.87** 0.95** 1
叶面积指数Leaf area index (LAI) -0.58** -0.57** 0.93** 0.93** 0.92** 0.91** 0.96** 0.96** 1
地上部干重Shoot dry matter (SDM) -0.58** -0.56** 0.74** 0.75** 0.71** 0.83** 0.79** 0.83** 0.85** 1
根冠比Root/shoot ratio (R/S) -0.38** -0.41** 0.70** 0.71** 0.70** 0.83** 0.64** 0.60** 0.63** 0.59** 1
穗粒数Kernel number per ear (KN) -0.39** -0.36** 0.91** 0.93** 0.90** 0.84** 0.92** 0.90** 0.91** 0.73** 0.59** 1
百粒重100-kernel weight (HKW) -0.61** -0.69** 0.05 0.03 0.08 0.28* 0.05 0.06 0.15 0.30* 0.24 -0.14 1
产量Yield (Y) -0.58** -0.61** 0.94** 0.94** 0.94** 0.96** 0.94** 0.91** 0.94** 0.82** 0.71** 0.90** 0.25 1
[1] 张方博, 侯玉雪, 敖园园, 申建波, 金可默. 土壤紧实胁迫下根系-土壤的相互作用. 植物营养与肥料学报, 2021, 27: 531-543.
Zhang F B, Hou Y X, Ao Y Y, Shen J B, Jin K M. Root-soil interaction under soil compaction stress. J Plant Nutr Fert, 2021, 27: 531-543 (in Chinese with English abstract).
[2] Batey T. Soil compaction and soil management: a review. Soil Use Manag, 2009, 25: 335-345.
[3] Hamza M A, Anderson W. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res, 2005, 82: 121-145.
[4] 周宝元, 陈传永, 孙雪芳, 葛均筑, 丁在松, 马玮, 王新兵, 赵明. 冬小麦-夏玉米双机收籽粒模式周年资源利用效率及经济效益. 中国生态农业学报, 2022, 30: 1959-1972.
Zhou B Y, Chen C Y, Sun X F, Ge J Z, Ding Z S, Ma W, Wang X B, Zhao M. Resource use efficiencies and economic benefits of winter wheat-summer maize cropping system with double mechanical grain harvest. Chin J Eco-Agric, 2022, 30: 1959-1972 (in Chinese with English abstract).
[5] Wang M X, Wu W L, Liu W N, Bao Y H. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. Int J Sust Dev World, 2007, 14: 400-407.
[6] Zhang X, Chen S, Sun H, Wang Y, Shao L. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agric Water Manag, 2010, 97: 1117-1125.
[7] 强小嫚, 张凯, 米兆荣, 刘战东, 王万宁, 孙景生. 黄淮海平原地区深松和灌水次数对冬小麦-夏玉米节水增产的影响. 中国农业科学, 2019, 52: 491-502.
doi: 10.3864/j.issn.0578-1752.2019.03.009
Qiang X M, Zhang K, Mi Z R, Liu Z D, Wang W N, Sun J S. Effects of subsoiling and irrigation times on water saving and yield increase of winter wheat and summer maize in Huang-Huai-Hai plain. Sci Agric Sin, 2019, 52: 491-502 (in Chinese with English abstract).
[8] 周艳丽, 刘娜, 於丽华, 卢秉福, 张文彬, 刘晓雪. 土壤机械压实及其对作物生长的影响. 中国农学通报, 2022, 38(28): 83-88.
doi: 10.11924/j.issn.1000-6850.casb2021-0915
Zhou Y L, Liu N, Yu L H, Lu B F, Zhang W B, Liu X X. Soil mechanical compaction and its influence on crop growth. Chin Agric Sci Bull, 2022, 38(28): 83-88 (in Chinese with English abstract).
[9] Lipiec J, Simota C. Role of soil and climate factors influencing crop responses to compaction in Central and Eastern Europe. Dev Agric Eng, 1994, 11: 365-390.
[10] 李潮海, 周顺利. 土壤容重对玉米苗期生长的影响. 华北农学报, 1994, 9(2): 49-54.
doi: 10.3321/j.issn:1000-7091.1994.02.010
Li C H, Zhou S L. Effects of soil bulk density on maize seedling growth. Acta Agric Boreali-Sin, 1994, 9(2): 49-54 (in Chinese with English abstract).
[11] 刘晚苟, 山仑. 不同土壤水分条件下容重对玉米生长的影响. 应用生态学报, 2003, 14: 1906-1910.
Liu W G, Shan L. Effect of soil bulk density on maize growth under different water regimes. J Appl Ecol, 2003, 14: 1906-1910 (in Chinese with English abstract).
[12] Ishaq M, Hassan A, Saeed M, Ibrahim M, Lal R. Subsoil compaction effects on crops in Punjab, Pakistan. Soil Tillage Res, 2001, 60: 153-161.
[13] 王群, 李潮海, 郝四平, 张永恩, 韩锦峰. 下层土壤容重对玉米生育后期光合特性和产量的影响. 应用生态学报, 2008, 19: 787-793.
Wang Q, Li C H, Hao S P, Zhang Y E, Han J F. Effects of subsoil bulk density on late growth stage photosynthetic characteristics and grain yield of maize (Zea mays L.). J Appl Ecol, 2008, 19: 787-793 (in Chinese with English abstract).
[14] 张兴义, 隋跃宇. 土壤压实对农作物影响概述. 农业机械学报, 2005, 36(10): 161-164.
Zhang X Y, Sui Y Y. Summarization on the effect of soil compaction on crop. Trans CSAM, 2005, 36(10): 161-164 (in Chinese with English abstract).
[15] Canarache A, Colibas I, Colibas M, Horobeanu I, Trandafirescu T. Effect of induced compaction by wheel traffic on soil physical properties and yield of maize in Romania. Soil Tillage Res, 1984, 4: 199-213.
[16] Gaultney L, Krutz G, Steinhardt G, Liljedahl J. Effects of subsoil compaction on corn yields. Trans ASABE, 1980, 25: 563-569.
[17] 王群, 李潮海, 李全忠, 薛帅. 紧实胁迫对不同类型土壤玉米根系时空分布及活力的影响. 中国农业科学, 2011, 44: 2039-2050.
doi: 10.3864/j.issn.0578-1752.2011.10.009
Wang Q, Li C H, Li Q Z, Xue S. Effects of compaction stress on temporal and spatial distribution and vigor of maize roots in different types of soil. Sci Agric Sin, 2011, 44: 2039-2050 (in Chinese with English abstract).
[18] Wasson A P, Richards R A, Chatrath R, Misra S C, Prasad S V S, Rebetzke G J, Kirkegaard J A, Christopher J, Watt M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot, 2012, 63: 3485-3498.
doi: 10.1093/jxb/ers111 pmid: 22553286
[19] Jordon D, Ponder J F, Hubbard V C. Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity. Appl Soil Ecol, 2003, 23: 33-41.
[20] Tracy S R, Black C R, Roberts J A, McNeill A, Davidson R, Tester M, Samec M, Korosak D, Sturrock C, Mooney S J. Quantifying the effect of soil compaction on three varieties of wheat (Triticum aestivum L.) using X-ray Micro Computed Tomography (CT). Plant Soil, 2012, 353: 195-208.
[21] Whalley W R, Watts C W, Gregory A S, Mooney S J, Clark L J, Whitmore A P. The effect of soil strength on the yield of wheat. Plant Soil, 2008, 306: 237-247.
[22] 王空军, 郑洪建, 刘开昌, 张吉旺, 董熟亭, 胡昌浩. 我国玉米品种更替过程中根系时空分布特性的演变. 植物生态学报, 2001, 25: 472-475.
Wang K J, Zheng H J, Liu K C, Zhang J W, Dong S T, Hu C H. Evolution of temporal and spatial distribution characteristics of root system during maize variety replacement in China. J Plant Ecol, 2001, 25: 472-475 (in Chinese with English abstract).
[23] Xiong P, Zhang Z B, Hallett P D, Peng X H. Variable responses of maize root architecture in elite cultivars due to soil compaction and moisture. Plant Soil, 2020, 455: 79-91.
[24] 杨晓娟, 李春俭. 机械压实对土壤质量、作物生长、土壤生物及环境的影响. 中国农业科学, 2008, 41: 2008-2015.
Yang X J, Li C J. Effects of mechanical compaction on soil quality, crop growth, soil biology and environment. Sci Agric Sin, 2008, 41: 2008-2015 (in Chinese with English abstract).
[25] Tullberg J N, Ziebarth P J, Li Y X. Tillage and traffic effects on runoff. Aust J Soil Res, 2001, 39: 249-257.
[26] Wang X, He J, Bai M, Liu L, Gao S, Chen K, Zhuang H. The impact of traffic-induced compaction on soil bulk density, soil stress distribution and key growth indicators of maize in North China Plain. Agriculture, 2022, 12: 1220.
[27] 刘晚苟, 山仑, 邓西平. 植物对土壤紧实度的反应. 植物生理学通讯, 2001, 37: 254-260.
Liu W G, Shan L, Deng X P. Plant response to soil compactness. Plant Physiol Commun, 2001, 37: 254-260 (in Chinese).
[28] Alameda D, Villar R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ Exp Bot, 2012, 79: 49-57.
[29] Grzesiak S, Grzesiak M T, Hura T, Marcińska I, Rzepka A. Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environ Exp Bot, 2013, 88: 2-10.
[30] Correa J, Postma J A, Watt M, Wojciechowski T. Soil compaction and the architectural plasticity of root systems. J Exp Bot, 2019, 70: 6019-6034.
doi: 10.1093/jxb/erz383 pmid: 31504740
[31] Wolfe D W, Topoleski D T, Gundersheim N A, Ingall B A. Growth and yield sensitivity of four vegetable crops to soil compaction. J Am Soc Hortic Sci, 1995, 120: 956-963.
[32] Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol, 2000, 27: 595-607.
[33] Yu P, Li X, White P J, Li C. A large and deep root system underlies high nitrogen-use efficiency in maize production. PLoS One, 2015, 10: e0126293.
[34] Battisti R, Sentelhas P C. Improvement of soybean resilience to drought through deep root system in Brazil. Agron J, 2017, 109: 1612-1622.
[35] Xie Y, Islam S, Legesse H T, Kristensen H L. Deep root uptake of leachable nitrogen in two soil types is reduced by high availability of soil nitrogen in fodder radish grown as catch crop. Plant Soil, 2021, 456: 213-227.
[36] Wu X, Li H, Rengel Z, Whalley W R, Li H, Zhang F, Shen J, Jin K. Localized nutrient supply can facilitate root proliferation and increase nitrogen-use efficiency in compacted soil. Soil Tillage Res, 2022, 215: 105198.
[37] Bushamuka V N, Zobel R W. Differential genotypic and root type penetration of compacted soil layers. Crop Sci, 1998, 38: 776-781.
[38] Tubeileh A, Groleau-Renaud V, Plantureux S, Guckert. Effect of soil compaction on photosynthesis and carbon partitioning within a maize-soil system. Soil Tillage Res, 2003, 71: 151-161.
[39] 关军锋, 马春红, 李广敏. 干旱胁迫下小麦根冠生物量变化及其与抗旱性的关系. 河北农业大学学报, 2004, 27(1): 1-5.
Guan J F, Ma C H, Li G M. Changes of root and shoot biomass of wheat under drought stress and its relationship with drought resistance. J Agric Univ Hebei, 2004, 27(1): 1-5 (in Chinese with English abstract).
[40] 李鲁华, 李世清, 翟军海, 史俊通. 小麦根系与土壤水分胁迫关系的研究进展. 西北植物学报, 2001, 2(1): 1-7.
Li L H, Li S Q, Zhai J H, Shi J T. Research progress on the relationship between wheat roots and soil water stress. Acta Bot Boreal-Occident Sin, 2001, 21(1): 1-7 (in Chinese with English abstract).
[41] 张玉芹, 杨恒山, 李从锋, 赵明, 罗方, 张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响. 作物学报, 2020, 46: 902-913.
doi: 10.3724/SP.J.1006.2020.93053
Zhang Y Q, Yang H S, Li C F, Zhao M, Luo F, Zhang R F. Effect of strip tillage and dislocation planting on yield formation and crown and root characteristics of spring maize in irrigation area. Acta Agron Sin, 2020, 46: 902-913 (in Chinese with English abstract).
[42] 张大勇, 姜新华. 对于作物生产的生态学思考. 植物生态学报, 2000, 24: 383-384.
Zhang D Y, Jiang X H. An ecological perspective on crop production. J Plant Ecol, 2000, 24: 383-384 (in Chinese).
[43] Pandey B K, Huang G Q, Bhosale R, Hartman S, Sturrock C J, Jose L, Martin O C, Karady M, Voesenek L A C J, Ljung K, Lynch J P, Brown K M, Whalley W R, Mooney S J, Zhang D B, Bennett M J. Plant roots sense soil compaction through restricted ethylene diffusion. Science, 2021, 371: 276-280.
doi: 10.1126/science.abf3013 pmid: 33446554
[44] Huang G Q, Kilic A, Karady M, Zhang J, Mehra P, Song X Y, Sturrock C J, Zhu W W, Qin H, Hartman S, Schneider H M, Bhosale R, Dodd I C, Sharp R E, Huang R F, Mooney S J, Liang W Q, Bennett M J, Zhang D B, Pandey B K. Ethylene inhibits rice root elongation in compacted soil via ABA- and auxin- mediated mechanisms. Proc Natl Acad Sci USA, 2022, 119: e2201072119.
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[3] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[4] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[5] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[6] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[7] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[8] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[9] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[10] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[11] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[12] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[13] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[14] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
[15] 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .