欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (8): 1907-1919.doi: 10.3724/SP.J.1006.2024.42002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻黄华占背景选择导入系的耐低氮筛选评价与利用

邵美红1(), 赵玲玲1, 程楚1, 程思明1, 朱双兵2, 翟来圆2, 陈凯2, 徐建龙2,3,4,*()   

  1. 1建德市农业技术推广中心, 浙江杭州 311600
    2岭南现代农业科学与技术广东省实验室深圳分中心 / 中国农业科学院农业基因组研究所, 广东深圳 518210
    3中国农业科学院作物科学研究所, 北京 100081
    4三亚中国农业科学院国家南繁研究院, 海南三亚 572024
  • 收稿日期:2024-01-06 接受日期:2024-04-01 出版日期:2024-08-12 网络出版日期:2024-05-08
  • 通讯作者: * 徐建龙, E-mail: xujianlong@caas.cn
  • 作者简介:E-mail: hzjdsmh@163.com
  • 基金资助:
    国家重点研发计划项目(2023YFF1000400)

Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background

SHAO Mei-Hong1(), ZHAO Ling-Ling1, CHENG Chu1, CHENG Si-Ming1, ZHU Shuang-Bing2, ZHAI Lai-Yuan2, CHEN Kai2, XU Jian-Long2,3,4,*()   

  1. 1Agricultural Technology Extension Center of Jiande, Hangzhou 311600, Zhejiang, China
    2Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    4National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
  • Received:2024-01-06 Accepted:2024-04-01 Published:2024-08-12 Published online:2024-05-08
  • Contact: * E-mail: xujianlong@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFF1000400)

摘要:

中低产田的氮素不足是制约水稻高产的重要因素, 筛选和培育耐低氮品种是解决这一问题的有效途径之一。本研究利用种质资源导入黄华占背景培育的目标性状选择导入系群体, 经连续3个季节在低氮和正常施氮条件下评价导入系的产量及其相关性状表现, 发现低氮处理对导入系的抽穗期、结实率和千粒重影响最小, 平均耐低氮指数均接近1; 对单株产量和单株有效穗数的影响较大, 平均耐低氮指数分别仅为0.45和0.62, 认为单株产量和单株有效穗数是衡量水稻耐低氮性的有用指标。基于单株产量的耐低氮指数, 从导入系群体中筛选出9份耐低氮株系, 其单株产量的耐低氮指数变幅为0.87~1.04。对其中的5份进行多点品比验证, 其中1份不具备耐低氮性, 产量平均耐低氮指数为0.66, 其余4份表现较强的耐低氮水平, 产量平均耐低氮指数为0.94, 表明耐低氮性具有个体和群体水平的差异, 强调对分离群体中筛选出来的耐低氮材料进行群体水平验证的重要性。4份耐低氮株系中, M85耐低氮性主要通过在低氮条件下较高有效穗数和千粒重来实现, 其余3份耐低氮株系(M382、M563和M79)则主要通过较多每穗实粒数和较高的千粒重来实现, 提出在一定穗数基础上增加每穗实粒数是提高低氮条件下水稻产量的重要途径。结合选择导入系的苗期耐盐、成株期抗旱和全生育期耐低氮特性, 对利用不同供体来源的选择导入系通过分子设计同步改良多个复杂抗逆性状进行了讨论。

关键词: 水稻, 选择导入系, 耐低氮, 耐低氮指数, 抗逆性改良

Abstract:

Nitrogen deficiency in medium-yield and low-yield fields is an important factor restricting the high yield in rice. It is one of effective ways to solve the problem by screening and developing rice variety with low nitrogen tolerance (LNT). In this study, the selected introgression lines (SILs) from germplasms in Huanghuazhan (HHZ) background were used to evaluate the performance of yield and its related traits under low and normal nitrogen conditions for successive three seasons. Low nitrogen had least effect on heading date, seed fertility, and 1000-grain weight (TGW) with the average low nitrogen tolerance index (LNTI) around 1.0, whereas had greatest effect on grain yield per plant (GYP) and panicle number per plant (PN) with the respective average LNTI of 0.45 and 0.62, indicating that GYP and PN were useful indicator of LNT. Based on LNTI of GYP, nine LNT lines were selected with LNTI ranging from 0.87 to 1.04. Five of the selected LNT lines verified by multiple-site trials, one line (M281) had low LNT with GYP-LNTI of 0.66 and the other four had high LNT with the average GYP-LNTI of 0.94, indicating that LNT was a characteristic with the differences at individual and population levels, thus emphasizing the importance of population verification for LNT materials which were screened from segregation population. Among the four LNT lines, M85 was mainly achieved by higher PN and TGW under low nitrogen condition, whereas the other three lines (M382, M563, and M79) were mainly supported by more filled grains per panicle (FGP) and higher TGW. Therefore, an important way was proposed to achieve high yield under low nitrogen condition through increasing FGP based on a relatively high PN. In view of salt tolerance at seedling stage, drought tolerance at reproductive stage and LNT at all growth duration of SILs, it was discussed how to simultaneously improve multiple complex abiotic stress tolerances using SILs derived from diverse donors by molecular design.

Key words: rice, selected introgression line, low nitrogen tolerance, low nitrogen tolerance index, stress tolerance improvement

表1

经高产、抗旱和耐盐筛选和交叉筛选获得的591份黄华占背景不同供体来源的BC1F5选择导入系"

群体编号
Population ID
供体亲本
Donor parent
籼粳属性
Indica/japonica
来源
Source
导入系数
Number of ILs
HHZ5 OM1723 Indica 越南 Vietnam 97
HHZ8 Phalguna Indica 印度 India 74
HHZ9 IR50 Indica 菲律宾 Philippines 73
HHZ11 IR64 Indica 菲律宾 Philippines 68
HHZ12 Teqing Indica 中国 China 84
HHZ15 PSBRc66 Indica 菲律宾 Philippines 54
HHZ17 CDR22 Indica 印度 India 74
HHZ19 PSBRc28 Indica 菲律宾 Philippines 67

表2

黄华占在不同季节和不同施氮肥处理下的产量及其相关性状表现"

性状
Trait
对照
Control (CK)
低氮
Low nitrogen (LN)
耐低氮指数
Low nitrogen tolerance index (LNTI)
2013早季
Early season
in 2013
2013晚季
Late season
in 2013
2014早季
Early season
in 2014
2013早季
Early season
in 2013
2013晚季
Late season
in 2013
2014早季
Early season
in 2014
2013早季
Early season
in 2013
2013晚季
Late season
in 2013
2014早季
Early season
in 2014
单株有效穗数 PN 11.5 12.3 10.7 4.8 5.6 4.6 0.42 0.46 0.43
抽穗期 HD (d) 75.3 73.1 76.5 60.1 60.1 60.1 0.80 0.82 0.79
株高 PH (cm) 95.0 92.1 94.2 75.2 75.2 75.2 0.79 0.82 0.80
千粒重 TWG (g) 23.6 22.8 23.5 19.0 21.0 19.8 0.81 0.92 0.84
每穗实粒数 FGP 164.2 153.2 170.3 106.9 103.7 107.5 0.65 0.68 0.63
每穗总粒数 SNP 187.6 167.5 189.8 134.3 122.5 137.1 0.72 0.73 0.72
结实率 SF (%) 87.5 85.1 88.1 79.6 83.8 80.1 0.91 0.98 0.91
单株产量 GYP (g) 26.3 22.7 26.9 12.7 10.5 13.7 0.48 0.46 0.51

表3

耐低氮相关性状在3个季节(环境)不同施氮肥处理下的方差分析"

变异来源
Source
抽穗期
HD
株高
PH
有效穗数
PN
千粒重
TGW
每穗实粒数
FGP
每穗总粒数
SNP
结实率
SF
单株产量
GYP
基因型 Genotype (G) 4.11*** 12.69*** 1.04 11.93*** 2.85*** 3.46*** 4.69*** 1.53***
环境 Environment (E) 12,656.68*** 20,694.99*** 146.96*** 4189.74*** 283.02*** 739.79*** 492.34*** 961.01***
处理 Treatment (T) 17.48*** 19,288.91*** 3129.51*** 1378.64*** 994.48*** 1496.87*** 51.11*** 12,048.01***
基因型×环境G × E 0.65 1.03 0.56 1.58*** 1.33*** 1.06. 2.43*** 1.03
基因型×处理G × T 0.50 1.39*** 0.39 1.01 1.14* 1.23*** 1.11 1.18
环境×处理E × T 87.65*** 2311.09*** 261.41*** 66.72*** 4.85* 0.07 19.31*** 6.69**
基因型×环境×处理G × E × T 0.38 0.97 0.36 0.89 0.86 0.92 0.86 0.80**
耐低氮指数Low nitrogen tolerance index
基因型 Genotype (G) 1.27*** 1.29*** 0.52 1.36*** 1.41*** 1.46*** 1.60*** 1.21**
环境 Environment (E) 252.44*** 1602.53*** 495.90*** 60.41*** 5.03* 1.12 22.07*** 292.30***
基因型×环境 G × E 1.00 1.34*** 0.42 1.24*** 1.19** 1.14* 1.00 0.96

表4

591份黄华占背景导入系群体在不同季节和不同氮肥处理下的产量及其相关性状表现"

处理
Treatment
性状
Trait
2013早季 Early season in 2013 2013晚季 Late season in 2013 2014早季 Early season in 2014
平均数±
标准差
Mean ± SD
变幅
Range
变异
系数
CV (%)
平均数±
标准差
Mean ± SD
变幅
Range
变异
系数
CV (%)
平均数±
标准差
Mean ± SD
变幅
Range
变异
系数
CV (%)
对照 单株有效穗数 PN 5.3±0.71 3.3-8.4 13.46 6.2±1.06 3.2-10.7 17.05 6.8±1.16 4.5-12.6 17.07
CK 抽穗期 HD (d) 104.4±3.64 95.5-117.0 3.49 85.6±0.05 79.5-102.0 4.71 96.8±4.28 90.0-114.0 4.42
株高 PH (cm) 113.3±6.34 99.8-146.5 5.60 86.1±0.07 71.5-110.8 7.20 110.6±7.33 95.5-143.6 6.62
千粒重 TGW (g) 24.7±1.61 19.1-29.9 6.53 21.3±1.65 16.9-26.7 7.73 23.3±1.53 19.8-28.6 6.59
每穗实粒数 FGP 176.7±25.95 38.9-251.4 14.69 151.7±24.46 81.0-231.8 16.12 150.4±23.95 67.5-224.4 15.92
每穗总粒数 SNP 200.4±23.98 135.0-278.4 11.97 168.3±25.66 87.5-259.3 15.25 179.8±24.96 116.3-267.0 13.88
结实率 SF (%) 88.0±0.07 57.0-96.5 7.45 90.2±0.05 62.9-97.9 5.51 83.6±0.07 52.2-95.8 8.54
单株产量 GYP (g) 21.58±3.72 9.92-34.74 17.23 17.69±3.00 9.30-28.87 16.98 19.92±4.15 9.06-35.80 20.85
低氮
LN
单株有效穗数 PN 3.2±0.44 1.9-5.3 13.88 2.9±0.51 1.8-6.7 17.65 5.2±0.94 2.9-9.3 18.12
抽穗期 HD (d) 105.3±3.52 95.0-123.0 3.34 83.2±3.99 72.5-96.5 4.80 96.6±4.30 75.0-113.0 4.46
株高 PH (cm) 89.8±5.15 72.4-118.1 5.73 77.1±5.03 59.7-97.2 6.53 90.4±5.90 76.3-119.0 6.53
千粒重 TGW (g) 22.9±1.66 14.1-29.6 7.23 20.4±1.61 16.4-26.6 7.91 22.0±1.54 18.5-28.8 7.00
每穗实粒数 FGP 151.1±22.82 92.2-220.6 15.10 125.3±22.10 60.5-190.3 17.64 130.1±22.40 62.4-211.9 17.21
每穗总粒数 SNP 168.5±24.50 105.8-249.8 14.54 138.5±23.31 63.5-205.0 16.82 152.9±24.52 88.9-246.6 16.04
结实率 SF (%) 89.7±0.05 50.0-98.0 5.83 90.4±0.05 71.1-98.10 4.98 85.2±0.07 48.9-95.4 7.77
单株产量 GYP (g) 10.32±2.01 6.14-17.41 19.44 6.27±1.39 3.33-11.89 22.23 9.45±2.23 4.74-23.18 23.62
耐低氮
指数
LNTI
单株有效穗数 PN 0.60±0.11 0.34-1.14 18.55 0.48±0.11 0.23-1.08 23.60 0.77±0.11 0.43-1.22 13.81
抽穗期 HD 1.01±0.03 0.89-1.14 2.55 0.97±0.03 0.87-1.07 3.56 1.00±0.05 0.77-1.16 5.07
株高 PH 0.79±0.04 0.67-0.93 4.94 0.90±0.05 0.70-1.09 5.91 0.82±0.04 0.66-0.96 4.72
千粒重 TGW 0.93±0.05 0.51-1.20 5.83 0.96±0.06 0.76-1.20 5.91 0.95±0.05 0.80-1.12 5.03
每穗实粒数 FGP 0.87±0.17 0.56-2.75 19.68 0.84±0.19 0.40-1.53 22.10 0.88±0.18 0.42-1.77 20.22
每穗总粒数 SNP 0.85±0.13 0.58-1.57 15.56 0.84±0.18 0.44-1.54 21.03 0.86±0.15 0.54-1.79 17.48
结实率 SF 1.02±0.11 0.59-2.96 10.56 1.00±0.06 0.79-1.34 6.23 1.02±0.09 0.73-1.45 8.53
单株产量 GYP 0.49±0.13 0.24-1.04 25.93 0.36±0.10 0.16-0.87 27.86 0.49±0.15 0.20-1.28 30.53

附图1

591份黄华占背景导入系群体在不同氮肥处理下各性状三季表型平均值间的相关 HD: 抽穗期; PH: 株高; PN: 单株穗数; TGW: 千粒重; FGN: 每穗实粒数; SNP: 每穗总粒数; SF: 结实率; GYP: 单株产量。1: 正常施氮条件; 2: 低氮条件; 3: 低氮条件与正常氮条件下的比值。"

图1

不同氮肥处理下产量性状的通径分析 A: 正常条件; B: 低氮处理; C: 耐低氮指数。实线表示各性状对产量的直接效应, 虚线表示间接效应; 绿线表示正向作用, 红线表示负向作用, 线粗细表示通径系数大小。缩略词同表2。"

表5

基于单株产量耐低氮指数筛选的耐低氮株系"

季节
Season
株系号
Line
供体
Donor
处理
Treatment
抽穗期
HD (d)
株高
PH (cm)
单株有效穗
PN
千粒重
TGW (g)
每穗实粒数
FGP
每穗总粒数
SNP
结实率
SF (%)
单株产量
GYP (g)
2013
早季
2013 Early season
M85 OM723 正常 CK 112.5 117.5 3.7 24.2 151.4 211.0 71.8 11.79
低氮 LN 116.5 101.9 3.9 24.1 121.1 191.5 63.2 11.60
耐低氮指数 LNTI 1.04 0.87 1.07 a 0.99 0.80 0.91 0.88 0.98
M336 Teqing 正常 CK 102.5 114.8 4.3 21.5 131.3 152.5 86.0 15.25
低氮 LN 103.0 93.0 3.5 22.0 119.0 131.3 90.6 13.90
耐低氮指数 LNTI 1.00 0.81 0.81 1.03 0.91 0.86 1.05 0.91
M382 Teqing 正常 CK 103.0 116.4 4.8 22.7 164.7 211.2 78.0 14.70
低氮 LN 103.0 97.1 4.1 21.9 185.7 213.1 87.1 15.32
耐低氮指数 LNTI 1.00 0.83 0.84 0.97 1.13 1.01 1.12 1.04
M563 PSBRc28 正常 CK 101.5 108.9 5.4 24.6 178.1 203.0 0.88 16.32
低氮 LN 105.5 89.4 3.9 23.7 175.8 207.5 0.85 16.67
耐低氮指数 LNTI 1.04 0.82 0.72 0.96 0.99 1.02 1.06 1.02
2014
早季
2014
Early season
M17 OM1723 正常 CK 103.5 133.4 6.1 28.0 147.3 166.5 88.2 21.68
低氮 LN 103.0 105.6 5.4 25.3 150.6 169.3 88.9 18.75
耐低氮指数 LNTI 1.00 0.79 0.88 0.90 1.02 1.02 1.01 0.87
M79 OM1723 正常 CK 105.0 130.0 6.5 25.6 132.4 152.8 86.5 16.35
低氮 LN 107.0 97.3 4.6 23.9 141.5 169.9 82.8 15.34
耐低氮指数 LNTI 1.02 0.75 0.71 0.93 1.07 1.11 0.96 0.94
M98 Phalguna 正常 CK 94.0 104.1 5.5 22.3 160.0 186.1 85.7 15.04
低氮 LN 94.0 86.6 4.5 22.2 137.5 151.8 90.5 13.73
耐低氮指数 LNTI 1.00 0.83 0.82 0.99 0.86 0.82 1.06 0.91
M281 IR64 正常 CK 107.5 120.8 6.3 23.0 133.8 166.1 0.81 13.24
低氮 LN 102.0 101.6 5.3 22.6 139.5 177.9 0.78 12.83
耐低氮指数 LNTI 0.95 0.84 0.84 0.98 1.04 1.07 0.97 0.97
M414 PSBRc66 正常 CK 90.0 105.1 5.3 21.2 163.6 188.0 87.1 17.49
低氮 LN 101.0 90.0 4.8 18.8 161.8 194.4 83.5 15.78
耐低氮指数 LNTI 1.12 0.86 0.90 0.89 0.99 1.03 0.96 0.90

表6

耐低氮株系多点品比试验表现"

试点
Site
品系
Line
处理
Treatment
抽穗期
HD
(d)
株高
PH
(cm)
有效穗数
PN
(×104 hm-2)
千粒重
TGW
(g)
穗实粒数
FGP
结实率
SF
(%)
实收产量
Yield harvested
(t hm-2)
大同镇
Datong town
M85 正常 CK 108.4 114.6 16.5 20.9 166.7 77.0 6.35
低氮 LN 108.0 102.5 15.3 21.7 141.9 82.9 5.73
耐低氮指数 LNTI 1.00 0.89 0.93 a 1.04 0.85 1.08 0.90
M382 正常 CK 102.4 107.7 14.9 23.1 160.4 86.3 6.49
低氮 LN 107.0 90.1 11.3 22.2 149.4 90.2 5.90
耐低氮指数 LNTI 1.04 0.84 0.76 0.96 0.93 1.05 0.91
M563 正常 CK 108.9 134.7 14.9 23.7 181.9 85.6 6.35
低氮 LN 108.5 109.3 13.0 23.5 167.9 85.6 6.12
耐低氮指数 LNTI 1.00 0.81 0.87 0.99 0.92 1.00 0.96
M79 正常 CK 100.8 106.2 16.0 22.4 142.2 86.4 6.49
低氮 LN 93.0 89.7 13.3 22.5 136.9 88.6 6.27
耐低氮指数 LNTI 0.92 0.84 0.83 1.00 0.96 1.03 0.97
M281 正常 CK 84.3 119.0 15.5 22.33 139.8 83.0 6.42
低氮 LN 67.4 100.6 12.7 21.7 130.7 84.6 4.17
耐低氮指数 LNTI 0.79 0.85 0.82 0.97 0.93 1.02 0.65
黄华占(CK) 正常 CK 82.9 106.8 15.2 21.3 155.9 89.4 7.05
Huanghuazhan (CK) 低氮 LN 69.1 84.8 10.0 18.7 112.4 82.3 3.28
耐低氮指数 LNTI 0.83 0.79 0.66 0.88 0.72 0.92 0.46
大慈
岩镇
Daciyan
town
M85 正常 CK 107.1 113.9 16.0 21.0 159.8 77.0 5.90
低氮 LN 107.8 102.0 14.9 22.0 137.3 83.1 4.99
耐低氮指数 LNTI 1.01 0.90 0.93 1.05 0.86 1.08 0.85
M382 正常 CK 102.2 106.5 14.9 21.2 158.3 86.1 6.10
低氮 LN 107.4 89.4 12.1 22.2 146.1 90.0 5.80
耐低氮指数 LNTI 1.05 0.84 0.81 1.05 0.92 1.05 0.95
M563 正常 CK 107.3 130.8 15.8 23.8 175.2 85.5 425.4
低氮 LN 106.9 108.0 13.1 23.5 157.0 85.5 416.6
耐低氮指数 LNTI 1.00 0.83 0.83 0.99 0.90 1.00 0.98
M79 正常 CK 99.8 104.0 16.0 22.5 139.3 86.8 416.2
低氮 LN 92.4 88.4 13.5 22.2 128.5 88.3 405.9
耐低氮指数 LNTI 0.93 0.85 0.84 0.99 0.92 1.02 0.98
M281 正常 CK 83.0 103.4 15.1 21.2 153.3 89.1 462.4
低氮 LN 67.2 84.0 10.4 18.4 135.1 83.0 332.9
耐低氮指数 LNTI 0.81 0.81 0.69 0.87 0.88 0.93 0.72
黄华占(CK) 正常 CK 83.0 103.4 15.1 21.2 153.3 89.1 462.4
Huanghuazhan (CK) 低氮 LN 67.2 84.0 10.4 18.4 115.1 83 214.8
耐低氮指数 LNTI 0.81 0.81 0.69 0.87 0.75 0.93 0.46
航头镇
Hangtou town
M85 正常 CK 106.7 111.9 16.1 21.0 158.9 76.9 375.2
低氮 LN 107.3 100.7 15.2 22.0 130.2 82.2 321.2
耐低氮指数 LNTI 1.01 0.90 0.94 1.05 0.82 1.07 0.86
M382 正常 CK 102.3 105.4 14.8 21.2 154.7 85.0 397.3
低氮 LN 106.3 90.7 12.5 22.5 142.4 90.4 362.6
航头镇
Hangtou Town
M382 耐低氮指数 LNTI 1.04 0.86 0.84 1.06 0.92 1.06 0.91
M563 正常 CK 106.9 129.4 14.3 23.8 174.7 86.1 432.6
低氮 LN 105.0 107.3 11.3 23.5 164.1 85.3 423.7
耐低氮指数 LNTI 0.98 0.83 0.79 0.99 0.94 0.99 0.98
M79 正常 CK 100.6 104.0 15.6 22.8 142.1 87.1 423.7
低氮 LN 93.2 89.8 12.6 21.9 140.1 88.1 413.3
耐低氮指数 LNTI 0.93 0.86 0.81 0.96 0.99 1.01 0.98
M281 正常 CK 83.5 103.1 15.5 21.3 147.7 86.0 440.7
低氮 LN 67.2 83.4 10.8 18.7 133.1 82.8 264.4
耐低氮指数 LNTI 0.80 0.81 0.70 0.88 0.90 0.96 0.60
黄华占 正常 CK 83.5 103.1 15.5 21.3 147.7 86.0 440.7
Huanghuazhan (CK) 低氮 LN 67.2 83.4 10.8 18.7 113.1 82.8 207.2
耐低氮指数 LNTI 0.80 0.81 0.70 0.88 0.77 0.96 0.47
[1] Xu C C, Ji L, Chen Z D, Fang F P. Analysis of China’s rice industry in 2022 and the outlook for 2023. China Rice, 2023, 29: 1-4.
doi: 10.3969/j.issn.1006-8082.2023.02.001
[2] 张启发主编. 资源节约型、环境友好型农业生产体系的理论与实践. 科学出版社, 2015. pp 1-10.
Zhang Q F. Theory and Practice of Resource-saving and Environment-friendly Agricultural Production System. Beijing: Science Press, 2015. pp 1-10.
[3] Peng S B, Buresh R J, Huang J L, Yang J L, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47.
[4] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[5] Luo L G, Itoh S, Zhang Q W, Yang S Q, Zhang Q Z, Yang Z L. Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems. Environ Monitor Assessment, 2011, 177: 141-150.
[6] Zhao C, Liu G M, Chen Y, Jiang Y, Shi Y, Zhao L T, Liao P Q, Wang W L, Xu K, Dai Q G, Huo Z Y. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture, 2022, 12: 962.
[7] 杨秀娟, 甘林, 阮宏椿, 杜宜新, 李科, 孙福如. 氮肥对水稻苗 POD、SOD 活性及稻瘟病发生的影响. 福建农林大学学报(自然科学版), 2011, 40: 8-12.
Yang X J, Gan L, Ruan H C, Du Y X, Li K, Sun F R. Influence of nitrogen on the activities of POD and SOD in rice seedlings and the incidence of rice blast disease. J Fujian Agric For Univ (Nat Sci Edn), 2011, 40: 8-12 (in Chinese with English abstract).
[8] 皮楚舒, 章桃娟, 周建光, 朱凤华, 杨诚, 陈杰峰. 氮肥不同用量对早稻产量和纹枯病发生的影响. 现代农业科技, 2021, (3) : 23-24.
Pi C S, Zhang T J, Zhou J G, Zhu F H, Yang C, Chen J F. Effect of different quantities of nitrogen fertilizer on yield and sheath blight of early season rice. Mod Agric Tech, 2021, (3): 23-24 (in Chinese).
[9] Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409.
doi: 10.1073/pnas.0708013104 pmid: 17923667
[10] 石全红, 王宏, 陈阜, 褚庆全. 中国中低产田时空分布特征及增产潜力分析. 中国农学通报, 2010, 26(19): 369-373.
Shi Q H, Wang H, Chen F, Chu Q Q. The spatial-temporal distribution characteristics and yield potential of medium-low yielded farmland in China. Chin Agric Sci Bull, 2010, 26(19): 369-373 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2010-1435
[11] Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063-1066.
doi: 10.1126/science.277.5329.1063 pmid: 9262467
[12] Duvick D N. Genetic contributions to yield gains of U.S. hybrid maize, 1930 to 1980. In:Fehr W R, ed. Genetic Contributions to Yield Gains of Five Major Crop Plants. CSSA Special Publication No. 7. Madison, WI, USA: Crop Science Society of America and American Society of Agronomy, 1984. pp 15-47.
[13] Duvick D N. Theory, empiricism and intuition in professional plant breeding. In:Cleveland D A, Soleri D, eds. Farmers, Scientists and Plant Breeding: Integrating Knowledge and Practice. Wallingford UK: CABI Publishing, 2002. pp 189-211.
[14] 荘洁, 张宗琼, 农保选, 杨行海, 蒋显斌, 李丹婷, 夏秀忠. 广西普通野生稻渗入系耐低氮和氮素利用率的鉴定评价. 热带作物学报, 2022, 43: 2071-2079.
doi: 10.3969/j.issn.1000-2561.2022.10.013
Zhuang J, Zhang Z Q, Nong B X, Yang X H, Jiang X B, Li D T, Xia X Z. Identification and evaluation of nitrogen-deficiency tolerance and nitrogen-use efficiency for introgression lines of wild rice (Oryza rufipogon Griff.) in Guangxi. Chin J Trop Crops, 2022, 43: 2071-2079 (in Chinese with English abstract).
[15] 吴婷, 李霞, 黄得润, 黄凤林, 肖宇龙, 胡标林. 应用东乡野生稻回交重组自交系分析水稻耐低氮产量相关性状QTL. 中国水稻科学, 2020, 34: 499-511.
doi: 10.16819/j.1001-7216.2020.0408
Wu T, Li X, Huang D R, Huang F L, Xiao Y L, Hu B L. QTL Analysis for yield traits related to low nitrogen tolerance using backcrossing recombinant inbred lines derived from Dongxiang wild rice (Oryza rufipogon Griff.). Chin J Rice Sci, 2020, 34: 499-511 (in Chinese with English abstract).
[16] 孟丽君, 马秀芳, 唐志强, 沈枫, 崔彦茹, 柴路, 陈凯, 徐建龙, 黎志康. 粳稻超优1号背景回交导入系的耐热性筛选与评价. 作物学报, 2012, 38: 1949-1959.
doi: 10.3724/SP.J.1006.2012.01949
Meng L J, Ma X F, Tang Z Q, Shen F, Cui Y R, Chai L, Chen K, Xu J L, Li Z K. Screening and evaluation of heat tolerance of introgression lines with japonica Chaoyou 1 background. Acta Agron Sin, 2012, 38: 1949-1959 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.01949
[17] Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66-76.
[18] Wang Y, Zhang L B, Nafisah A, Zhu L H, Xu J L, Li Z K. Selection efficiencies for improving drought/salt tolerances and yield using introgression breeding in rice (Oryza sativa L.). Crop J, 2013, 1: 134-142.
[19] Ali J, Xu J L, Gao Y M, Ma X F, Meng L J, Wang Y, Pang Y L, Guan Y S, Xu M R, Revilleza J E, Franje N J, Zhou S C, Li Z K. Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). PLoS One, 2017, 12: e0172515.
[20] Gentleman R, Ihaka R. R: a language and environment for statistical computing. Computing, 2011, 1: 12-21.
[21] Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967.
doi: 10.1038/ng.695 pmid: 20972439
[22] Jing L, Yan L, Xiao P, Sun M, Corke H, Bao J S. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet, 2010, 121: 475-487.
doi: 10.1007/s00122-010-1324-7 pmid: 20364375
[23] 曹桂兰, 张媛媛, 朴钟泽, 韩龙植. 水稻不同基因型耐低氮能力差异评价. 植物遗传资源学报, 2006, 7: 316-320.
Cao G L, Zhang Y Y, Piao Z Z, Han L Z. Evaluation of tolerance to low N-fertilized level for rice type. J Plant Genet Resour, 2006, 7: 316-321 (in Chinese with English abstract).
[24] 朴钟泽, 韩龙植, 高熙宗. 水稻不同基因型氮素利用效率差异. 中国水稻科学, 2003, 17: 233-238.
Piao Z Z, Han L Z, Koh H J. Variations of nitrogen use efficiency by rice genotype. Chin J Rice Sci, 2003, 17: 233-238 (in Chinese with English abstract).
[25] 江立庚, 戴廷波, 韦善清, 甘秀芹, 徐建立, 曹卫星. 南方水稻氮素吸收与利用效率的基因型差异评价. 植物生态学报, 2003, 27: 466-471.
doi: 10.17521/cjpe.2003.0067
Jiang L G, Dai T B, Wei S Q, Gan X Q, Xu J L, Cao W X. Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice. Acta Phytoecol Sin, 2003, 27: 466-471 (in Chinese with English abstract).
[26] Samonte S O P B, Wilson L T, Medley J C, Pinson S R M, McClung A M, Lales J S. Nitrogen utilization efficiency: relationship with grain yield, grain protein, and yield-related traits in rice. Agron J, 2006, 98: 168-176.
[27] 魏海燕, 张洪程, 马群, 戴其根, 霍中洋, 许轲, 张庆, 黄丽芬. 不同氮肥吸收利用效率水稻基因型叶片衰老特性. 作物学报, 2010, 36: 645-654.
doi: 10.3724/SP.J.1006.2010.00645
Wei H Y, Zhang H C, Ma Q, Dai Q G, Huo Z Y, Xu K, Zhang Q, Huang L F. Characteristics of leaf senescence in rice genotypes with different nitrogen use efficiencies. Acta Agron Sin, 2010, 36: 645-654 (in Chinese with English abstract).
[28] 朴钟泽, 韩龙植, 高熙宗, 陆家安, 张建明. 水稻氮素利用效率的选择效果. 作物学报, 2004, 30: 651-656.
Piao Z Z, Han L L, Koh H J, Lu J A, Zhang J M. Selection effect of nitrogen use efficiency in rice. Acta Agron Sin, 2004, 30: 651-656 (in Chinese with English abstract).
[29] 张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45: 267-273.
Zhang Y L, Fan J B, Duan Y H, Wang D S, Ye L T, Shen Q R. Variation of nitrogen use efficiency of rice different in genotype and its evaluation. Acta Pedol Sin, 2008, 45: 267-273 (in Chinese with English abstract).
[30] 童汉华, 余新桥, 梅捍卫, 曹一平, 章善庆, 罗利军. 水稻苗期氮素营养高效基因型的筛选. 浙江农业科学, 2007, 48: 537-541.
Tong H H, Yu X Q, Mei H W, Cao Y P, Zhang S Q, Luo L J. An effective method to identify high nitrogen use efficiency (NUE) genotype at seedling stage in rice. J Zhejiang Agric Sci, 2007, 48: 537-541 (in Chinese with English abstract).
[31] 郑家奎, 文春阳, 张涛, 杨莉, 杨乾华, 郑建敏, 杨松涛, 唐江云, 田翠. 耐低氮水稻材料筛选及筛选指标研究. 安徽农业科学, 2009, 37: 7361-7363.
Zheng J K, Wen C Y, Zhang T, Yang L, Yang Q H, Zheng J M, Yang S T, Tang J Y, Tian C. Studies on the screening index for low nitrogen tolerant rice and its selection. J Anhui Agric Sci, 2009, 37: 7361-7363 (in Chinese with English abstract).
[32] Park H, Mok S K, Seok S J. Efficiency of soil and fertilizer nitrogen in relation to rice variety and application time, using 15N labeled fertilizer: V. 15N point application in fields. J Korean Agric Chem, 1982, 25: 30-34.
[33] 黎毛毛, 万建林, 黄永兰, 曹桂兰, 陈红萍, 韩龙植. 水稻微核心种质氮素利用率相关性状的鉴定评价及其相关分析. 植物遗传资源学报, 2011, 12: 352-361.
doi: 10.13430/j.cnki.jpgr.2011.03.004
Li M M, Wan J L, Huang Y L, Cao G K, Chen H P, Han L Z. Evaluation and correlation analysis of the characters rated to nitrogen use efficiency for mini core collection of rice (Oryza sativa L.) in China. J Plant Genet Resour, 2011, 12: 352-361 (in Chinese with English abstract).
[34] 钟思荣, 龚丝雨, 张世川, 陈仁霄, 刘齐元, 翟小清. 作物不同基因型耐低氮性和氮效率研究进展. 核农学报 2018, 32: 1656-1663.
doi: 10.11869/j.issn.100-8551.2018.08.1656
Zhong S R, Gong S Y, Zhang S C, Chen R X, Liu Q Y, Zhai X Q. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants. J Nucl Agric Sci, 2018, 32: 1656-1663 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2018.08.1656
[35] 周德贵, 李宏, 卢德城, 黄道强, 赖穗春, 王志东, 周少川. 水稻氮磷高效利用育种材料的发掘研究. 分子植物育种, 2010, 8: 1196-1201.
Zhou D G, Li H, Lu D C, Huang D Q, Lai S C, Wang Z D, Zhou S C. The exploration and establishment of rice breeding materials of high phosphorus use efficiency and nitrogen use efficiency. Mol Plant Breed, 2010, 8: 1196-1201 (in Chinese with English abstract).
[1] 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322.
[2] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[3] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[4] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[5] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[6] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[7] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[8] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[9] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[10] 朱忠林, 文月, 周棋, 巫燕飞, 杜雪竹, 盛锋. 水稻OsCNGC10基因抗倒伏性以及抗旱性功能研究[J]. 作物学报, 2024, 50(5): 1351-1360.
[11] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[12] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
[13] 万应春, 班义结, 蒋钰东, 王亚欣, 刘晶晶, 刘晓晴, 程育林, 王楠, 冯萍. 水稻雄性不育突变体tpa1的表型鉴定与精细定位[J]. 作物学报, 2024, 50(5): 1104-1114.
[14] 余瑶, 王紫瑶, 周思睿, 刘鹏程, 叶亚峰, 马伯军, 刘斌美, 陈析丰. 水稻类病变突变体lms1的表型鉴定与抗病分子机制分析[J]. 作物学报, 2024, 50(4): 857-870.
[15] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[8] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[9] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[10] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .