欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (6): 1435-1450.doi: 10.3724/SP.J.1006.2024.33061

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米果穗相关性状QTL定位及重要候选基因分析

郑雪晴1(), 王兴荣2, 张彦军2, 龚佃明1,*(), 邱法展1,*()   

  1. 1华中农业大学作物遗传改良全国重点实验室 / 湖北洪山实验室, 湖北武汉 430070
    2甘肃省农业科学院作物研究所, 甘肃兰州 730070
  • 收稿日期:2023-10-25 接受日期:2024-01-12 出版日期:2024-06-12 网络出版日期:2024-02-19
  • 通讯作者: * 龚佃明, E-mail: gongdianming@mail.hzau.edu.cn; 邱法展, E-mail: qiufazhan@mail.hzau.edu.cn
  • 作者简介:E-mail: 15966993837@163.com
  • 基金资助:
    科技兴蒙行动重点专项(2022EEDSKJXM011);科技兴蒙行动重点专项(2022EEDSKJXM011-1);山东省重点研发计划项目(2022CXPT014)

Mapping of QTL for ear-related traits and prediction of key candidate genes in maize

ZHENG Xue-Qing1(), WANG Xing-Rong2, ZHANG Yan-Jun2, GONG Dian-Ming1,*(), QIU Fa-Zhan1,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
    2Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2023-10-25 Accepted:2024-01-12 Published:2024-06-12 Published online:2024-02-19
  • Contact: * E-mail: gongdianming@mail.hzau.edu.cn;E-mail: qiufazhan@mail.hzau.edu.cn
  • Supported by:
    Key Program of Action Plan to Revitalize Inner Mongolia through Science and Technology(2022EEDSKJXM011);Key Program of Action Plan to Revitalize Inner Mongolia through Science and Technology(2022EEDSKJXM011-1);National Key Research and Development Program of Shandong Province(2022CXPT014)

摘要:

玉米果穗相关性状与产量直接相关, 其遗传基础解析对于指导玉米遗传改良意义重大。本研究对3年6个环境下的168份高代回交重组自交系(AB-RILs)的穗长、穗行数和百粒重等8个性状进行表型鉴定, 结合玉米10 K芯片产生的覆盖全基因组的11,407个SNP (Single Nucleotide Polymorphisms)标记对8个性状进行QTL定位。共鉴定到32个与8个果穗性状相关的QTL, 其中包含5个环境一致性的QTL, 3个多效性QTL。进一步利用507份关联群体的基因型与表型数据对主效QTL候选区间进行关联分析, 鉴定到19个可能与果穗性状相关的重要候选基因, 结合候选基因的进化分析和表达分析等, 初步确定其中4个为关键候选基因。以上结果为玉米育种中果穗性状的遗传改良提供了重要的标记信息, 同时也为果穗性状相关基因克隆提供指导。

关键词: 玉米, AB-RIL群体, 果穗, 籽粒, QTL定位, 候选区间关联分析

Abstract:

Maize ear related traits are directly related to yield, and the analysis of their genetic basis is of great significance for guiding maize genetic improvement. In this study, the phenotypic characteristics of eight traits were identified in 168 high generation backcross recombinant inbred lines (AB-RILs) in six environments over three years. QTLs for eight traits were mapped with 11,407 SNP markers generated by 10 K liquid chip in maize. A total of 32 QTL related to eight ear traits were identified in this study, including five environmentally consistent QTLs and three pleiotropic QTL. Further, we used the genotypic and phenotypic data of 507 maize inbred lines to analyze the candidate regions of major QTL and identified 19 candidate genes that might be related to ear shape. We finally speculated four genes as candidate genes based on the analysis of evolution and expression of the genes. These results provide the important marker information for the genetic improvement of ear traits in maize breeding and offered guidance for the cloning of genes related to ear traits.

Key words: maize, AB-RIL population, ear, kernel, QTL mapping, candidate regional association analysis

表1

各性状调查方法"

性状
Trait
测定方法
Assessment
单位
Unit
穗长EL 果穗顶部到基部的长度 The length of a maize ear from ear top to ear base. cm
穗行数ER 果穗籽粒的行数 The ear row number of a maize ear.
穗粗ED 果穗中下部(约2/3处)的直径 The ear diameter in the lower-middle part (about two thirds) of maize ear. cm
轴粗CD 果穗中下部(约2/3处)穗轴的直径 The cob diameter in the lower-middle part (about two thirds) of maize cob. cm
粒长KL 1/2(ED-CD) cm
粒宽KW Pi(π)×ED/ER cm
粒厚KT 果穗中部随机挑取5颗籽粒, 测定其厚度
We randomly selected 5 seeds from the middle of the maize ear and measured their thickness.
cm
百粒重HKW 果穗中部的籽粒中随机挑取100粒, 测定其总重量
We randomly selected 100 seeds from the middle of the maize ear and measured their weight.
g

图1

各性状环境间相关性及各性状频数分布 *表示P < 0.05, **表示P < 0.01, ***表示P < 0.001。图A表示穗长, 图B表示穗行数, 图C表示穗粗, 图D表示轴粗, 图E表示粒长, 图F表示粒宽, 图G表示粒厚, 图H表示百粒重。2019HB代表2019年湖北环境, 2019SD代表2019年山东环境, 2020HN代表2020年海南环境, 2020SD代表2020年山东环境, 2021HB代表2021年湖北环境, 2021SD代表2021年山东环境。"

表2

综合所有环境中亲本和AB-RILs的描述性统计结果"

性状
Trait
HL-1 HL-4 AB-RILs
平均值±标准差
Mean±SD
平均值±标准差Mean±SD 最小值
Min.
最大值
Max.
平均值±标准差Mean±SD 偏度
Skewness
峰度
Kurtosis
EL (cm) 14.08±1.97 10.05±1.52 5.50 21.30 11.02±1.92 0.43 0.64
ER 16.29±1.39 20.06±1.90 10.00 30.00 18.02±2.70 0.21 0.02
ED (cm) 4.77±0.40 4.13±0.24 2.92 5.72 4.19±0.38 0.13 0.21
CD (cm) 2.86±0.20 2.62±0.21 1.75 3.87 2.58±0.27 0.55 0.86
KL (cm) 0.95±0.15 0.75±0.11 0.34 1.50 0.81±0.13 -0.09 0.14
KW (cm) 0.92±0.10 0.65±0.06 0.46 1.18 0.74±0.10 0.65 0.71
KT (cm) 0.42±0.03 0.38±0.03 0.26 0.64 0.40±0.05 0.56 1.06
HKW (g) 29.94±4.19 15.74±3.66 6.72 35.90 19.58±4.43 0.14 -0.19

图2

不同环境性状间相关性分析 *表示P < 0.05, **表示P < 0.01, ***表示P < 0.001; 缩写同表1。A: 2019年湖北环境; B: 2019年山东环境; C: 2020年海南环境; D: 2020年山东环境; E: 2021年湖北环境; F: 2021年山东环境。"

表3

不同环境各性状遗传力计算"

环境
Environment
穗长
EL
穗行数
ER
穗粗
ED
轴粗
CD
粒长
KL
粒宽
KW
粒厚
KT
百粒重
HKW
2019湖北 2019HB 0.900 0.941 0.897 0.910 0.865 0.945 0.887 0.915
2019山东 2019SD 0.888 0.897 0.888 0.904 0.768 0.882 0.887 0.896
2020山东 2020SD 0.966 0.960 0.960 0.971 0.922 0.955 0.951 0.956
2020海南 2020HN 0.942 0.950 0.955 0.960 0.904 0.925 0.943 0.954
2021湖北 2021HB 0.945 0.937 0.940 0.941 0.905 0.923 0.881 0.911
2021山东 2021SD 0.941 0.936 0.952 0.940 0.908 0.924 0.909 0.917
多环境Multiple environments 0.784 0.853 0.792 0.838 0.697 0.846 0.745 0.751

图3

AB-RILs群体Bin-map图谱 A: 与HL-1基因型一致的binmarker; B: 与HL-4基因型一致binmarker; H: 杂合binmarker。"

表4

AB-RIL群体高密度图谱的特征"

染色体
Chr.
Bin标记
Bin-marker
物理距离
Physical distance (Mb)
遗传距离
Genetic distance
(cM)
标记间的平均距离
Average distance between markers (cM)
小于5 cM的间距数
< 5 cM gap
最大的间距
Max. gap (cM)
1 324 306.26 237.77 0.74 323 4.30
2 255 244.41 171.70 0.68 254 2.90
3 278 234.80 204.95 0.74 277 3.17
4 260 245.96 215.26 0.83 259 3.95
5 232 223.30 175.63 0.76 231 3.58
6 158 172.60 117.26 0.75 157 4.80
7 139 180.84 109.31 0.79 138 3.96
8 127 180.30 110.29 0.88 126 3.31
9 173 158.56 127.02 0.74 172 4.27
10 132 149.96 99.23 0.76 131 3.57
合计Total 2078 2096.99 1568.42 0.767 2068 4.80

图4

AB-RIls全基因组遗传距离与物理距离对比图 图中横坐标表示物理距离, 纵坐标表示遗传距离; 2条黑色虚线之间表示着丝粒的位置; 染色体缩写同图3。"

表5

6个环境QTL总结"

性状
Trait name
QTL 环境
Environment
染色体
Chr.
左侧位置
Left marker
(bp)
右侧位置
Right marker
(bp)
区间大小
Interval
(Mb)
LOD 表型贡献率
PVE
(%)
加性效应
Add.
轴粗 qCD-1 2021HB 1 54,939,430 62,115,356 7.18 3.87 7.75 0.07
CD (cm) qCD-4-1 2020SD 4 205,018,080 208,958,555 3.94 3.72 15.64 0.11
qCD-4-2 2021HB 4 192,997,278 196,677,405 3.04 5.49 11.17 0.10
qCD-5 2021HB 5 186,597,846 188,359,476 1.76 4.11 8.20 -0.07
qCD-6-1 2021HB 6 135,424,426 137,064,298 1.64 3.48 6.92 0.07
qCD-6-2 2021SD 6 121,297,726 122,580,268 1.28 4.12 12.18 0.11
穗粗 qED-4 2021HB 4 192,997,278 196,677,405 3.04 4.64 10.34 0.14
ED (cm) qED-6 2021SD 6 112,313,105 114,094,970 1.78 4.48 11.43 0.14
穗长 qEL-2 2020HN 2 236,095,548 238,255,788 2.16 6.07 12.16 -0.90
EL (cm) qEL-3 2021SD 3 185,984,247 191,410,788 5.43 5.79 12.39 -0.67
qEL-5 2020HN 5 11,628,082 13,586,282 1.96 4.17 8.63 -0.88
穗行数 qER-2 2021HB/2021SD 2 6,991,776 9,084,154 2.09 5.83/5.29 8.22/5.31 -0.95/-0.99
ER qER-4-1 2019SD/2021HB 4 13,661,289 17,219,642 3.56 3.64/3.98 10.89/5.46 -0.71/-0.80
qER-4-2 2021HB/2021SD 4 199,271,470 210,177,012 10.91 9.57/8.48 13.75/8.27 1.25/-1.24
qER-10-1 2020SD 10 9,126,644 22,985,297 13.86 7.21 15.44 -1.26
qER-10-2 2021SD 10 139,905,250 142,678,402 2.77 3.93 4.32 -0.98
百粒重 qHKW-1 2019HB 1 46,731,254 51,419,220 4.69 4.03 13.42 1.40
HKW(g) qHKW-4 2020SD 4 69,806,390 77,312,272 7.51 3.71 8.80 1.36
qHKW-10 2021SD 10 139,905,250 142,678,402 2.77 4.16 11.72 1.11
粒长 qKL-3 2020HN 3 229,824,448 231,520,846 1.70 3.73 13.04 -0.10
KL (cm) qKL-9-1 2019SD 9 14,303,995 16,923,756 2.62 4.57 11.96 0.03
qKL-9-2 2021HB 9 17,738,298 28,246,816 10.51 3.55 10.14 0.03
粒厚 qKT-1 2021HB 1 246,403,964 250,906,206 4.50 5.28 1.47 0.01
KT (cm) qKT-2 2020SD 2 194,189,434 195,416,628 1.23 5.25 13.12 0.02
qKT-8 2021HB 8 71,183,518 93,850,416 22.67 3.62 1.01 0.01
qKT-9-1 2020HN/2021HB 9 16,211,720 30,377,062 14.17 13.68/40.45 17.20/20.76 -0.05/-0.05
qKT-9-2 2020HN 9 107,672,078 113,681,932 6.01 7.21 8.00 0.03
粒宽
KW (cm)
qKW-4 2019SD/2020SD/
2021HB/2021SD
4 13,938,960 17,761,802 3.82 5.16/5.68/
4.74/7.51
14.30/9.77/
13.51/13.97
0.03/0.04/
0.03/0.04
qKW-7-1 2020SD 7 143,358,324 146,209,696 2.85 3.88 13.51/13.97 -0.03
qKW-7-2 2020SD 7 154,455,636 159,145,141 4.69 6.76 6.46 0.04
qKW-10-1 2020HN 10 4,574,144 12,475,578 7.90 4.89 11.97 0.05
qKW-10-2 2021SD 10 133,521,996 136,947,954 3.43 3.58 16.01 0.03

图5

所有环境QTL汇总 环境缩写同图1; 染色体缩写同图3。"

表6

候选区间关联分析所得基因信息"

基因
Gene
染色体
Chr.
功能注释
Function annotation
QTL
Zm00001d002168 2 Receptor-like serine/threonine-protein kinase SD1-8 qER-2
Zm00001d002177 2 NA qER-2
Zm00001d002184 2 Peroxisome biogenesis protein 22 qER-2
Zm00001d002185 2 Histone-lysine N-methyltransferase qER-2
Zm00001d042998 3 UPF0051 protein ABCI8 chloroplastic qEL-3
Zm00001d043036 3 lbd20-LBD-transcription factor 20 qEL-3
Zm00001d052570 4 Cation-chloride cotransporter 1 qCD-4-2/qED-4
Zm00001d052605 4 Serine-rich adhesin for platelets qCD-4-2
Zm00001d052845 4 P-loop containing nucleoside triphosphate hydrolases superfamily protein qER-4-2
Zm00001d052911 4 RWD domain-containing protein qER-4-2
Zm00001d052918 4 Ubiquitin-protein ligase/ zinc ion binding protein qER-4-2
Zm00001d052943 4 Ubiquitin carboxyl-terminal hydrolase 13 qER-4-2
Zm00001d026223 10 Hydrogen peroxide-induced 1 qHKW-10
Zm00001d026250 10 Xyloglucan endotransglucosylase/hydrolase protein 24 qHKW-10
Zm00001d023503 10 G-type lectin S-receptor-like serine/threonine-protein kise qKW-10-1
Zm00001d023537 10 Chaperone protein dJ GFA2 mitochondrial qER-10-1
Zm00001d023582 10 L-ascorbate peroxidase S chloroplastic/mitochondrial qER-10-1
Zm00001d023710 10 Small R degrading nuclease 5 qER-10-1
Zm00001d023718 10 Flavin monooxygese qER-10-1

图6

候选区间关联分析 图中黑色实线表示阈值(阈值等于?log10(0.01/N)); 暖色系的点表示定位在基因区域的显著性标记(SNP或InDel), 且暖色中相同颜色表示位于同一个基因区域的标记。"

图7

本研究定位QTL与前人定位的比对 红色字体是本研究所定位QTL, 蓝色字体是Chen等文章中的MQTL, 绿色字体是2017年以来以B73 Ref_V4为参考基因组的文章中定位的QTL, 紫色字体是Wang等文章中统计的QTL, 红色虚线框内是区间一致的QTL; 五角星代表克隆的产量相关性状基因[29?????-35]。"

表7

已克隆的玉米产量性状重要QTL及基因汇总"

QTL 基因
Gene
染色体
Chr.
基因描述
Gene description
参考文献
Reference
krn1 krn1 (Zm00001d034629) 1 It regulates spikelet pair meristem numbers and then enhanced kernel row numbers. [29]
qEL1 YIGE1 (Zm00001d028915) 1 It regulates ear length and kernel number per row by affecting female inflorescence number involving the signaling pathways of sugar and auxin. [30]
KRN4 KRN4 4 KRN4 regulates the variation of maize ear row number by regulating the expression of UB3 gene. [31]
qKM4.08 ZmVPS29 (Zm00001d053371) 4 It is involved in kernel morphology variance. [32]
qKNR6 KNR6 (Zm00001d036602) 6 It determines pistillate floret number and ear length. [33]
qEL7 ZmACO2 (Zm00001d020686) 7 It negatively controls ear length and yield. [34]
qKW9 qKW9 (Zm00001d048451) 9 It is involved in kernel weight variation. [24]
HKW9 ZmExpb15 (Zm00001d045861) 9 It controls kernel size and weight by promoting nucellus elimination. [35]

图8

候选基因的同源进化及表达分析 A~D依次表示Zm00001d002185、Zm00001d023537、Zm00001d052845和Zm00001d052943在玉米、水稻和拟南芥中的同源进化分析; E~F依次表示Zm00001d002185、Zm00001d023537、Zm00001d052845和Zm00001d052943在授粉后胚、授粉后胚乳、未授粉的节间、未授粉的叶片、授粉后的节间、授粉后的叶片、授粉后的种子以及幼穗原基中的表达量。"

附表1

507份关联群体材料名称汇总"

序号
No.
名称
Name
来源
Origin
序号
No.
名称
Name
来源
Origin
序号
No.
名称
Name
来源
Origin
1 150 China 171 CIMBL59 CIMMYT 341 GEMS40 USA
2 177 China 172 CIMBL6 CIMMYT 342 GEMS41 USA
3 238 China 173 CIMBL60 CIMMYT 343 GEMS42 USA
4 268 China 174 CIMBL61 CIMMYT 344 GEMS43 USA
5 501 China 175 CIMBL62 CIMMYT 345 GEMS44 USA
6 647 China 176 CIMBL63 CIMMYT 346 GEMS45 USA
7 812 China 177 CIMBL65 CIMMYT 347 GEMS46 USA
8 832 China 178 CIMBL66 CIMMYT 348 GEMS47 USA
9 1323 China 179 CIMBL67 CIMMYT 349 GEMS48 USA
10 3411 China 180 CIMBL68 CIMMYT 350 GEMS49 USA
11 5237 China 181 CIMBL69 CIMMYT 351 GEMS5 USA
12 5311 China 182 CIMBL7 CIMMYT 352 GEMS50 USA
13 7327 China 183 CIMBL70 CIMMYT 353 GEMS51 USA
14 8902 China 184 CIMBL71 CIMMYT 354 GEMS52 USA
15 9642 China 185 CIMBL72 CIMMYT 355 GEMS53 USA
16 9782 China 186 CIMBL73 CIMMYT 356 GEMS54 USA
17 81162 China 187 CIMBL74 CIMMYT 357 GEMS55 USA
18 526018 China 188 CIMBL75 CIMMYT 358 GEMS56 USA
19 04K5672 China 189 CIMBL76 CIMMYT 359 GEMS57 USA
20 04K5686 China 190 CIMBL77 CIMMYT 360 GEMS58 USA
21 04K5702 China 191 CIMBL78 CIMMYT 361 GEMS59 USA
22 05W002 China 192 CIMBL79 CIMMYT 362 GEMS6 USA
23 05WN230 China 193 CIMBL8 CIMMYT 363 GEMS60 USA
24 07KS4 China 194 CIMBL80 CIMMYT 364 GEMS61 USA
25 18-599 China 195 CIMBL81 CIMMYT 365 GEMS62 Latin America (Cuba)
26 303WX China 196 CIMBL82 CIMMYT 366 GEMS63 USA
27 384-2 China 197 CIMBL83 CIMMYT 367 GEMS64 USA
28 3H-2 China 198 CIMBL84 CIMMYT 368 GEMS65 Latin America (Cuba)
29 4F1 China 199 CIMBL85 CIMMYT 369 GEMS66 Latin America (Cuba)
30 7884-4HT China 200 CIMBL86 CIMMYT 370 GEMS9 USA
31 835B China 201 CIMBL87 CIMMYT 371 GY1032 China
32 975-12 China 202 CIMBL88 CIMMYT 372 GY220 China
33 A619 USA 203 CIMBL89 CIMMYT 373 GY237 China
34 B11 China 204 CIMBL9 CIMMYT 374 GY386 China
35 B110 China 205 CIMBL90 CIMMYT 375 GY386B China
36 B111 China 206 CIMBL91 CIMMYT 376 GY462 China
37 B113 China 207 CIMBL92 CIMMYT 377 GY798 China
38 B114 China 208 CIMBL93 CIMMYT 378 GY923 China
39 B151 China 209 CIMBL94 CIMMYT 379 H21 China
40 B73 China 210 CIMBL95 CIMMYT 380 HB China
41 B77 China 211 CIMBL96 CIMMYT 381 HSBN China
42 BEM China 212 CIMBL97 CIMMYT 382 HTH-17 China
43 BGY China 213 CIMBL98 CIMMYT 383 HUA83-2 China
44 BK Peru 214 CIMBL99 CIMMYT 384 HUANGC China
45 BS16 China 215 CML113 CIMMYT 385 HYS China
46 BT1 China 216 CML114 CIMMYT 386 HZS China
47 BY4839 China 217 CML115 CIMMYT 387 IRF291 China
48 BY4944 China 218 CML115 CIMMYT 388 IRF314 China
49 BY4960 China 219 CML118 CIMMYT 389 JH59 China
50 BY804 China 220 CML121 CIMMYT 390 JH96C China
51 BY807 China 221 CML122 CIMMYT 391 JI53 China
52 BY809 China 222 CML130 CIMMYT 392 JI63 China
53 BY813 China 223 CML134 CIMMYT 393 JI842 China
54 BY815 China 224 CML139 CIMMYT 394 JI846 China
55 BY843 China 225 CML162 CIMMYT 395 JI853 China
56 BY855 China 226 CML163 CIMMYT 396 JIAO51 China
57 BZN China 227 CML165 CIMMYT 397 JING24 China
58 C8605 China 228 CML168 CIMMYT 398 JING724 China
59 CF3 China 229 CML169 CIMMYT 399 JY01 China
60 CHANG3 China 230 CML170 CIMMYT 400 K10 China
61 CHANG7-2 China 231 CML171 CIMMYT 401 K12 China
62 CHENG698 China 232 CML172 CIMMYT 402 K22 China
63 CHUAN48-2 China 233 CML189 CIMMYT 403 L3180 China
64 CI7 USA 234 CML191 CIMMYT 404 LG001 China
65 CIMBL1 USA 235 CML192 CIMMYT 405 LIAO138 China
66 CIMBL10 CIMMYT 236 CML20 CIMMYT 406 LIAO159 China
67 CIMBL100 CIMMYT 237 CML223 CIMMYT 407 LIAO5114 China
68 CIMBL101 CIMMYT 238 CML225 CIMMYT 408 LIAO5262 China
69 CIMBL102 CIMMYT 239 CML226 CIMMYT 409 LIAO5263 China
70 CIMBL104 CIMMYT 240 CML228 CIMMYT 410 LK11 China
71 CIMBL105 CIMMYT 241 CML229 CIMMYT 411 LV28 China
72 CIMBL106 CIMMYT 242 CML27 CIMMYT 412 LXN China
73 CIMBL107 CIMMYT 243 CML28 CIMMYT 413 LY China
74 CIMBL108 CIMMYT 244 CML282 CIMMYT 414 LY042 China
75 CIMBL11 CIMMYT 245 CML285 CIMMYT 415 M153 China
76 CIMBL110 CIMMYT 246 CML286 CIMMYT 416 M165 China
77 CIMBL111 CIMMYT 247 CML287 CIMMYT 417 M97 China
78 CIMBL112 CIMMYT 248 CML289 CIMMYT 418 MN China
79 CIMBL113 CIMMYT 249 CML29 CIMMYT 419 MO17 China
80 CIMBL114 CIMMYT 250 CML290 CIMMYT 420 NAN21-3 China
81 CIMBL115 CIMMYT 251 CML298 CIMMYT 421 NMJT China
82 CIMBL116 CIMMYT 252 CML300 CIMMYT 422 P138 China
83 CIMBL117 CIMMYT 253 CML305 CIMMYT 423 P178 China
84 CIMBL118 CIMMYT 254 CML307 CIMMYT 424 Ph6WC USA(Pioneer)
85 CIMBL119 CIMMYT 255 CML31 CIMMYT 425 Ph4CV USA(Pioneer)
86 CIMBL120 CIMMYT 256 CML32 CIMMYT 426 Q1261 China
87 CIMBL121 CIMMYT 257 CML323 CIMMYT 427 QI205 China
88 CIMBL122 CIMMYT 258 CML324 CIMMYT 428 QI319 China
89 CIMBL123 CIMMYT 259 CML325 CIMMYT 429 R08 China
90 CIMBL124 CIMMYT 260 CML326 CIMMYT 430 R15 China
91 CIMBL125 CIMMYT 261 CML327 CIMMYT 431 R15X1141 China
92 CIMBL126 CIMMYT 262 CML338 CIMMYT 432 RY684 China
93 CIMBL127 CIMMYT 263 CML360 CIMMYT 433 RY697 China
94 CIMBL128 CIMMYT 264 CML361 CIMMYT 434 RY713 China
95 CIMBL129 CIMMYT 265 CML364 CIMMYT 435 RY729 China
96 CIMBL13 CIMMYT 266 CML40 CIMMYT 436 RY732 China
97 CIMBL130 CIMMYT 267 CML408 CIMMYT 437 RY737 China
98 CIMBL131 CIMMYT 268 CML411 CIMMYT 438 S22 China
99 CIMBL132 CIMMYT 269 CML415 CIMMYT 439 S22 China
100 CIMBL133 CIMMYT 270 CML422 CIMMYT 440 S37 China
101 CIMBL134 CIMMYT 271 CML423 CIMMYT 441 SC55 USA
102 CIMBL135 CIMMYT 272 CML426 CIMMYT 442 SHEN137 China
103 CIMBL136 CIMMYT 273 CML428 CIMMYT 443 SHEN5003 China
104 CIMBL137 CIMMYT 274 CML431 CIMMYT 444 SI273 China
105 CIMBL138 CIMMYT 275 CML432 CIMMYT 445 SI434 China
106 CIMBL139 CIMMYT 276 CML451 CIMMYT 446 SI446 China
107 CIMBL14 CIMMYT 277 CML454 CIMMYT 447 SK China
108 CIMBL140 CIMMYT 278 CML465 CIMMYT 448 SW1611 China
109 CIMBL141 CIMMYT 279 CML468 CIMMYT 449 SW92E114 China
110 CIMBL142 CIMMYT 280 CML470 CIMMYT 450 SY1032 China
111 CIMBL143 CIMMYT 281 CML471 CIMMYT 451 SY1035 China
112 CIMBL144 CIMMYT 282 CML479 CIMMYT 452 SY1039 China
113 CIMBL145 CIMMYT 283 CML480 CIMMYT 453 SY1052 China
114 CIMBL146 CIMMYT 284 CML486 CIMMYT 454 SY1077 China
115 CIMBL147 CIMMYT 285 CML493 CIMMYT 455 SY3073 China
116 CIMBL148 CIMMYT 286 CML496 CIMMYT 456 SY998 China
117 CIMBL149 CIMMYT 287 CML497 CIMMYT 457 SY999 China
118 CIMBL15 CIMMYT 288 CML50 CIMMYT 458 TIAN77 China
119 CIMBL150 CIMMYT 289 CML51 CIMMYT 459 TIE7922 China
120 CIMBL151 CIMMYT 290 CML69 CIMMYT 460 TT16 China
121 CIMBL152 CIMMYT 291 CY72 China 461 TX5 China
122 CIMBL153 CIMMYT 292 D047 China 462 TY1 China
123 CIMBL154 CIMMYT 293 D863F China 463 TY10 China
124 CIMBL155 CIMMYT 294 DAN3130 China 464 TY11 China
125 CIMBL156 CIMMYT 295 DAN340 China 465 TY2 China
126 CIMBL157 CIMMYT 296 DAN360 China 466 TY3 China
127 CIMBL16 CIMMYT 297 DAN4245 China 467 TY4 China
128 CIMBL17 CIMMYT 298 DAN598 China 468 TY5 China
129 CIMBL18 CIMMYT 299 DAN599 China 469 TY6 China
130 CIMBL19 CIMMYT 300 DAN9046 China 470 TY7 China
131 CIMBL2 Thailand 301 DE.EX USA 471 TY8 China
132 CIMBL20 CIMMYT 302 DH29 China 472 TY9 China
133 CIMBL21 CIMMYT 303 DH3732 China 473 U8112 China
134 CIMBL22 CIMMYT 304 DONG237 China 474 W138 China
135 CIMBL23 CIMMYT 305 DONG46 China 475 WH413 China
136 CIMBL25 CIMMYT 306 DSB China 476 WMR China
137 CIMBL26 CIMMYT 307 E28 Unknown 477 WU109 China
138 CIMBL27 CIMMYT 308 EN25 China 478 Xi502 China
139 CIMBL28 CIMMYT 309 ES40 China 479 Xun971 China
140 CIMBL3 Thailand 310 FCD0602 China 480 XZ698 China
141 CIMBL30 CIMMYT 311 GEMS1 Latin America (Peru) 481 YAN414 China
142 CIMBL31 CIMMYT 312 GEMS10 USA 482 YE478 China
143 CIMBL32 CIMMYT 313 GEMS11 USA 483 YE488 China
144 CIMBL33 CIMMYT 314 GEMS12 USA 484 YE515 China
145 CIMBL34 CIMMYT 315 GEMS13 USA 485 YE52106 China
146 CIMBL35 CIMMYT 316 GEMS14 USA 486 YE8001 China
147 CIMBL36 CIMMYT 317 GEMS15 USA 487 YU374 China
148 CIMBL37 CIMMYT 318 GEMS16 Thailand 488 YU87-1 China
149 CIMBL38 CIMMYT 319 GEMS17 USA 489 Z2018F China
150 CIMBL39 CIMMYT 320 GEMS18 USA 490 ZAC546 China
151 CIMBL4 Thailand 321 GEMS19 USA 491 ZB648 China
152 CIMBL40 CIMMYT 322 GEMS2 USA 492 ZH68 China
153 CIMBL41 CIMMYT 323 GEMS20 USA 493 ZHENG22 China
154 CIMBL42 CIMMYT 324 GEMS21 USA 494 ZHENG28 China
155 CIMBL43 CIMMYT 325 GEMS23 USA 495 ZHENG29 China
156 CIMBL44 CIMMYT 326 GEMS24 USA 496 ZHENG30 China
157 CIMBL45 CIMMYT 327 GEMS25 USA 497 ZHENG32 China
158 CIMBL46 CIMMYT 328 GEMS27 USA 498 ZHENG35 China
159 CIMBL47 CIMMYT 329 GEMS28 USA 499 ZHENG58 China
160 CIMBL48 CIMMYT 330 GEMS29 USA 500 ZHENG653 China
161 CIMBL49 CIMMYT 331 GEMS3 USA 501 ZHI41 China
162 CIMBL5 USA 332 GEMS30 USA 502 ZHONG69 China
163 CIMBL50 CIMMYT 333 GEMS31 USA 503 ZI330 China
164 CIMBL51 CIMMYT 334 GEMS32 USA 504 ZONG3 China
165 CIMBL52 CIMMYT 335 GEMS33 USA 505 ZONG31 China
166 CIMBL53 CIMMYT 336 GEMS35 USA 506 ZZ01 China
167 CIMBL54 CIMMYT 337 GEMS36 USA 507 ZZ03 China
168 CIMBL56 CIMMYT 338 GEMS37 USA
169 CIMBL57 CIMMYT 339 GEMS39 USA
170 CIMBL58 CIMMYT 340 GEMS4 USA
[1] Zhang H W, Lu Y T, Ma Y T, Fu J J, Wang G Y. Genetic and molecular control of grain yield in maize. Mol Breed, 2021, 41: 18.
[2] 李燕, 谭君, 李红梅, 魏明, 何立群, 赵后娟, 杜林, 刘可心, 邓路长, 杨俊品, 唐海涛. 高赖氨酸玉米F2:3群体穗部性状与产量的相关及通径分析. 安徽农业科学, 2020, 48(8): 41-42.
Li Y, Tan J, Li H M, Wei M, He L Q, Zhao H J, Du L, Liu K X, Deng L C, Yang J P, Tang H T. Correlation and path analysis of ear character in F2:3 population derived from high lysine content maize hybrid Quanyu No. 9. J Anhui Agric Sci, 2020, 48(8): 41-42. (in Chinese with English abstract)
[3] Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S. An ultra-high-density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15: 433.
[4] Huo D A, Ning Q, Shen X M, Liu L, Zhang Z X. QTL mapping of kernel number-related traits and validation of one major QTL for ear length in maize. PLoS One, 2016, 11: e0155506.
[5] Chen J F, Zhang L Y, Liu S T, Li Z M, Huang R R, Li Y M, Cheng H L, Li X T, Zhou B, Wu S W, Chen W, Wu J Y, Ding J Q. The genetic basis of natural variation in kernel size and related traits using a four-way cross population in maize. PLoS One, 2016, 11: e0153428.
[6] Hao D R, Xue L, Zhang Z L, Cheng Y J, Chen G Q, Zhou G F, Li P C, Yang Z F, Xu C W. Combined linkage and association mapping reveal candidate loci for kernel size and weight in maize. Breed Sci, 2019, 69: 420-428.
[7] Liu C L, Zhou Q, Dong L, Wang H, Liu F, Weng J F, Li X H, Xie C X. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genomics, 2016, 17: 915.
pmid: 27842488
[8] Liu M, Tan X L, Yang Y, Liu P, Zhang X X, Zhang Y C, Wang L, Hu Y, Ma L L, Li Z L, Zhang Y L, Zou C Y, Lin H J, Gao S B, Lee M, Lübberstedt T, Pan G T, Shen Y O. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J, 2020, 18: 207-221.
doi: 10.1111/pbi.13188 pmid: 31199064
[9] Yang C, Zhang L, Jia A M, Rong T Z. Identification of QTL for maize kernel yield and kernel-related traits. J Genet, 2016, 95: 239-247.
[10] Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed, 2011, 28: 511-526.
[11] Yang N, Liu J, Gao Q, Gui S T, Chen L, Yang L F, Huang J, Deng T Q, Luo J Y, He L J, Wang Y B, Xu P W, Peng Y, Shi Z X, Lan L, Ma Z Y, Yang X, Zhang Q Q, Bai M Z, Li S, Li W Q, Liu L, Jackson D, Yan J B. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet, 2019, 51: 1052-1059.
doi: 10.1038/s41588-019-0427-6 pmid: 31152161
[12] Bernardi J, Lanubile A, Li Q B, Kumar D, Kladnik A, Cook S D, Ross J J, Marocco A, Chourey P S. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol, 2012, 160: 1318-1328.
doi: 10.1104/pp.112.204743 pmid: 22961134
[13] 席先梅. 基于导入系群体玉米遗传图谱构建及重要农艺性状QTL定位. 内蒙古农业大学博士学位论文,内蒙古呼和浩特, 2018.
Xi X M. Construction of Genetic Linkage Map and Identification of QTLs for Important Agronomic Traits in Introgression Lines of Maize. PhD Dissertation of Graduate School of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2018. (in Chinese with English abstract)
[14] Liu J, Huang J, Guo H, Lan L, Wang H Z, Xu Y C, Yang X H, Li W Q, Tong H, Xiao Y J, Pan Q C, Qiao F, Raihan M S, Liu H J, Zhang X H, Yang N, Wang X Q, Deng M, Jin M L, Zhao L J, Luo X, Zhou Y, Li X, Zhan W, Liu N N, Wang H, Chen G S, Li Q, Yan J B. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol, 2017, 175: 774-785.
doi: 10.1104/pp.17.00708 pmid: 28811335
[15] Lu X, Zhou Z Q, Yuan Z H, Zhang C S, Hao Z F, Wang Z H, Li M S, Zhang D G, Yong H J, Han J N, Li X H, Weng J F. Genetic dissection of the general combining ability of yield-related traits in maize. Front Plant Sci, 2020, 11: 788.
doi: 10.3389/fpls.2020.00788 pmid: 32793248
[16] Zhang X X, Guan Z R, Li Z L, Liu P, Ma L L, Zhang Y C, Pan L, He S J, Zhang Y L, Li P, Ge F, Zou C Y, He Y C, Gao S B, Pan G T, Shen Y O. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theor Appl Genet, 2020, 133: 2881-2895.
doi: 10.1007/s00122-020-03639-4 pmid: 32594266
[17] Chen L, An Y X, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. Candidate loci for yield-related traits in maize revealed by a combination of metaQTL analysis and regional association mapping. Front Plant Sci, 2017, 8: 2190.
doi: 10.3389/fpls.2017.02190 pmid: 29312420
[18] 郭海平. 玉米穗粗主效 QTL qED3 的精细定位和候选基因克隆. 河南农业大学硕士学位论文,河南郑州, 2018.
Guo H P. Fine Mapping and Cloning of the Ear Diameter QTL qED3 in Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract).
[19] 涂亮, 高媛, 刘鹏飞, 郭向阳, 王安贵, 何兵, 刘颖, 祝云芳, 吴迅, 陈泽辉. 玉米穗长主效QTL q21EL-GZ 的精细定位. 植物遗传资源学报, 2021, 22: 1394-1401.
doi: 10.13430/j.cnki.jpgr.20210302001
Tu L, Gao Y, Liu P F, Guo X Y, Wang A G, He B, Liu Y, Zhu Y F, Wu X, Chen Z H. Fine mapping of the ear length major QTL q21EL-GZ in maize. J Plant Genet Res, 2019, 22: 1394-1401. (in Chinese with English abstract)
[20] 赵强. 基于两个F2:3家系的玉米产量相关性状QTL定位及候选基因分析. 贵州大学硕士学位论文,贵州贵阳, 2020.
Zhao Q. QTL Mapping and Candidate Gene Analysis of Maize Yield-Related Traits by Using Two Maize F2:3 Families. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2020. (in Chinese with English abstract)
[21] 赵强, 陈柔屹, 王安贵, 郭向阳, 刘鹏飞, 祝云芳, 吴迅, 陈泽辉. 基于高密度 SNP 标记对玉米穗部相关性状的QTL定位及候选基因分析. 玉米科学, 2021, 29(3): 36-41. (in Chinese with English abstract)
Zhao Q, Chen R Y, Wang A G, Guo X Y, Liu P F, Zhu Y F, Wu X, Chen Z H. QTL mapping and candidate gene analysis about ear-related traits in maize based on high density SNP markers. J Maize Sci, 2012, 29(3): 36-41. (in Chinese with English abstract)
[22] Gong D M, Tan Z D, Zhao H L, Pan Z Y, Sun Q, Qiu F Z. Fine mapping of a kernel length-related gene with potential value for maize breeding. Theor Appl Genet, 2021, 134: 1033-1045.
doi: 10.1007/s00122-020-03749-z pmid: 33459823
[23] Han X S, Qin Y, Sandrine AMN, Qiu F Z. Fine mapping of qKRN8, a QTL for maize kernel row number, and prediction of the candidate gene. Theor Appl Genet, 2020, 133: 3139-3150.
[24] Huang J, Lu G, Liu L, Raihan M S, Xu J T, Jian L M, Zhao L X, Tran T M, Zhang Q H, Liu J, Li W Q, Wei C X, Braun D M, Li Q, Fernie A R, Jackson D, Yan J B. The kernel size-related quantitative trait locus qKW9 encodes a pentatricopeptide repeat protein that affects photosynthesis and kernel filling. Plant Physiol, 2020, 183: 1696-1709.
doi: 10.1104/pp.20.00374 pmid: 32482908
[25] Li W L, Bai Q H, Zhan W M, Ma C Y, Wang S Y, Feng Y Y, Zhang M D, Zhu Y, Cheng M, Xi Z Y. Fine mapping and candidate gene analysis of qhkw5-3, a major QTL for kernel weight in maize. Theor Appl Genet, 2019, 132: 2579-2589.
[26] Nie N N, Ding X Y, Chen L, Wu X, An Y X, Li C H, Song Y C, Zhang D F, Liu Z Z, Wang T Y, Li Y, Li Y X, Shi Y S. Characterization and fine mapping of qkrnw4, a major QTL controlling kernel row number in maize. Theor Appl Genet, 2019, 132: 3321-3331.
[27] Wang G Y, Zhao Y M, Mao W B, Ma X J, Su C F. QTL analysis and fine mapping of a major QTL conferring kernel size in maize (Zea mays). Front Genet, 2020, 11: 603920.
[28] Wang C, Li H G, Long Y, Dong Z Y, Wang J H, Liu C, Wei X, Wan X Y. A systemic investigation of genetic architecture and gene resources controlling kernel size-related traits in maize. Int J Mol Sci, 2023, 24: 1025.
[29] Wang J, Lin Z L, Zhang X, Liu H Q, Zhou L N, Zhong S Y, Li Y, Zhu C, Lin Z W. krn1, a major quantitative trait locus for kernel row number in maize. New Phytol, 2019, 223: 1634-1646.
doi: 10.1111/nph.15890 pmid: 31059135
[30] Luo Y, Zhang M L, Liu Y, Liu J, Li W Q, Chen G S, Peng Y, Jin M, Wei W J, Jian L M, Yan J, Fernie A R, Yan J B. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513-526.
[31] Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet, 2015, 11: e1005670.
[32] Chen L, Li Y X, Li C, Shi Y, Song Y, Zhang D, Wang H, Li Y, Wang T. The retromer protein ZmVPS29 regulates maize kernel morphology likely through an auxin-dependent process(es). Plant Biotechnol J, 2020, 18: 1004-1014.
doi: 10.1111/pbi.13267 pmid: 31553822
[33] Jia H T, Li M F, Li W Y, Liu L, Jian Y N, Yang Z X, Shen X M, Ning Q, Du Y F, Zhao R, Jackson D, Yang X H, Zhang Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun, 2020, 11: 988.
doi: 10.1038/s41467-020-14746-7 pmid: 32080171
[34] Ning Q, Jian Y N, Du Y F, Li Y F, Shen X M, Jia H T, Zhao R, Zhan J M, Yang F, Jackson D, Liu L, Zhang Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat Commun, 2021, 12: 5832.
doi: 10.1038/s41467-021-26123-z pmid: 34611160
[35] Sun Q, Li Y F, Gong D M, Hu A Q, Zhong W S, Zhao H L, Ning Q, Tan Z D, Liang K, Mu L Y, Jackson D, Zhang Z X, Yang F, Qiu F Z. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat Commun, 2022, 13: 5708.
doi: 10.1038/s41467-022-33513-4 pmid: 36175574
[36] Zhang S, Deng L, Cheng R, Hu J, Wu C Y. RID1 sets rice heading date by balancing its binding with SLR1 and SDG722. J Integr Plant Biol, 2022, 64: 149-165.
[37] Stelpflug S C, Sekhon R S, Vaillancourt B, Hirsch C N, Buell C R, de Leon N, Kaeppler S M. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome, 2016, 9: plantgenome2015.04.0025.
[38] Walley J W, Sartor R C, Shen Z, Schmitz R J, Wu K J, Urich M A, Nery J R, Smith L G, Schnable J C, Ecker J R, Briggs S P. Integration of omic networks in a developmental atlas of maize. Science, 2016, 353: 814-818.
doi: 10.1126/science.aag1125 pmid: 27540173
[39] Ohta M, Takaiwa F. OsERdj7 is an ER-resident J-protein involved in ER quality control in rice endosperm. J Plant Physiol, 2020, 245: 153109.
[40] Scholl S, Hillmer S, Krebs M, Schumacher K. ClCd and ClCf act redundantly at the trans-Golgi network/early endosome and prevent acidification of the Golgi stack. J Cell Sci, 2021, 134: jcs258807.
[41] Derkacheva M, Liu S J, Figueiredo D D, Gentry M, Mozgova I, Nanni P, Tang M, Mannervik M, Köhler C, Hennig L. H2A deubiquitinases UBP12/13 are part of the Arabidopsis polycomb group protein system. Nat Plants, 2016, 2: 16126.
doi: 10.1038/nplants.2016.126 pmid: 27525512
[42] Cui X, Lu F L, Li Y, Xue Y M, Kang Y Y, Zhang S B, Qiu Q, Cui X K, Zheng S Z, Liu B, Xu X D, Cao X F. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiol, 2013, 162: 897-906.
[1] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[2] 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718.
[3] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[4] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[5] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[6] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[7] 闫子恒, 王先领, 邵东李, 郜耿东, 宁宁, 贾才华, 蒯婕, 汪波, 徐正华, 王晶, 赵杰, 周广生. 油菜籽粒叶绿素降解速率对菜籽油关键品质的影响[J]. 作物学报, 2024, 50(7): 1818-1828.
[8] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[9] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[10] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[11] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[12] 张红梅, 张威, 王琼, 贾倩茹, 孟珊, 熊雅文, 刘晓庆, 陈新, 陈华涛. 大豆籽粒Ve含量的全基因组关联分析[J]. 作物学报, 2024, 50(5): 1223-1235.
[13] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
[14] 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123.
[15] 苏帅, 刘孝伟, 牛群凯, 时子文, 侯雨微, 冯开洁, 荣廷昭, 曹墨菊. 玉米多叶矮化突变体lyd1的鉴定与基因克隆[J]. 作物学报, 2024, 50(5): 1124-1135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .