作物学报 ›› 2024, Vol. 50 ›› Issue (8): 1920-1933.doi: 10.3724/SP.J.1006.2024.33070
刘宸铭1,2(), 赵克勇2(
), 悦曼芳2, 赵延明1,*(
), 吴忠义2,*(
), 张春2,*(
)
LIU Chen-Ming1,2(), ZHAO Ke-Yong2(
), YUE Man-Fang2, ZHAO Yan-Ming1,*(
), WU Zhong-Yi2,*(
), ZHANG Chun2,*(
)
摘要:
AP2/ERF (APETALA2/ethylene-responsive factor)转录因子是植物中最大的转录因子家族之一, 在调控植物生长发育、响应逆境胁迫、调节激素信号转导和物质代谢等多种生物学过程中发挥着重要作用。目前AP2/ERF超家族基因在许多植物物种中的生物学功能已经得到验证, 但对玉米(Zea mays L.)中AP2/ERF基因的结构和功能的研究报道较少。前期工作中我们发现, ZmEREB180 (ethylene-responsive element binding)转录因子, 在鉴定的玉米六叶期(V6)、十二叶期(V12)和抽雄期(VT)等关键发育时期, 根系中的表达量均存在显著差异; 通过组织表达分析发现该基因主要在玉米根系中表达, 且在幼根中的表达量显著高于成熟根, 推测该基因可能参与玉米根系生长发育调控。本研究克隆了ZmEREB180 (Gene ID: 100192457)基因, 结合生物信息学分析、实时荧光定量PCR (RT-qPCR)、亚细胞定位和转基因拟南芥(Arabidopsis thaliana L.)株系的耐逆表型鉴定等生物学手段, 初步分析了该基因的表达模式和生物学功能。该基因包含2个外显子, 编码序列全长1023 bp, 编码340个氨基酸, 具有AP2/ERF家族所特有的保守结构域; 该基因在玉米根系中表达量最高, 且在高盐、干旱、高氮和低氮等胁迫处理条件下的玉米根部皆有不同程度的诱导表达, 其中, 低氮处理较高氮处理具有更高的表达量和更快的响应速率; 在含0.10、0.15 mol L-1 NaCl以及0.15、0.20和0.30 mol L-1甘露醇(mannitol)的1/2 MS固体培养基上, 转ZmEREB180基因拟南芥的主根长度均显著长于野生型; 土壤环境中, 高盐和干旱胁迫条件下的转基因植株比野生型拟南芥具有更健康的生长状态、更高的绿叶率、更低的丙二醛含量和更高的过氧化物酶活性。转录因子ZmEREB180可能在调控玉米根系生长发育方面具有积极的促进作用, 并且能增强玉米植株对高盐、干旱、渗透、低氮等逆境胁迫的耐受性。本研究为下一步鉴定转录因子ZmEREB180在玉米中的生物学功能和分子机制奠定了良好的基础。
[1] |
戴景瑞, 鄂立柱. 百年玉米,再铸辉煌——中国玉米产业百年回顾与展望. 农学学报, 2018, 8(1): 83-88.
doi: 10.11923/j.issn.2095-4050.cjas2018-1-083 |
Dai J R, E L Z. From the past centennial progress to more brilliant achievements in the future: the history and prospects of maize industrialization in China. J Agric, 2018, 8(1): 83-88 (in Chinese with English abstract). | |
[2] | 仇焕广, 李新海, 余嘉玲. 中国玉米产业:发展趋势与政策建议. 农业经济问题, 2021, 42(7): 4-16. |
Qiu H G, Li X H, Yu J L. China maize industry: development trends and policy suggestions. Issue Agric Econ, 2021, 42(7): 4-16 (in Chinese with English abstract). | |
[3] | 张静. 逆境胁迫下玉米DNA去甲基化酶和AP2/ERF基因家族的全基因组鉴定与分析. 安徽师范大学硕士学位论文, 安徽芜湖, 2020. |
Zhang J. Genome-wide Identification and Analysis of Maize DNA Demethylase and AP2/ERF Gene Family under Abiotic Stress. MS Thesis of Anhui Normal University, Wuhu, Anhui, China, 2020 (in Chinese with English abstract). | |
[4] | Baillo E H, Kimotho R N, Zhang Z B, Xu P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10: 771. |
[5] |
Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17: 5484-5496.
doi: 10.1093/emboj/17.18.5484 pmid: 9736626 |
[6] |
张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展. 生物技术通报, 2018, 34(8): 1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142 |
Zhang Q, Chen J, Li L, Zhao M Z, Zhang M P, Wang Y. Research progress on plant AP2/ERF transcription factor family. Biotechnol Bull, 2018, 34(8): 1-7 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142 |
|
[7] | Zhu Y Q, Liu Y, Zhou K M, Tian C Y, Aslam M, Zhang B L, Liu W J, Zou H W. Overexpression of ZmEREBP60 enhances drought tolerance in maize. J Plant Physiol, 2022, 275: 153763. |
[8] | Fu J Y, Zhu C Y, Wang C, Liu L J, Shen Q Q, Xu D B, Wang Q. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. Plant Physiol Bioch, 2021, 159: 257-267. |
[9] | Yu Y, Yu M, Zhang S X, Song T Q, Zhang M, Zhou H W, Wang Y K, Xiang J S, Zhang X K. Transcriptomic identification of wheat AP2/ERF transcription factors and functional characterization of TaERF-6-3A in response to drought and salinity stresses. Int J Mol Sci, 2022, 23: 3272. |
[10] |
艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答. 作物学报, 2023, 49: 2433-2445.
doi: 10.3724/SP.J.1006.2023.23071 |
Ai R, Zhang C, Yue M F, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmEREB211 to abiotic stress. Acta Agron Sin, 2023, 49: 2433-2445 (in Chinese with English abstract). | |
[11] | Chen K, Tang W S, Zhou Y B, Chen J, Xu Z S, Ma R, Dong Y S, Ma Y Z, Chen M. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs. Plant Physiol Bioch, 2022: 170: 287-295. |
[12] | Oliveira P N, Matias F, Martinez-Andujar C, Martinez-Melgarejo P A, Prudencio A S, Galeano E, Perez-Alfocea F, Carrer H. Overexpression of TgERF1, a transcription factor from tectona grandis, increases tolerance to drought and salt stress in tobacco. Int J Mol Sci, 2023, 24: 4149 |
[13] | Cai X X, Chen Y, Wang Y, Shen Y, Yang J K, Jia B W, Sun X L, Sun M Z. A comprehensive investigation of the regulatory roles of OsERF096, an AP2/ERF transcription factor, in rice cold stress response. Plant Cell Rep, 2023, 42: 2011-2022. |
[14] | Seok H Y, Tran H T, Lee S Y, Moon Y H. AtERF71/HRE2, an Arabidopsis AP2/ERF transcription factor gene, contains both positive and negative cis-regulatory elements in its promoter region involved in hypoxia and salt stress responses. Int J Mol Sci, 2022, 23: 5310. |
[15] | Yu F, Liang K, Fang T, Zhao H, Han X, Cai M, Qiu F. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol J, 2019, 17: 2286-2298. |
[16] | Xiao Y Y, Chen J Y, Kuang J F, Shan W, Xie H, Jiang Y M, Lu W J. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. J Exp Bot, 2013, 64: 2499-2510. |
[17] | Shi Q, Dong Y B, Zhou Q, Qiao D H, Ma Z Y, Zhang L, Li Y L. Characterization of a maize ERF gene, ZmERF1, in hormone and stress responses. Acta Physiol Plant, 2016, 38: 1-9. |
[18] |
El-Sharkawy I, Kim W S, El-Kereamy A, Jayasankar S, Svircev A M, Brown D C. Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.). J Exp Bot, 2007, 58: 3631-3643.
pmid: 18057041 |
[19] | Zang Z L, Lv Y, Liu S, Yang W, Ci J B, Ren X J, Wang Z, Wu H, Ma W Y, Jiang L Y, Yang W G. A Novel ERF Transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum. Front Plant Sci, 2020, 11: 850. |
[20] | Huang Y, Zhang B L, Sun S, Xing G M, Wang F, Li M Y, Tian Y S, Xiong A S. AP2/ERF Transcription factors involved in response to tomato yellow leaf curly virus in tomato. Plant Genome, 2016, 9: 1-15. |
[21] |
Liu J X, Li J Y, Wang H N, Fu Z D, Liu J, Yu Y X. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J Exp Bot, 2011, 62: 825-840.
doi: 10.1093/jxb/erq324 pmid: 20974735 |
[22] | Zang Z Y, Wang Z, Zhao F X, Yang W, Ci J B, Ren X J, Jiang L Y, Yang W G. Maize ethylene response factor ZmERF061 is required for resistance to Exserohilum turcicum. Front Plant Sci, 2021, 12: 630413. |
[23] | Gao T, Li G Z, Wang C R, Dong J, Yuan S S, Wang Y H, Kang G Z. Function of the ERFL1a transcription factor in wheat responses to water deficiency. Int J Mol Sci, 2018, 19: 1465. |
[24] | Liu D F, Chen X J, Liu J Q, Ye J C, Guo Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911. |
[25] | Zhu J T, Wei X N, Yin C S, Zhou H, Yan J H, He W X, Yan J B, Li H. ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signalling pathways in Zea mays. Plant Cell Environ, 2023, 46: 2867-2883. |
[26] | Hu Z Y, Wang X J, Wei L, Wansee S, Rabbani N H, Chen L, Kang Z S, Wang J F. TaAP2-10, an AP2/ERF transcription factor, contributes to wheat resistance against stripe rust. J Plant Physiol, 2023, 288: 154078. |
[27] | Li H, Xiao Q L, Zhang C X, Du J, Li X, Huang H H, Wei B, Li Y P, Yu G W, Liu H M, Hu Y F, Liu Y H, Zhang J J, Huang Y B. Identification and characterization of transcription factor ZmEREB94 involved in starch synthesis in maize. J Plant Physiol, 2017, 216: 11-16. |
[28] |
Zhang Y, Ji A J, Xu Z C, Luo H M, Song J Y. The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. Plant Mol Biol, 2019, 100: 83-93.
doi: 10.1007/s11103-019-00845-7 pmid: 30847712 |
[29] | Wang M Y, Gao M, Zhao Y X, Chen Y C, Wu L W, Yin H F, Yang J H, Xiong S F, Wang S Q, Wang J, Yang Y, Wang J, Wang Y D. LcERF19, an AP2/ERF transcription factor from Litsea cubeba, positively regulates geranial and neral biosynthesis. Hortic Res, 2022, 9: uhac093. |
[30] | Wei S B, Li X, Lu Z F, Zhang H, Ye X Y, Zhou Y J, Li J, Yan Y Y, Pei H C, Duan F Y, Wang D Y, Chen S, Wang P, Zhang C, Shang L G, Zhou Y, Yan P, Zhao M, Huang J R, Bock R, Qian Q, Zhou W B. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377: eabi8455. |
[31] |
Srivastava R, Kumar R. The expanding roles of APETALA2/ Ethylene Responsive Factors and their potential applications in crop improvement. Brief Funct Genomics, 2019, 18: 240-254.
doi: 10.1093/bfgp/elz001 |
[32] |
Zhang C, Li X L, Wang Z P, Zhang Z B, Wu Z Y. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics, 2020, 112: 5157-5169.
doi: 10.1016/j.ygeno.2020.09.030 pmid: 32961281 |
[33] | 高建强, 梁华, 赵军. 植物遗传转化农杆菌浸花法研究进展. 中国农学通报, 2010, 26(16): 22-25. |
Gao J Q, Liang H, Zhao J. Progress on the floral-dip method of Agribacterium-mediated plant transformation. Chin Agric Sci Bull, 2010, 26(16): 22-25 (in Chinese with English abstract). | |
[34] |
悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060 |
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract). | |
[35] | Zhang H M, Zhu J H, Gong Z Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119. |
[36] | 王畅. 玉米转录因子ZmEREB20盐胁下的响应及调控机制初步分析. 四川农业大学硕士学位论文, 四川雅安, 2019. |
Wang C. Functional Identification of Maize Transcription Factor ZmEREB20 under Salt Stress. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2019 (in Chinese with English abstract). |
[1] | 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309. |
[2] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[3] | 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395. |
[4] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[5] | 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066. |
[6] | 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10、ZmCCT9、ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970. |
[7] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
[8] | 延飞龙, 张振, 赵俊晔, 石玉, 于振文. 宽幅精播下施氮量对冬小麦耗水特性和产量的影响[J]. 作物学报, 2024, 50(8): 2014-2024. |
[9] | 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013. |
[10] | 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786. |
[11] | 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876. |
[12] | 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4型ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657. |
[13] | 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466. |
[14] | 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553. |
[15] | 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627. |
|