欢迎访问作物学报,今天是

作物学报

• •    

玉米ZmGRAS13基因的克隆及功能研究

折萌1,2,郑登俞2,柯照2,吴忠义2,邹华文1,*,张中保2,*   

  1. 1长江大学农学院, 湖北荆州434025; 2北京市农林科学院生物技术研究所 / 农业基因资源与生物技术北京市重点实验室, 北京100097
  • 收稿日期:2023-10-18 修回日期:2024-01-12 接受日期:2024-01-12 网络出版日期:2024-02-19
  • 基金资助:
    本研究由北京市自然科学基金项目(6222009),北京市农林科学院创新能力建设专项(KJCX20230203)和北京市农林科学院生物技术共享平台2023项目资助。

Cloning and functional analysis of ZmGRAS13 gene in maize

SHE Meng1,2,ZHENG Deng-Yu2,KE Zhao2,WU Zhong-Yi2,ZOU Hua-Wen1,*,ZHANG Zhong-Bao2,*   

  1. 1 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China; 2 Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2023-10-18 Revised:2024-01-12 Accepted:2024-01-12 Published online:2024-02-19
  • Supported by:
    This study was supported by the Beijing Natural Science Foundation (6222009), the Beijing Academy of Agricultural and Forestry Sciences (KJCX20230203), and the Beijing Academy of Agricultural and Forestry Sciences Biotechnology Sharing Platform in 2023.

摘要:

GRAS家族是植物特有的一类转录因子,在调控植物生长发育和响应逆境胁迫等方面发挥着重要作用。探究玉米(Zea mays L.) GRAS家族基因功能将为玉米新种质创制提供重要的基因资源。本研究克隆获得了ZmGRAS13基因(Zm00001eb401210),利用生物信息学分析、实时荧光定量PCR (qPCR)等技术对该基因的基本特性、组织表达特性及逆境胁迫下表达模式等进行分析。生物信息学分析结果显示,该基因编码序列全长为1638 bp,编码545个氨基酸;ZmGRAS13蛋白不具有跨膜结构,分子量为60.79 kD,理论等电点为5.86,具有GRAS家族所特有的保守结构域。对基因启动子上游2 kb序列进行分析,发现该序列含有与逆境胁迫、激素响应及光响应等相关的顺式作用元件。qPCR分析表明,ZmGRAS13基因在玉米不同组织中均有表达,且茎中的表达量最高;同时该基因在不同非生物胁迫处理条件下均有不同程度的诱导表达。玉米原生质体瞬时表达实验表明,ZmGRAS13蛋白定位于细胞核。在分别含有不同浓度梯度的NaCl、甘露醇(mannitol)、脱落酸(abscisic acid, ABA)、茉莉酸(jasmonic acid, JA)和水杨酸(salicylic acid, SA)1/2 MS固体培养基上,转ZmGRAS13基因拟南芥株系的根长均显著长于野生型拟南芥;在土壤中,高盐和干旱处理下转基因拟南芥株系较野生型拟南芥生长状态更好,且绿叶率高于野生型。转ZmGRAS13基因拟南芥与野生型相比,抗逆生理指标MDA含量降低、叶绿素含量增加、以及PODCAT活性增强,且差异均显著。由此推测,ZmGRAS13基因可能参与玉米生长发育调控和对逆境胁迫应答及激素信号转导途径。本研究为进一步解析ZmGRAS13在玉米中的生物学功能提供了重要的参考依据。

关键词: 玉米, ZmGRAS13, 转录因子, 渗透胁迫, 盐胁迫, 异源表达

Abstract:

GRAS family is a plant-specific transcription factor, which plays an important role in regulating plant growth and development and responding to stresses. Exploring the function of GRAS family genes in maize (Zea mays L.) provides the important genetic resources for the creation of new maize germplasm. In this study, ZmGRAS13 gene (Zm00001eb401210) was cloned, and its basic characteristics, tissue expression characteristics, and the relative expression patterns under stresses were analyzed by bioinformatics and qRT-PCR. Bioinformatics showed that the full-length coding sequence of this gene was 1638 bp, encoding 545 amino acids. ZmGRAS13 protein had no transmembrane structure, and the molecular weight of 60.79 kD, the theoretical isoelectric point of 5.86, and had a conserved domain unique to the GRAS family. The analysis of 2 kb sequence upstream of the gene promoter indicated that the sequence contained cis-acting elements related to stresses, hormone response, and light response. The qRT-PCR analysis showed that ZmGRAS13 gene was expressed in different tissues of maize, and the relative expression level in stem was the highest. At the same time, the gene has different degrees of induced expression under different abiotic stress treatment conditions. The transient expression experiment of maize protoplasts demonstrated that ZmGRAS13 protein was localized in the nucleus. On 1/2 MS solid medium containing different concentrations of NaCl, mannitol, abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA), respectively, the root length of ZmGRAS13 transgenic Arabidopsis lines was significantly longer than the control. In the soil, transgenic Arabidopsis lines grew better than the control under high salt and drought treatments, and the green leaf rate was higher than the control. Compared with the wild type, the content of stress resistance physiological index MDA decreased, the chlorophyll content increased, and the activities of POD and CAT increased in the transgenic ZmGRAS13 Arabidopsis thaliana, and the difference was significant difference. In conclusion, ZmGRAS13 gene may be involved in the regulation of maize growth and development, response to stresses and hormone signal transduction pathway. This study provides an important reference for the further analysis of the biological function of ZmGRAS13 in maize.

Key words: maize, ZmGRAS13, transcription factors, osmotic stress, salt stress, heterologous expression

[1] Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation-a review. Plant Biol, 2022, 24: 404416.

[2] Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta, 2004, 218: 683692.

[3] Guiltinan M J, Miller L. Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1. Plant Mol Biol, 1994, 26: 10411053.

[4] Heery D M, Kalkhoven E, Hoare S, Parker M G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 1997, 387: 733736.

[5] Guo Y, Wu H, Li X, Li Q, Zhao X, Duan X, An Y, Lyu W, An H. Identification and expression of GRAS family genes in maize (Zea mays L.). PLoS One, 2017, 12: e0185418.

[6] 张文霞, 刁志娟, 吴为人. 植物GRAS蛋白研究的新进展. 分子植物育种, 2016, 14: 11591165.

Zhang W X, Diao Z J, Wu W R. New advances in the study of plant GRAS proteins. Mol Plant Breed, 2016, 14: 11591165 (in Chinese with English abstract).

[7] Tian C, Wan P, Sun S, Li J, Chen M. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol, 2004, 54: 519532.

[8] Heo J O, Chang K S, Kim I A, Lee M H, Lee S A, Song S K, Lee M M, Lim J. Funneling of gibberellin signaling by the GRAS transcription regulator scarecrow-like 3 in the Arabidopsis root. Proc NatI Acad Sci USA, 2011, 108: 21662171.

[9] Tanabe S, Onodera H, Hara N, Ishii-Minami N, Day B, Fujisawa Y, Hagio T, Toki S, Shibuya N, Nishizawa Y, Minami E. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23. Biosci Biotech Bioch, 2016, 80: 145151.

[10] Mayrose M, Ekengren S K, Melech-Bonfil S, Martin G B, Sessa G. A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. Mol Plant Pathol, 2006, 7: 593604.

[11] 周莲洁, 杨中敏, 张富春, 王艳. 新疆盐穗木GRAS转录因子基因克隆及表达分析. 西北植物学报, 2013, 33: 10911097.

Zhou L J, Yang Z M, Zhang F Q, Wang Y. Expression analysis and cloning of GRAS transcription factor gene from Halostachys capsica. Acta Bot Boreal-Occident Sin, 2013, 33: 10911097 (in Chinese with English abstract).

[12] 郭鹏, 邢新, 金华, 董燕. 玉米ZmSCL7的克隆及功能研究. 中国农业科学, 2013, 46: 25842591.

Guo P, Xing X, Jin H, Dong Y. Cloning and functional study of ZmSCL7 in Zea mays. Sci Agric Sin, 2013, 46: 25842591 (in Chinese with English abstract).

[13] Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd N P. Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science, 2006, 311: 9194.

[14] Huang W, Xian Z, Kang X, Tang N, Li Z. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biol, 2015, 15: 209.

[15] Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell, 2008, 20: 21172129.

[16] 郭华军. 拟南芥转录因子GRAS家族SCL15基因对干旱胁迫的响应分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2011.

Guo H J. Analysis of Arabidopsis GRAS Family Gene SCL15 Responded to Drought Stress. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2011 (in Chinese with English abstract).

[17] 丁雪峰, 刘鸿艳, 罗利军. 水稻OsGRAS1启动子的克隆及多样性分析. 上海农业学报, 2010, 26(4): 814.

Ding X F, Liu H Y, Luo L J. Cloning and diversity analysis of OsGRAS1 promoter in rice. Acta Agric Shanghai, 2010, 26(4): 814 (in Chinese with English abstract).

[18] 廖文彬, 彭明. 木薯赤霉素途径DELLA蛋白基因克隆及其对干旱胁迫的响应. 热带生物学报, 2012, 3(4): 298304.

Liao W B, Peng M. Gene cloning of DELLA protein from cassava and its expression patterns under drought stress. J Trop Biol, 2012, 3(4): 298304 (in Chinese with English abstract).

[19] Weng Y, Chen X, Hao Z, Lu L, Wu X, Zhang J, Wu J, Shi J, Chen J. Genome-wide analysis of the GRAS gene family in Liriodendron chinense reveals the putative function in abiotic stress and plant development. Front Plant Sci, 2023, 14: 1211853.

[20] Battaglia M, Rípodas C, Clúa J, Baudin M, Aguilar O M, Niebel A, Zanetti M E, Blanco F A. A nuclear factor Y interacting protein of the GRAS family is required for nodule organogenesis, infection thread progression, and lateral root growth. Plant Physiol, 2014, 164: 14301442.

[21] Gobbato E, Marsh J F, Vernié T, Wang E, Maillet F, Kim J, Miller J B, Sun J, Bano S A, Ratet P, Mysore K S, Dénarié J, Schultze M, Oldroyd G E. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol, 2012, 22: 22362241.

[22] Bolle C, Koncz C, Chua N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Gene Dev, 2000, 14: 12691278.

[23] Torres-Galea P, Hirtreiter B, Bolle C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A Signal transduction. Plant Physiol, 2013, 161: 291304.

[24] Fode B, Siemsen T, Thurow C, Weigel R, Gatz C. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell, 2008, 20: 31223135.

[25] Gao M J, Li X, Huang J, Gropp G M, Gjetvaj B, Lindsay D L, Wei S, Coutu C, Chen Z, Wan X C, Hannoufa A, Lydiate D J, Gruber M Y, Chen Z J, Hegedus D D. SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme. Nat Commun, 2015, 6: 7243.

[26] Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J, 2009, 58: 803816.

[27] Li X, Qian Q, Fu Z, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J. Control of tillering in rice. Nature, 2003, 422: 618621.

[28] Meng F, Zheng X, Wang J, Qiu T, Yang Q, Fang K, Bhadauria V, Peng Y L, Zhao W. The GRAS protein OsDLA involves in brassinosteroid signalling and positively regulates blast resistance by forming a module with GSK2 and OsWRKY53 in rice. Plant Biotechnol J, 2023.

[29] Morohashi K, Minami M, Takase H, Hotta Y, Hiratsuka K. Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression. J Biol Chem, 2003, 278: 2086520873.

[30] Li M, Sun B, Xie F, Gong R, Luo Y, Zhang F, Yan Z, Tang H. Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard. Peer J, 2019, 7: e6682.

[31] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Prot, 2007, 2: 15651572.

[32] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735743.

[33] Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol, 2015, 15: 141.

[34] 王晓冬. 玉米GRAS转录因子基因ZmSCL14功能分析. 山东农业大学硕士学位论文, 山东泰安, 2020.

Wang X D. Functional analysis of maize GRAS transcription factor ZmSCL14 gene. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2020 (in Chinese with English abstract).

[35] 殷龙飞, 王朝阳, 吴忠义, 张中保, 于荣. 玉米ZmGRAS31基因的克隆及功能研究. 作物学报, 2019, 45: 10291037.

Yin L F, Wang C Y, Wu Z Y, Zhang Z B, Yu R. Cloning and functional analysis of ZmGRAS31 gene in maize. Acta Agron Sin, 2019, 45: 10291037 (in Chinese with English abstract).

[36] Czikkel B E, Maxwell D P. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. J Plant Physiol, 2007, 164: 12201230.

[37] Ma H S, Liang D, Shuai P, Xia X L, Yin W L. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot, 2010, 61: 40114019.

[38] Wang T T, Yu T F, Fu J D, Su H G, Chen J, Zhou Y B, Chen M, Guo J, Ma Y Z, Wei W L, Xu Z S. Genome-wide analysis of the GRAS gene family and functional identification of GmGRAS37 in drought and salt tolerance. Front Plant Sci, 2020, 11: 604690.

[39] Yuan Y, Fang L, Karungo S K, Zhang L, Gao Y, Li S, Xin H. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Rep, 2016, 35: 655666.

[40] Zhang S, Li X, Fan S, Zhou L, Wang Y. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis. Plant Physiol Bioch, 2020, 151: 243254.

[1] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[2] 梁星伟, 杨文亭, 金雨, 胡莉, 傅小香, 陈先敏, 周顺利, 申思, 梁效贵. 玉米穗轴的颜色变化, 是偶然还是与农艺性状存在关联?——以历年国审普通品种为例[J]. 作物学报, 2024, 50(3): 771-778.
[3] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[4] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[5] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[6] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[7] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[8] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[9] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[10] 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66.
[11] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[12] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[13] 上官小霞, 杨琴莉, 李换丽. 基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析[J]. 作物学报, 2024, 50(1): 138-148.
[14] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[15] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!