欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 1961-1970.doi: 10.3724/SP.J.1006.2024.33050

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证

曹晓晴(), 祁显涛, 刘昌林, 谢传晓()   

  1. 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2023-09-01 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-04-25
  • 通讯作者: * 谢传晓, E-mail: xiechuanxiao@caas.cn
  • 作者简介:E-mail: xiaoqingcao110@163.com
  • 基金资助:
    北京市科技计划项目(D171100007717001)

Construction and verification of the CRISPR/Cas9 system containing DsRed fluorescent expression cassette for editing of ZmCCT10, ZmCCT9, and ZmGhd7 genes in maize

CAO Xiao-Qing(), QI Xian-Tao, LIU Chang-Lin, XIE Chuan-Xiao()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-09-01 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-04-25
  • Contact: * E-mail: xiechuanxiao@caas.cn
  • Supported by:
    Beijing Science and Technology Project(D171100007717001)

摘要:

CCT家族基因影响植物开花, 在玉米中, ZmCCT10ZmCCT9基因是光周期敏感基因, ZmGhd7基因是与开花期相关的基因。利用CRISPR/Cas9技术靶向编辑ZmCCT10ZmCCT9ZmGhd7基因为研究基因的功能和快速改良玉米的开花期提供了可能。本研究以玉米ZmCCT10ZmCCT9ZmGhd7基因为编辑对象, 以KN5585为稳定转化受体、以CML312SR、LCL-1、LCL-2为预改良的晚熟材料受体, 首先通过Sanger测序验证了3个基因靶标区域在4份玉米材料中的保守性, 其次根据sgRNA设计原则选择了1个sgRNA复合编辑3个基因, 并利用同源重组方法构建了将由胚特异性启动子Zm3896驱动的DsRed表达盒和由ZmU6-2启动子驱动的sgRNA表达盒串联的CRISPR/Cas9基因编辑敲除载体CCT-CPD, 然后采用酶切法和Sanger测序法分析T0代KN5585中3个基因的突变率和突变类型, 验证了该系统的基因编辑效果, 最后通过对稳定遗传转化植株所结籽粒在籽粒水平、组织水平进行DsRed荧光标记表型鉴定, 验证了该系统中DsRed荧光筛选标记的有效性。在此基础上, 通过杂交育种法以晚熟材料为母本、以T1代KN5585阳性株为父本获得F1并经过DsRed荧光筛选获得含有有效编辑转基因元件的晚熟材料。本研究构建的编辑ZmCCT10/ZmCCT9/ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统为创制单基因突变体, 双基因突变体, 三基因突变体奠定了基础, 该系统中DsRed荧光筛选标记的应用可以快速筛选区分有无转基因成分的玉米籽粒, 成本低, 鉴定效率高, 具有大规模籽粒筛选的潜力, 本研究为鉴定ZmCCT10ZmCCT9ZmGhd7三个基因的功能和创制玉米光周期钝感材料奠定了材料基础和高效的技术基础。

关键词: CRISPR/Cas9技术, DsRed荧光, ZmCCT10ZmCCT9ZmGhd7基因, 玉米

Abstract:

The CCT family genes affect plant flowering time. In maize, ZmCCT10 and ZmCCT9 are photoperiod sensitive genes, and ZmGhd7 is a gene related to the flowering time. Targeted editing of ZmCCT10, ZmCCT9, and ZmGhd7 genes using CRISPR/Cas9 technology provides the possibility to study the function of three genes and to rapidly improve the flowering time of maize. In this study, maize ZmCCT10, ZmCCT9, and ZmGhd7 were used as editing objects. The inbred line KN5585 was used as a stable transforming receptor, and CML312SR, LCL-1, and LCL-2 were used as pre-modified late-flowering lines. Firstly, the conservation of the target regions of the three genes in four maize lines was verified by Sanger sequencing. Secondly, one sgRNA was selected to co-edit three genes based on sgRNA design principles. The CRISPR/Cas9 gene editing knockout vector CCT-CPD was constructed using homologous recombination, which contained the DsRed expression cassette driven by embryo-specific promoter Zm3896 and the sgRNA expression cassette driven by the ZmU6-2 promoter. Next, the mutation rate and mutation type of the three genes in T0 generation KN5585 were analyzed by enzyme digestion method and Sanger sequencing, and the gene editing effect of the CRISPR/Cas9 system was verified. Finally, the seeds produced by stable genetic transformation plants were verified by the DsRed fluorescent labeling phenotype at the kernel level and tissue level. On this basis, F1 was obtained by cross breeding using late flowering lines as female parent and T1 generation KN5585 positive plant as male parent, and late flowering lines containing effective edited transgenic elements were obtained by DsRed fluorescence screening. The CRISPR/Cas9 system for editing ZmCCT10, ZmCCT9, and ZmGhd7 genes containing DsRed fluorescent expression cassette constructed, in this study, laid a foundation for the creation of single-gene mutants, double-gene mutants, and/or triple-gene mutants. The application of DsRed fluorescent screening markers in this system can quickly screen and distinguish corn kernels with or without transgenic components, which has the potential of large-scale kernels screening with low cost and high identification efficiency. This study laid a material foundation and efficient technical basis for identifying the functions of ZmCCT10, ZmCCT9, and ZmGhd7 and creating photoperiod insensitive materials in maize.

Key words: CRISPR/Cas9 technology, DsRed fluorescence, ZmCCT10, ZmCCT9, and ZmGhd7 genes, maize

表1

本研究所用引物"

扩增产物及长度
Amplification
product and length
引物名称
Primer name
引物序列
Primer sequence
(5'-3')
退火温度
Annealing temperature (℃)
ZmCCT10-517 bp ZmCCT10F1 CTCTATCGATCAACAGCGGC 62
ZmCCT10R1 CGGGAGCAATACTTACGATG
ZmCCT9-468 bp ZmCCT9F1 AAGGGCTCAAGCTCAAGAGAGAGCG 67
ZmCCT9R1 CAGCTGGCCGTACTGAGC
ZmGhd7-638 bp ZmGhd7F1 AGGAGGAAGAGGGGTACGTC 67
ZmGhd7R1 TTTTGGAACCGAAGCGCAAG
Zm3896-1976 bp Zm3896-F cacgctgcactgcacaagctGGGTAGAGAAAGCAAGGGAGAC 68
Zm3896-R acgttctcggaggaggccatGGCGCCCGTCGTCTGTGG
DsRed-NOS-950 bp DsRed-NOS-F ATGGCCTCCTCCGAGAACGTCATCAC 68
DsRed-NOS-R gacggccagtgccaagctTGATCTAGTAACATAGATGACAC
U6-sgRNA-434 bp U6-F tatgttactagatcaagctCTAATTGGCCCTTACAAAATAG 68
U6-R aactggaactcgtgcagcGGAGCGGTGGTCGCAGCTGAAC
sgRNA-sgRNA scaffold-123 bp sgRNA-F gctgcacgagttccagttcttGTTTTAGAGCTAGAAATAGCAAG 68
sgRNA-R gacggccagtgccaagctTAAAAAAAGCACCGACTCGGTGCCAC
Cas9-568 bp Cas9-F CAACCGGAAAGTGACCGTGA 62
Cas9-R CACCACCTTCACTGTCTGCA
U6-Sg-829 bp CPB-U6-SG-F CCGCCACCACCTGTTCCT 64
CPB-U6-SG-R GGGTTTTCCCAGTCACGA
ZmCCT10-390 bp (102/288) ZmCCT10-MQ-F TCTTCTCCGTCTTCCCTGTC 62
ZmCCT10-MQ-R CGGGAGCAATACTTACGATG

图1

4份玉米材料ZmCCT10、ZmCCT9、ZmGhd7靶标区域PCR扩增和序列比对 A: 4份玉米材料ZmCCT10、ZmCCT9、ZmGhd7靶标区域PCR扩增。M: DNA marker (DM2000); 1: KN5585; 2: LCL-1; 3: LCL-2; 4: CML312SR; 5: H2O; B: 4份玉米材料ZmCCT10、ZmCCT9、ZmGhd7靶标区域序列比对。红色框内为含PAM的靶点序列; 右侧数字代表碱基数目。"

图2

靶位点设计和CCT-CPD载体示意图 A: ZmCCT10、ZmCCT9、ZmGhd7基因结构和靶位点位置示意图; B: ZmCCT10、ZmCCT9、ZmGhd7基因靶位点序列信息。紫色字母为靶点序列与sgRNA存在差异的碱基; 红色箭头为预期的切割位点; C: CCT-CPD载体示意图。"

图3

T0代植株ZmCCT10、ZmCCT9和ZmGhd7基因突变鉴定 A: T0代植株ZmCCT10基因靶标区域BstX I酶切验证。M: DNA marker (DM2000); 1~45: T0代植株; B: T0代植株ZmCCT10基因靶位点的突变类型; C: T0代植株ZmCCT9基因的突变类型; D: T0代植株ZmGdh7基因的突变类型; E: #1,2,20植株ZmCCT10基因靶位点测序峰图。紫色字母为靶点序列与sgRNA存在差异的碱基; 红色字母为PAM序列; 加粗红色字母为插入的碱基; 红色-为缺失的碱基; 红色箭头指的是突变的位置。"

表2

转基因植株突变体数量统计"

基因
Gene name
突变植株
Number of mutant plants
突变率
Mutation ratio
(%)
纯合突变体
Homozygous mutant
纯合突变或双等位突变比率
Ratio of homozygous or double allele mutations
(%)
ZmCCT10 17 65.4% (17/26) 15 88.2% (15/17)
ZmCCT9 3 11.5% (3/26) 2 66.7% (2/3)
ZmGhd7 11 42.3% (11/26) 11 100.0% (11/11)

图4

Zm3896驱动的DsRed表达盒在玉米籽粒中的表型 A: 玉米籽粒胚部荧光观察(相机)。标尺为0.5 cm; WT: 野生型; B: 玉米籽粒胚部荧光观察(体式显微镜)。标尺为2 mm; WT: 野生型; C: 阳性籽粒胚及胚乳组织荧光观察(激光共聚焦显微镜)。标尺为200 μm; Em: 胚; En: 胚乳。"

表3

F1荧光筛选结果"

种子来源
Seed source
阳性种子数(粒)
Number of positive seeds
阴性种子数(粒)
Number of negative seeds
种子总数(粒)
Total number of seeds
阳性率
Positive rate (%)
165×8-7 98 55 153 64.1
165×8-14 41 44 85 48.2
166×8-14 11 13 24 45.8
166×8-16 17 13 30 56.7
167×8-14 77 79 156 49.4
167×8-14 50 32 82 61.0
167×8-17 16 11 27 59.3
167×30-1 29 23 52 55.8
[1] 徐雷, 贾飞飞, 王利琳. 拟南芥开花诱导途径分子机制研究进展. 西北植物学报, 2011, 31: 1057-1065.
Xu L, Jia F F, Wang L L. Progresses on molecular mechanisms of flowering transition in Arabidopsis. Acta Bot Boreali-Occident Sin, 2011, 31: 1057-1065 (in Chinese with English abstract).
[2] Hung H Y, Shannon L M, Tian F, Bradbury P J, Chen C, Garcia S A F, McMullen M D, Ware D, Buckler E S, Doebley J F, Holland J B. ZmCCT and the genetic basis of day-length adaptation underlying the post domestication spread of maize. Proc Natl Acad Sci USA, 2012, 109: 1913-1921.
[3] Jin M L, Liu X G, Jia W, Liu H J, Li W Q, Peng Y, Du Y F, Wang Y B, Yin Y J, Zhang X H, Liu Q, Deng M, Li N, Cui X Y, Hao D Y, Yan J B. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT. J Integr Plant Biol, 2018, 60: 465-480.
[4] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
[5] Meng X, Muszynski M G, Danilevskaya O N. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell, 2011, 23: 942-960.
[6] Yang Q, Li Z, Li W Q, Ku L X, Wang C, Ye J R, Li K, Yang N, Li Y P, Zhong T, Li J S, Chen Y H, Yan J B, Yang X H, Xu M L. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the post domestication spread of maize. Proc Natl Acad Sci USA, 2013, 110: 16969-16974.
doi: 10.1073/pnas.1310949110 pmid: 24089449
[7] Huang C, Sun H Y, Xu D Y, Chen Q Y, Liang Y M, Wang X F, Xu G H, Tian J G, Wang C L, Li D, Wu L S, Yang X H, Jin W W, Doebley J F, Tian F. ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA, 2018, 115: 334-341.
[8] Jamann T M, Sood S, Wisser R J, Holland J B. High-throughput resequencing of maize landraces at genomic regions associated with flowering time. PLoS One, 2017, 12: e0168910.
[9] 郭栋, 杜媚, 周宝元, 高卓晗, 曹哲统, 赵明. 玉米CCT基因家族的鉴定与生物信息学分析. 植物遗传资源学报, 2019, 20: 1001-1010.
doi: 10.13430/j.cnki.jpgr.20181107001
Guo D, Du M, Zhou B Y, Gao Z H, Cao Z T, Zhao M. Identification and bioinformatic analysis of maize CCT gene family. J Plant Genet Resour, 2019, 20: 1001-1010 <br (in Chinese with English abstract).
[10] Zhang H, Zhang J S, Wei P L, Zhang B T, Gou F, Feng Z Y, Mao Y F, Yang L, Zhang H, Xu N F, Zhu J K. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J, 2014, 12: 797-807.
doi: 10.1111/pbi.12200 pmid: 24854982
[11] Zeng D C, Liu T L, Ma X L, Wang B, Zheng Z Y, Zhang Y L, Xie X R, Yang B W, Zhao Z, Zhu Q L, Liu Y G. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice. Plant Biotechnol J, 2020, 18: 2385.
[12] Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-953.
doi: 10.1038/nbt.2969 pmid: 25038773
[13] Zhang S J, Zhang R Z, Gao J, Gu T T, Song G Q, Li W, Li D D, Li Y L, Li Y G. Highly efficient and heritable targeted mutagenesis in wheat via the Agrobacterium tumefaciens-mediated CRISPR/Cas9 system. Int J Mol Sci, 2019, 20: 4257.
[14] Jacobs T B, LaFayette P R, Schmitz R J, Parrott W A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol, 2015, 15: 16.
doi: 10.1186/s12896-015-0131-2 pmid: 25879861
[15] Wang L W, Sun S, Wu T T, Liu L P, Sun X G, Cai Y P, Li J C, Jia H C, Yuan S, Chen L, Jiang B J, Wu C X, Hou W S, Han T F. Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J, 2020, 18: 1869-1881.
doi: 10.1111/pbi.13346 pmid: 31981443
[16] Li C X, Liu C L, Qi X T, Wu Y C, Fei X H, Mao L, Cheng B J, Li X H, Xie C X. RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnol J, 2017, 15: 1566-1576.
[17] Dong L, Qi X T, Zhu J J, Liu C L, Zhang X, Cheng B J, Mao L, Xie C X. Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnol J, 2019, 17: 1853.
doi: 10.1111/pbi.13144 pmid: 31050154
[18] Yifhar T, Pekker I, Peled D, Friedlander D, Pistunov A, Sabban M, Wachsman G, Alvarez J P, Amsellem Z, Eshed Y. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell, 2012, 24: 3575-3589.
[19] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[20] Hsu P D, Lander E S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157: 1262-1278.
doi: S0092-8674(14)00604-7 pmid: 24906146
[21] Zhang H, Zhang J S, Lang Z B, Botella J R, Zhu J K. Genome editing-principles and applications for functional genomics research and crop improvement. Crit Rev Plant Sci, 2017, 36: 291-309.
[22] Soyk S, Müller N A, Park S J, Schmalenbach I, Jiang K, Hayama R, Zhang L, Eck J V, Jiménez-Gómez J M, Lippman Z B. Variation in the flowering gene SELF PRUNING 5G promotes day- neutrality and early yield in tomato. Nat Genet, 2017, 49: 162-168.
[23] Cai Y P, Chen L, Liu X J, Guo C, Sun S, Wu C X, Jiang B J, Han T F, Hou W S. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean. Plant Biotechnol J, 2018, 16: 176-185.
[24] Liu X Q, Tian J, Zhou X J, Chen R M, Wang L, Zhang C Y, Zhao J, FanY L. Identification and characterization of promoters specifically and strongly expressed in maize embryos. Plant Biotechnol J, 2014, 12: 1286-1296.
doi: 10.1111/pbi.12227 pmid: 25052028
[25] Kalla R, Shimamoto K, Potter R, Nielsen P S, Linnestad C, Olsen O A. The promoter of the barley aleurone-specific gene encoding a putative 7 kDa lipid transfer protein confers aleurone cell-specific expression in transgenic rice. Plant J, 1994, 6: 849-860.
pmid: 7849757
[26] Dong L, Li L N, Liu C L, Liu C X, Geng S F, Li X H, Huang C L, Mao L, Chen S J, Xie C X. Genome editing and double- fluorescence proteins enable robust maternal haploid induction and identification in maize. Mol Plant, 2018, 11: 1214-1217.
doi: S1674-2052(18)30218-1 pmid: 30010025
[27] 李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 缪绅裕, 陈健辉. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9): 14-16.
Li R H, Xia Y S, Liu S Z, Sun L L, Guo P G, Miao S Y, Chen J H. CTAB-improved method of DNA extraction in plant. Res Explor Lab, 2009, 28(9): 14-16 (in Chinese with English abstract).
[28] 马兴亮, 刘耀光. 植物CRISPR/Cas9基因组编辑系统与突变分析. 遗传, 2015, 38: 118-125.
Ma X L, Liu Y G. CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants. Hereditas (Beijing), 2015, 38: 118-125 (in Chinese with English abstract).
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[3] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[4] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[5] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[6] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[7] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[8] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[9] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[10] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[11] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[12] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[13] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[14] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
[15] 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张洁夫;戚存扣;栗根义;浦惠明;陈松;陈新军;高建芹;陈锋;顾慧;傅寿仲. 甘蓝型油菜遗传图谱构建与无花瓣性状QTL定位[J]. 作物学报, 2007, 33(08): 1246 -1254 .
[2] 黄显波;田志宏;邓则勤;郑家团;林成豹;唐江霞. 水稻三明显性核不育基因的初步鉴定[J]. 作物学报, 2008, 34(10): 1865 -1868 .
[3] 严宗卜. 美国水稻品种对稻瘟病小种IE-1k、IB-33、IB-49和IC-17的抗性遗传[J]. 作物学报, 2004, 30(09): 872 -877 .
[4] 程方民;钟连进;舒庆尧;黄华宏;石春海;吴平. 早籼水稻垩白部位淀粉的蒸煮食味品质特征[J]. 作物学报, 2002, 28(03): 363 -368 .
[5] 李硕碧;单明珠;王怡;李必运;张蜀光. 鲜湿面条专用小麦品种品质的评价[J]. 作物学报, 2001, 27(03): 334 -338 .
[6] 孙秀山;封海胜;万书波;左学青. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J]. 作物学报, 2001, 27(05): 617 -621 .
[7] 丁秀兰;江玲;张迎信;孙黛珍;翟虎渠;万建民. 利用回交重组自交群体检测水稻条纹叶枯病抗性位点[J]. 作物学报, 2005, 31(08): 1041 -1046 .
[8] 王人民;杨肖娥;杨玉爱. 不同Zn2+活度对水稻根和叶生长生理特性的影响[J]. 作物学报, 1999, 25(04): 466 -473 .
[9] 张世煌;石德权;徐家舜;杨引福;康继伟;汪黎明. 对两个亚热带优质蛋白玉米群体的适应性混合选择研究[J]. 作物学报, 1995, 21(03): 270 -280 .
[10] 董桂春;王余龙;张岳芳;陈培峰;杨连新;黄建晔. 影响常规籼稻品种氮素籽粒生产效率的主要源库指标[J]. 作物学报, 2007, 33(01): 43 -49 .