欢迎访问作物学报,今天是

作物学报

• •    

油菜籽粒叶绿素降解速率对菜籽油关键品质的影响

闫子恒,王先领,邵东李,郜耿东,宁宁,贾才华,蒯婕,汪波,徐正华,王晶,赵杰,周广生*   

  1. 华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
  • 收稿日期:2023-07-10 修回日期:2024-01-12 接受日期:2024-01-12 网络出版日期:2024-02-19
  • 基金资助:
    华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070

Effect of chlorophyll degradation rate in seed on key quality of rapeseed oil

YAN Zi-Heng, WANG Xian-Ling, SHAO Dong-Li, GAO Geng-Dong, NING Ning, JIA Cai-Hua, KUAI Jie, WANG Bo, XU Zheng-Hua, WANG Jing, ZHAO Jie,ZHOU Guang-Sheng*   

  1. College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2023-07-10 Revised:2024-01-12 Accepted:2024-01-12 Published online:2024-02-19
  • Supported by:
    College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China

摘要:

油菜籽粒中的叶绿素是阻碍高品质菜籽油生产的关键因素。压榨制油时叶绿素进入菜籽油,菜籽油叶绿素含量高不仅外观品质差,且易引发光氧化反应。因此,提高籽粒成熟过程中叶绿素降解速率,对改善菜籽油外观及营养品质具有重要意义。试验利用281份来自国内外栽培品种、品系组成的自然群体,在武汉试验点连续进行2年田间小区试验,考察油菜籽粒叶绿素降解速率、油脂外观及营养品质等指标,分析籽粒叶绿素降解与千粒重、含油量、油脂色泽、抗氧化能力等指标的内在联系,以期为优质菜籽油原料的生产提供理论与技术支撑。结果表明,不同品系籽粒叶绿素降解速率存在差异,供试群体品系间存在广泛变异;相关性分析显示,籽粒叶绿素降解速率与种子千粒重、含油量无显著相关性,与菜籽油叶绿素含量显著负相关菜籽油叶绿素含量与菜籽油红值、黄值及过氧化值显著正相关,与菜籽油抗氧化能力显著负相关,籽粒叶绿素降解速率快的类别,菜籽油色泽更浅,菜籽油过氧化值较低且具有较高的总酚含量与抗氧化能力;花后40 d,叶绿素降解快的品系籽粒POR酶的活性低于叶绿素降解慢的品系,但花后53 d PAO酶的活性高于叶绿素降解慢的品系,因此籽粒成熟后期叶绿素降解速率快,种子叶绿素含量低。

关键词: 油菜, 籽粒叶绿素, 降解速率, 菜籽油, 品质

Abstract:

The chlorophyll in rapeseed seed is one of the key factors hindering the production of high-quality rapeseed oil. The higher chlorophyll content in rapeseed oil is not only make it poor in appearance, but also cause rapid photooxidation reaction. Therefore, it is of great significance to improve the appearance and nutritional quality of rapeseed oil by increasing the degradation rate of chlorophyll at seed ripening stage. In order to provide the theoretical and technical support for the production of high-quality rapeseed oil raw materials, a natural population consisting of 281 cultivars and breeding lines from different regions was used in a two-year field experiment in Wuhan, to investigate the chlorophyll degradation rate of rapeseed seeds, and the appearance and nutritional quality of oil, besides analysing the internal relationship between chlorophyll degradation and 1000-seed weight, oil content, oil colour, and its antioxidant capacity. The results showed that there were significant differences in chlorophyll degradation rate among different strains, and there was wide variation among the tested population materials. Correlation analysis showed that there was no significant correlation between chlorophyll degradation rate and 1000-seed weight and oil content of seed, but significantly negative correlation with the chlorophyll content of rapeseed oil. The chlorophyll content of rapeseed oil was positively correlated with the red value, yellow value, and peroxide value, while negatively correlated with antioxidant capacity of rapeseed oil. For the category with fast chlorophyll degradation rate, rapeseed oil had lighter colour, lower peroxide value, higher total phenol content, and antioxidant capacity. Compared to slow chlorophyll degrading strains, the activity of protochlorophyllide oxidoreductases (POR) enzyme was lower at 40 days after anthesis, whereas pheophorbide an oxygenase (PAO) enzyme activity was higher at 53 days after anthesis in the seeds of fast chlorophyll degrading strains, indicating that seed chlorophyll content was lower and its degradation rate was faster in seeds at the late stage of seed maturation.

Key words: rapeseed, seed chlorophyll, degradation rate, rapeseed oil, quality

[1] Kuai J, Li X Y, Ji J L, Li Z, Xie Y, Wang B, Zhou G S. The physiological and proteomic characteristics of oilseed rape stem affect seed yield and lodging resistance under different planting densities and row spacing. J Agron Crop Sci, 2021, 5: 840–856.

[2] Yang R, Zhang L, Li P, Yu L, Mao J, Wang X, Zhang Q. A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci Technol, 2018, 74: 26–32.

[3] Choe E, Min D B. Mechanisms and factors for edible oil oxidation. Compr Rev Food Sci Food Saf, 2006, 5: 169–186

[4] Wan C Y. Effects of enzymatic treatment on rapeseed oil degumming and quality. J Food Sci, 2007, 28: 194–198.

[5] Mikołajczak N, Tańska M, Konopka I. Impact of the addition of 4-vinyl-derivatives of ferulic and sinapic acids on retention of fatty acids and terpenoids in cold-pressed rapeseed and flaxseed oils during the induction period of oxidation. Food Chem, 2018, 278: 119–126.

[6] Li X, Yang R, Lyu C, Chen L, Zhang L, Ding X, Zhang W, Zhang Q, Hu C, Li P. Effect of chlorophyll on lipid oxidation of rapeseed oil. Eur J Lipid Sci Technol, 2019, 121: 1800078.

[7] Ghnaya A B, Charles G, Hourmant A, Hamida J B, Branchard M. Physiological behaviour of four rapeseed cultivar (Brassica napus L.) submitted to metal stress. C R Biol, 2009, 332: 363–370.

[8] Ayu D F, Andarwulan N, Hariyadi P, Purnomo E H. Effect of tocopherols tocotrienols beta-carotene and chlorophyll on the photo-oxidative stability of red palm oil. Food Sci Biotechnol, 2016, 25: 401–407.

[9] Szydłowska C A, Bartkowiak I, Karlović I, Karlovits G, Szłyk E. Antioxidant capacity, total phenolics, glucosinolates and colour parameters of rapeseed cultivars. Food Chem, 2011, 127: 556–563. 

[10] Lee J, Choe E. Effects of phospholipids on the antioxidant activity of α-tocopherol in the singlet oxygen oxidation of canola oil. New Biotechnol, 2011, 28: 691–697.

[11] Tautorus C L, Low N H. Chemical aspects of chlorophyll breakdown products and their relevance to canola oil stability. J Am Oil Chem Soc, 1993, 70: 843–847.

[12] Smolikova A. Genetic and hormonal regulation of chlorophyll degradation during maturation of seeds with green embryos. J Turbul, 2017, 18: 21–33.

[13] Paddock T N, Mason M E, Lima D F, Armstron G A. Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. Plant Mol Biol, 2010, 72: 445–457.

[14] Hörtensteiner, S. Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol, 2013, 82: 505–517.

[15] Christ B, Süssenbacher I, Moser S, Bichsel N, Egert A, Müller T, Kräutler B, Hörtensteiner S. Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis. Plant Cell, 2013, 25: 1868–1880.

[16] 白晨阳, 何菡子, 贾才华, 李晓华, 任奕林, 叶俊, 汪波, 蒯婕, 周广生. 机械收获方式对油菜籽粒关键性状的影响. 中国农业科学, 2021, 54: 2991–3003.

Bai C Y, He H Z, Jia C H, Li X H, Ren Y L, Ye J, Wang B, Kuai J, Zhou G S. Effect of the mechanical harvesting methods on the key traits of rapeseed. Sci Agric Sin, 2021, 54: 2991–3003(in Chinese with English abstract).

[17] Ning N, Hu B, Bai C Y, Li X H, Kuai J, He H Z, Ren Y L, Wang B, Jia C H, Zhou G S. Influence of two-stage harvesting on the properties of cold-pressed rapeseed (Brassica napus L.) oils. J Integr Agric, 2023, 22: 265–278.

[18] 周广生, 王晶, 蒯婕, 汪波. 专辑导读: 加强大田经济作物栽培措施与环境/资源配置的互作研究, 推动产业高效优质发展. 作物学报, 2021, 47: 1633–1638.

Zhou G S, Wang J, Kuai J, Wang B. Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality. Acta Agron Sin, 2021, 47: 1633–1638 (in Chinese with English abstract).

[19] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2003, pp 134–138.

Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2003, pp 134–138. (in Chinese).

[20] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 油菜籽叶绿素含量测定分光光度计法. GB/T 22182–2008, 2008.

General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China. Rapeseed-determination of chlorophyll content-spectrometric method. GB/T 22182–2008, 2008 (in Chinese).

[21] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 动植物油脂罗维朋色泽的测定. GB/T 22460–2008, 2018.

General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China. Animal and vegetable fats and oils-determination of locibond colour. GB/T 22460–2008, 2018 (in Chinese).

[22] Pokorny J L, Kalinova, Dysseler P. Determination of chlorophyll pigments in crude vegetable oils: results of a collaborative study and the standardized method (Technical Report). Pure Appl Chem, 1995, 10: 1781–1787.

[23] Kaur C, Kapoor H C. Anti-oxidant activity and total phenolic content of some asian vegetables. Int J Food Sci Technol, 2002, 37: 153–161.

[24] Shantha N C, Decker E A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J Aoac Int, 1994, 2: 421–424.

[25] Szydłowska C A, Dianoczki C, Recseg K, Karlovits G, Szłyk E. Determination of antioxidant capacities of vegetable oils by ferricion spectrophotometric methods. Talanta, 2008, 76: 899–905.

[26] Baud S, Lepiniec L C. Physiological and developmental regulation of seed oil production. Prog Lipid Res, 2010, 49: 235–249.

[27] Wu X L, Liu Z H, Hu Z H, Huang R Z. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol, 2014, 56: 582–593.

[28] Asokanthan P S, Johnson R W, Griffith M, Krol M. The photosynthetic potential of canola embryos. Physiol Plant, 2010, 101: 353–360.

[29] Fait A, Angelovici R, Less H, Ohad I, Urbanczyk W E, Fernie A R, Galili G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol, 2006, 142: 839–854. 

[30] Díez B A, Bustamante J, Romero A, Ninot A, Tres A, Vichi S, Guardiola F. Effect of the storage conditions and freezing speed on the color and chlorophyll profile of premium extra virgin olive oils. Foods, 2023, 12: 222–234.

[31] Liang Y D, Zhang, Y J, Jin W, Cao P R, Liu Y F. Evaluation of the functional quality of rapeseed oil obtained by different extraction processes in a sprague-dawley rat model. Food Funct, 2019, 10: 6503–6516.

[32] Gotoh N, Wada S. The importance of peroxide value in assessing food quality and food safety. J Am Oil Chem Soc, 2006, 83: 473–474.

[33] Zheng C, Yang M, Zhou Q, Liu C S, Huang F H. Changes in the content of canolol and total phenolics, oxidative stability of rapeseed oil during accelerated storage. Eur J Lipid Sci Technol, 2014, 116: 1675–1684.

[34] Kaleem A, Aziz S, Iqtedar M. Investigating changes and effect of peroxide values in cooking oils subject to light and heat. Fuuast J Biol, 2015, 5: 191–196.

[35] Terpinc P, Čeh B, Ulrih N P, Abramovič H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind Crops Prod, 2012, 39: 210–217.

[36] Tsukatani Y, Yamamoto H, Harada J, Yoshitomi T, Nomata J, Kasahara M, Mizoguchi T, Fujita Y, Tamiaki H. An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Sci Rep, 2013, 3: 1217.

[1] 贺佳奇, 白羿雄, 姚晓华, 姚有华, 安立昆, 王玉琴, 王小萍, 李新, 崔永梅, 吴昆仑. 刈割对青稞恢复特性及籽粒和秸秆产量品质特性的影响[J]. 作物学报, 2024, 50(3): 747-755.
[2] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[3] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[4] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[5] 肖正午, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 方升亮, 曹放波, 陈佳娜, 黄敏. 米粉稻早季与晚季种植品质差异研究[J]. 作物学报, 2024, 50(2): 451-463.
[6] 杨闯, 王玲, 全成滔, 余良倩, 戴成, 郭亮, 傅廷栋, 马朝芝. 甘蓝型油菜盐胁迫响应基因表达谱分析及共表达网络的构建[J]. 作物学报, 2024, 50(1): 237-250.
[7] 刘韬奋, 罗单, 张启鹏, 孙圆圆, 李培松, 田景山, 张旺锋, 向导, 张亚黎, 杨明凤, 勾玲. 乙烯利催熟对机采棉铃重和纤维品质的影响[J]. 作物学报, 2024, 50(1): 209-218.
[8] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[9] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[10] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[11] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[12] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[13] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[14] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[15] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!