欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 1920-1933.doi: 10.3724/SP.J.1006.2024.33070

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究

刘宸铭1,2(), 赵克勇2(), 悦曼芳2, 赵延明1,*(), 吴忠义2,*(), 张春2,*()   

  1. 1青岛农业大学农学院, 山东青岛 266109
    2北京市农林科学院生物技术研究所 / 农业基因资源与生物技术北京市重点实验室, 北京 100097
  • 收稿日期:2023-11-24 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-19
  • 通讯作者: * 张春, E-mail: zhangchun@babrc.ac.cn;吴忠义, E-mail: zwu22@126.com;赵延明, E-mail: zhaoym796@sina.com
  • 作者简介:刘宸铭, E-mail: 237588660@qq.com;
    赵克勇, E-mail: zhaokeyong@baafs.net.cn
    ** 同等贡献
  • 基金资助:
    国家自然科学基金项目(32001430);国家自然科学基金项目(32372053)

Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180

LIU Chen-Ming1,2(), ZHAO Ke-Yong2(), YUE Man-Fang2, ZHAO Yan-Ming1,*(), WU Zhong-Yi2,*(), ZHANG Chun2,*()   

  1. 1College of Agriculture, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    2Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2023-11-24 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-19
  • Contact: * E-mail: zhangchun@babrc.ac.cn;E-mail: zwu22@126.com;E-mail: zhaoym796@sina.com
  • About author:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32001430);National Natural Science Foundation of China(32372053)

摘要:

AP2/ERF (APETALA2/ethylene-responsive factor)转录因子是植物中最大的转录因子家族之一, 在调控植物生长发育、响应逆境胁迫、调节激素信号转导和物质代谢等多种生物学过程中发挥着重要作用。目前AP2/ERF超家族基因在许多植物物种中的生物学功能已经得到验证, 但对玉米(Zea mays L.)中AP2/ERF基因的结构和功能的研究报道较少。前期工作中我们发现, ZmEREB180 (ethylene-responsive element binding)转录因子, 在鉴定的玉米六叶期(V6)、十二叶期(V12)和抽雄期(VT)等关键发育时期, 根系中的表达量均存在显著差异; 通过组织表达分析发现该基因主要在玉米根系中表达, 且在幼根中的表达量显著高于成熟根, 推测该基因可能参与玉米根系生长发育调控。本研究克隆了ZmEREB180 (Gene ID: 100192457)基因, 结合生物信息学分析、实时荧光定量PCR (RT-qPCR)、亚细胞定位和转基因拟南芥(Arabidopsis thaliana L.)株系的耐逆表型鉴定等生物学手段, 初步分析了该基因的表达模式和生物学功能。该基因包含2个外显子, 编码序列全长1023 bp, 编码340个氨基酸, 具有AP2/ERF家族所特有的保守结构域; 该基因在玉米根系中表达量最高, 且在高盐、干旱、高氮和低氮等胁迫处理条件下的玉米根部皆有不同程度的诱导表达, 其中, 低氮处理较高氮处理具有更高的表达量和更快的响应速率; 在含0.10、0.15 mol L-1 NaCl以及0.15、0.20和0.30 mol L-1甘露醇(mannitol)的1/2 MS固体培养基上, 转ZmEREB180基因拟南芥的主根长度均显著长于野生型; 土壤环境中, 高盐和干旱胁迫条件下的转基因植株比野生型拟南芥具有更健康的生长状态、更高的绿叶率、更低的丙二醛含量和更高的过氧化物酶活性。转录因子ZmEREB180可能在调控玉米根系生长发育方面具有积极的促进作用, 并且能增强玉米植株对高盐、干旱、渗透、低氮等逆境胁迫的耐受性。本研究为下一步鉴定转录因子ZmEREB180在玉米中的生物学功能和分子机制奠定了良好的基础。

关键词: 玉米, ZmEREB180, 转录因子, 根系, 非生物胁迫, 氮利用效率

Abstract:

The AP2/ERF (APETALA2/ethylene-responsive factor) family is one of the largest families of transcription factors in plants, and plays an important role in regulating a variety of biological processes such as plant growth and development, respond-ing to adversity stress, and regulating hormone signaling and substance metabolism. The biological functions of AP2/ERF family genes in many plant species have been validated, but fewer studies have been reported in maize (Zea mays L.). In the previous work, there was significant difference in the relative expression level of the ZmEREB180 transcription factor in root system between the identified critical developmental stages of maize at the six-leaf (V6), the twelve-leaf (V12), and tasseling (VT) stages, the tissue expression analysis revealed that this gene was mainly expressed in maize root system and was significantly higher in young roots than in mature roots, and it was hypothesized that this gene might be involved in the regulation of maize root growth and development. In this study, we cloned the ZmEREB180 (Gene ID: 100192457) transcription factor gene, and preliminarily analyzed the relative expression pattern and biological functions of ZmEREB180 by bioinformatics, RT-qPCR, subcellular localization, and stress-resistant phenotype identification of transgenic Arabidopsis (Arabidopsis thaliana L.) lines. This gene contained two exons and the full-length cDNA was 1023 bp, encoding 340 amino acids. The gene had a conserved domain unique to the AP2/ERF family, which expressed most highly in root system of maize; and the gene had different degrees of induced expression under high salt, drought, high nitrogen, and low nitrogen treatment conditions, with a more rapid and higher expression in response to low nitrogen than high nitrogen; root length of ZmEREB180 transgenic Arabidopsis lines were all significantly longer than the wild type (WT) on 1/2 MS medium containing 0.10 mol L-1, 0.15 mol L-1 NaCl, and 0.15 mol L-1, 0.20 mol L-1, 0.30 mol L-1 mannitol (MNT). Under high salt and drought stress conditions in soil environments, transgenic Arabidopsis lines had healthier growth status, higher green leaf percentage, lower malondialdehyde (MDA) content, and higher peroxidase (POD) activity than WT. The transcription factor ZmEREB180 may play a positive and promotional role in regulating the growth and development of maize root system and enhance the tolerance of maize plants under high salt, drought, osmosis, low nitrogen, and other adversity stresses. This study lays a good foundation for further identification of the biological function and molecular mechanism of transcription factor ZmEREB180 in maize.

Key words: maize (Zea mays L.), ZmEREB180, transcription factor, root system, abiotic stress, nitrogen use efficiency

表1

本实验中所用的引物及序列"

引物名称Primer name 引物序列Primer sequence (5'-3')
pZmEREB180 OE-F CTGAAATCACCAGTCGGTACCATGTGCGGAGGCGCCATCC (Kpn I)
pZmEREB180 OE-R gcccttgctcaccatgGTACCTCAGAAAACAGAACCGTCG (Kpn I)
pZmEREB180RT-F CTGACGAGCTGGCGTTC
pZmEREB180RT-R TCAGAAAACAGAACCGTCG
pGAPDHRT-F CCCTTCATCACCACGGACTAC
pGAPDHRT-R AACCTTCTTGGCACCACCCT
pActinRT-F CCGTGAAGCCAGAAGCTACG
pActinRT-R AACTTGTGGCCGTTTACGTCG
pZmEREB180-F CTGACGAGCTGGCGTTC
pZmEREB180-R TCAGAAAACAGAACCGTCG

图1

ZmEREB180基因及其蛋白的生物信息学分析 A: 蛋白空间结构域分析; B: 蛋白跨膜分析; C: 蛋白三级结构预测; D: 启动子区序列分析。"

图2

ZmEREB180在玉米不同组织中的相对表达量 不同小写字母表示显著差异(P < 0.05)。"

图3

ZmEREB180在不同非生物胁迫下的相对表达量 A~D: ZmEREB180分别在脱水、高盐、渗透、低温处理后的表达量分析; *: P < 0.05; **: P < 0.01。"

图4

ZmEREB180在玉米高氮和低氮处理下的相对表达量 A~B: ZmEREB180分别在高氮、低氮处理后的表达量分析; *: P < 0.05; **: P < 0.01。"

图5

ZmEREB180在玉米不同激素处理下的相对表达量 A~E: ZmEREB180分别在JA、ABA、SA、2,4-D和GA处理后的表达量分析。*: P < 0.05; **: P < 0.01。"

图6

ZmEREB180蛋白在烟草叶片中的亚细胞定位 GFP: 绿色荧光蛋白图; Merged: 叠加图; Bright field: 明场; CK: 转入空载体的烟草叶片; ZmEREB180-EGFP: 转入目的基因载体的烟草叶片; 标尺为20 μm。"

图7

转基因拟南芥(T3)PCR检测和RT-qPCR检测 A: 转基因拟南芥(T3代)PCR检测; B: 转基因拟南芥(T3代)RT-qPCR检测。M: DL2000 marker; N: 阴性对照; W: 水对照; WT: 野生型拟南芥; L-1~L-6: 转基因拟南芥(T3代)株系; **: P < 0.01; ***: P < 0.001。"

图8

不同盐浓度下转基因拟南芥株系的表型分析 A~D: 转基因拟南芥植株和WT植株分别在0、0.10、0.15和0.18 mol L-1 NaCl处理的1/2 MS培养基上的生长情况; E: 1/2 MS培养基上植株初生根长的平均数据; WT: 野生型拟南芥; L-3、L-5、L-6: 转ZmEREB180拟南芥株系; 标尺为1.5 cm; *: P < 0.05; **: P < 0.01。"

图9

不同甘露醇浓度下转基因拟南芥株系的表型分析 A~D: 转基因拟南芥植株和WT植株分别在0、0.15、0.20和0.30 mol L-1 甘露醇处理的1/2 MS培养基上的生长情况; E: 1/2 MS培养基上植株初生根长的平均数据。缩写同图8; 标尺为1.5 cm; *: P < 0.05; **: P < 0.01。"

图10

土壤中干旱胁迫处理下拟南芥株系表型分析 A: 转基因及野生型 拟南芥植株的表型; B: 干旱处理后绿叶率统计分析结果; C: MDA含量; D: POD活性; E: 复水处理后绿叶率统计分析结果。缩写同图8; *: P < 0.05;**: P < 0.01。"

图11

土壤中高盐胁迫处理下拟南芥株系表型分析 A: 转基因及野生型拟南芥植株的表型; B: 高盐处理后绿叶率统计分析; C: MDA含量; D: POD活性。缩写同图8; *: P < 0.05;**: P < 0.01。"

[1] 戴景瑞, 鄂立柱. 百年玉米,再铸辉煌——中国玉米产业百年回顾与展望. 农学学报, 2018, 8(1): 83-88.
doi: 10.11923/j.issn.2095-4050.cjas2018-1-083
Dai J R, E L Z. From the past centennial progress to more brilliant achievements in the future: the history and prospects of maize industrialization in China. J Agric, 2018, 8(1): 83-88 (in Chinese with English abstract).
[2] 仇焕广, 李新海, 余嘉玲. 中国玉米产业:发展趋势与政策建议. 农业经济问题, 2021, 42(7): 4-16.
Qiu H G, Li X H, Yu J L. China maize industry: development trends and policy suggestions. Issue Agric Econ, 2021, 42(7): 4-16 (in Chinese with English abstract).
[3] 张静. 逆境胁迫下玉米DNA去甲基化酶和AP2/ERF基因家族的全基因组鉴定与分析. 安徽师范大学硕士学位论文, 安徽芜湖, 2020.
Zhang J. Genome-wide Identification and Analysis of Maize DNA Demethylase and AP2/ERF Gene Family under Abiotic Stress. MS Thesis of Anhui Normal University, Wuhu, Anhui, China, 2020 (in Chinese with English abstract).
[4] Baillo E H, Kimotho R N, Zhang Z B, Xu P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10: 771.
[5] Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17: 5484-5496.
doi: 10.1093/emboj/17.18.5484 pmid: 9736626
[6] 张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展. 生物技术通报, 2018, 34(8): 1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142
Zhang Q, Chen J, Li L, Zhao M Z, Zhang M P, Wang Y. Research progress on plant AP2/ERF transcription factor family. Biotechnol Bull, 2018, 34(8): 1-7 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142
[7] Zhu Y Q, Liu Y, Zhou K M, Tian C Y, Aslam M, Zhang B L, Liu W J, Zou H W. Overexpression of ZmEREBP60 enhances drought tolerance in maize. J Plant Physiol, 2022, 275: 153763.
[8] Fu J Y, Zhu C Y, Wang C, Liu L J, Shen Q Q, Xu D B, Wang Q. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. Plant Physiol Bioch, 2021, 159: 257-267.
[9] Yu Y, Yu M, Zhang S X, Song T Q, Zhang M, Zhou H W, Wang Y K, Xiang J S, Zhang X K. Transcriptomic identification of wheat AP2/ERF transcription factors and functional characterization of TaERF-6-3A in response to drought and salinity stresses. Int J Mol Sci, 2022, 23: 3272.
[10] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答. 作物学报, 2023, 49: 2433-2445.
doi: 10.3724/SP.J.1006.2023.23071
Ai R, Zhang C, Yue M F, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmEREB211 to abiotic stress. Acta Agron Sin, 2023, 49: 2433-2445 (in Chinese with English abstract).
[11] Chen K, Tang W S, Zhou Y B, Chen J, Xu Z S, Ma R, Dong Y S, Ma Y Z, Chen M. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiol Bioch, 2022: 170: 287-295.
[12] Oliveira P N, Matias F, Martinez-Andujar C, Martinez-Melgarejo P A, Prudencio A S, Galeano E, Perez-Alfocea F, Carrer H. Overexpression of TgERF1, a transcription factor from tectona grandis, increases tolerance to drought and salt stress in tobacco. Int J Mol Sci, 2023, 24: 4149
[13] Cai X X, Chen Y, Wang Y, Shen Y, Yang J K, Jia B W, Sun X L, Sun M Z. A comprehensive investigation of the regulatory roles of OsERF096, an AP2/ERF transcription factor, in rice cold stress response. Plant Cell Rep, 2023, 42: 2011-2022.
[14] Seok H Y, Tran H T, Lee S Y, Moon Y H. AtERF71/HRE2, an Arabidopsis AP2/ERF transcription factor gene, contains both positive and negative cis-regulatory elements in its promoter region involved in hypoxia and salt stress responses. Int J Mol Sci, 2022, 23: 5310.
[15] Yu F, Liang K, Fang T, Zhao H, Han X, Cai M, Qiu F. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol J, 2019, 17: 2286-2298.
[16] Xiao Y Y, Chen J Y, Kuang J F, Shan W, Xie H, Jiang Y M, Lu W J. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. J Exp Bot, 2013, 64: 2499-2510.
[17] Shi Q, Dong Y B, Zhou Q, Qiao D H, Ma Z Y, Zhang L, Li Y L. Characterization of a maize ERF gene, ZmERF1, in hormone and stress responses. Acta Physiol Plant, 2016, 38: 1-9.
[18] El-Sharkawy I, Kim W S, El-Kereamy A, Jayasankar S, Svircev A M, Brown D C. Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.). J Exp Bot, 2007, 58: 3631-3643.
pmid: 18057041
[19] Zang Z L, Lv Y, Liu S, Yang W, Ci J B, Ren X J, Wang Z, Wu H, Ma W Y, Jiang L Y, Yang W G. A Novel ERF Transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum. Front Plant Sci, 2020, 11: 850.
[20] Huang Y, Zhang B L, Sun S, Xing G M, Wang F, Li M Y, Tian Y S, Xiong A S. AP2/ERF Transcription factors involved in response to tomato yellow leaf curly virus in tomato. Plant Genome, 2016, 9: 1-15.
[21] Liu J X, Li J Y, Wang H N, Fu Z D, Liu J, Yu Y X. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J Exp Bot, 2011, 62: 825-840.
doi: 10.1093/jxb/erq324 pmid: 20974735
[22] Zang Z Y, Wang Z, Zhao F X, Yang W, Ci J B, Ren X J, Jiang L Y, Yang W G. Maize ethylene response factor ZmERF061 is required for resistance to Exserohilum turcicum. Front Plant Sci, 2021, 12: 630413.
[23] Gao T, Li G Z, Wang C R, Dong J, Yuan S S, Wang Y H, Kang G Z. Function of the ERFL1a transcription factor in wheat responses to water deficiency. Int J Mol Sci, 2018, 19: 1465.
[24] Liu D F, Chen X J, Liu J Q, Ye J C, Guo Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911.
[25] Zhu J T, Wei X N, Yin C S, Zhou H, Yan J H, He W X, Yan J B, Li H. ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signalling pathways in Zea mays. Plant Cell Environ, 2023, 46: 2867-2883.
[26] Hu Z Y, Wang X J, Wei L, Wansee S, Rabbani N H, Chen L, Kang Z S, Wang J F. TaAP2-10, an AP2/ERF transcription factor, contributes to wheat resistance against stripe rust. J Plant Physiol, 2023, 288: 154078.
[27] Li H, Xiao Q L, Zhang C X, Du J, Li X, Huang H H, Wei B, Li Y P, Yu G W, Liu H M, Hu Y F, Liu Y H, Zhang J J, Huang Y B. Identification and characterization of transcription factor ZmEREB94 involved in starch synthesis in maize. J Plant Physiol, 2017, 216: 11-16.
[28] Zhang Y, Ji A J, Xu Z C, Luo H M, Song J Y. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. Plant Mol Biol, 2019, 100: 83-93.
doi: 10.1007/s11103-019-00845-7 pmid: 30847712
[29] Wang M Y, Gao M, Zhao Y X, Chen Y C, Wu L W, Yin H F, Yang J H, Xiong S F, Wang S Q, Wang J, Yang Y, Wang J, Wang Y D. LcERF19, an AP2/ERF transcription factor from Litsea cubeba, positively regulates geranial and neral biosynthesis. Hortic Res, 2022, 9: uhac093.
[30] Wei S B, Li X, Lu Z F, Zhang H, Ye X Y, Zhou Y J, Li J, Yan Y Y, Pei H C, Duan F Y, Wang D Y, Chen S, Wang P, Zhang C, Shang L G, Zhou Y, Yan P, Zhao M, Huang J R, Bock R, Qian Q, Zhou W B. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377: eabi8455.
[31] Srivastava R, Kumar R. The expanding roles of APETALA2/ Ethylene Responsive Factors and their potential applications in crop improvement. Brief Funct Genomics, 2019, 18: 240-254.
doi: 10.1093/bfgp/elz001
[32] Zhang C, Li X L, Wang Z P, Zhang Z B, Wu Z Y. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics, 2020, 112: 5157-5169.
doi: 10.1016/j.ygeno.2020.09.030 pmid: 32961281
[33] 高建强, 梁华, 赵军. 植物遗传转化农杆菌浸花法研究进展. 中国农学通报, 2010, 26(16): 22-25.
Gao J Q, Liang H, Zhao J. Progress on the floral-dip method of Agribacterium-mediated plant transformation. Chin Agric Sci Bull, 2010, 26(16): 22-25 (in Chinese with English abstract).
[34] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract).
[35] Zhang H M, Zhu J H, Gong Z Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
[36] 王畅. 玉米转录因子ZmEREB20盐胁下的响应及调控机制初步分析. 四川农业大学硕士学位论文, 四川雅安, 2019.
Wang C. Functional Identification of Maize Transcription Factor ZmEREB20 under Salt Stress. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2019 (in Chinese with English abstract).
[1] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[2] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[3] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[4] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[5] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[6] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[7] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[8] 延飞龙, 张振, 赵俊晔, 石玉, 于振文. 宽幅精播下施氮量对冬小麦耗水特性和产量的影响[J]. 作物学报, 2024, 50(8): 2014-2024.
[9] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[10] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[11] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[12] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[13] 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466.
[14] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[15] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[2] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[3] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[4] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[5] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[6] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[7] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[8] 邱崇力. 普通小麦与六倍体小黑麦杂交不亲和性的研究 Ⅰ.杂种的胚胎发育[J]. 作物学报, 1986, (01): 49 -56 .
[9] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .
[10] 陈吉宝;景蕊莲;毛新国;昌小平;王述民. 普通菜豆PvP5CS2基因对逆境胁迫的应答[J]. 作物学报, 2008, 34(07): 1121 -1127 .