欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2575-2585.doi: 10.3724/SP.J.1006.2024.44011

• 耕作栽培·生理生化 • 上一篇    下一篇

生长前期光照强度对甘薯叶片光合生理和结薯的影响

蒋杨影1,2(), 唐铭均1, 张林茜1, 吕长文1, 唐道彬1, 王季春1,*()   

  1. 1西南大学农学与生物科技学院 / 薯类生物学与遗传育种重庆市重点实验室, 重庆 400702
    2重庆市农业科学院蔬菜花卉研究所, 重庆 401329
  • 收稿日期:2024-01-15 接受日期:2024-05-21 出版日期:2024-10-12 网络出版日期:2024-06-18
  • 通讯作者: *王季春, E-mail: wjchun@swu.edu.cn
  • 作者简介:E-mail: 917773131@qq.com
  • 基金资助:
    重庆市技术创新与应用发展专项(cstc2019jscx-gksbX0100)

Effect of light intensity on leaf photosynthetic physiology and root system of sweet potato in the early stage of growth

JIANG Yang-Ying1,2(), TANG Ming-Jun1, ZHANG Lin-Xi1, LYU Chang-Wen1, TANG Dao-Bin1, WANG Ji-Chun1,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University / Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Chongqing 400702, China
    2Vegetable and Flower Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
  • Received:2024-01-15 Accepted:2024-05-21 Published:2024-10-12 Published online:2024-06-18
  • Contact: *E-mail: wjchun@swu.edu.cn
  • Supported by:
    Chongqing Technical Innovation and Application Development Special Project(cstc2019jscx-gksbX0100)

摘要:

探明甘薯生长前期不同光照强度对叶片光合生理和结薯性的影响, 为甘薯合理套作高位作物提供高产理论依据和实践对策。于2021年, 以不同干率和叶型的甘薯品种S1 (潮薯1号)、S2 (广薯87)和S3 (渝苏162)为主区, 以L200 [(200 ± 50) μmol m-2 s-1]、L500 [(500 ± 50) μmol m-2 s-1]和L800 [(800 ± 50) μmol m-2 s-1]不同光照强度为副区, 开展双因素裂区试验, 研究了叶片的光合特性、组织结构和植株结薯情况。结果表明, 随着光照强度的减弱, 甘薯叶片上表皮厚度、栅栏组织厚度、海绵组织厚度、叶片厚度、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、RUBP羧化酶活性、单株结薯数、单株薯重、块根干物质重逐渐降低, 以高光照强度L800处理最优; 而胞间CO2浓度(Ci)、叶绿素a含量、叶绿素b含量、类胡萝卜素含量、叶绿素a/b、块根干率, 以低光照强度L200处理最优。通过因子分析综合评价, 高干率S3品种在弱光环境下表现最好, 低干率S1品种表现最差。甘薯叶片主要通过增加光合色素的含量与增加叶面积指数来提高对光能的捕获, 协同叶片组织结构、光合生理及RUBP羧化酶活性的可塑性变化来适应弱光环境。

关键词: 甘薯, 光照强度, 叶片组织结构, 光合特性, 产量

Abstract:

This study investigated the impact of different light intensities on leaf photosynthetic physiology and tuberization during the early growth stage of sweet potatoes. The findings contribute to theoretical and practical strategies for achieving high yields through relay intercropping of high-position crops with sweet potatoes. To explore the photosynthetic characteristics, tissue structure, and tuberization of sweet potato leaves, a two-factor split plot experiment was conducted in 2021. The main plot consisted of three sweet potato cultivars with varying root drying rates and leaf types: S1 (Chaoshu 1), S2 (Guangshu 87), S3 (Yusu 162). The subplot included three light intensities: L200 [(200 ± 50) μmol m-2 s-1], L500 [(500 ± 50) μmol m-2 s-1], L800 [(800 ± 50) μmol m-2 s-1]. The results revealed that decreasing light intensity led to reductions in upper epidermis thickness, palisade tissue thickness, spongy tissue thickness, leaf thickness, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), RUBP carboxylase activity, number of storage roots per plant, storage root weight per plant, and dry matter weight of storage roots. Among these parameters, the treatment with high light intensity (L800) exhibited the best performance. However, the intercellular CO2 concentration (Ci), chlorophyll a content, chlorophyll b content, carotenoid content, chlorophyll a/b ratio, and storage root drying rate were optimal under low light intensity (L200). Comprehensive evaluation through factor analysis revealed that the S3 variety with high root drying rate performed best under low light intensity, while the S1 variety with low root drying rate performed the worst. Sweet potato leaves primarily enhance light energy capture by increasing the content of photosynthetic pigments and leaf area index. They adapt to low light environments through plasticity in leaf anatomical structure, photosynthetic physiology, and RUBP carboxylase activity.

Key words: sweet potato, light intensity, leaf tissue structure, photosynthetic characteristics, yield

表1

品种来源及特性"

品种
Cultivar
来源
Source
叶形
Leaf shape
干率
Dry matter content (%)
潮薯1号
Chaoshu 1
广东省农业科学院作物研究所
Crop Research Institute, Guangdong Academy of Agricultural Sciences
浅复缺刻
Lobed leaf margin
15
广薯87
Guangshu 87
广东省农业科学院作物研究所
Crop Research Institute, Guangdong Academy of Agricultural Sciences
深复缺刻
Dissected leaf margin
24
渝苏162
Yusu 162
重庆市甘薯研究中心, 江苏省农业科学研究院
Chongqing Sweet Potato Research Center, Jiangsu Academy of Agricultural Sciences
心脏形
Heart-shaped leaf shape
31

图1

不同处理对甘薯叶片组织结构的影响 UE: 上表皮; LE: 下表皮; PT: 栅栏组织; ST: 海绵组织。S1、S2和S3分别表示甘薯品种为潮薯1号、广薯87和渝苏162。L200、L500和L800分别表示光照强度为200 μmol m-2 s-1、500 μmol m-2 s-1和800 μmol m-2 s-1。"

表2

不同处理叶片组织结构和LAI的方差分析和多重比较"

品种
Sweet potato cultivar
光照强度
Light intensity
上表皮厚度
Upper epidermis thickness
(μm)
下表皮厚度
Lower epidermis thickness
(μm)
栅栏组织厚度
Palisade tissue thickness
(μm)
海绵组织厚度
Spongy tissue thickness
(μm)
叶片厚度
Blade thickness
(μm)
叶面积指数
LAI
S1 L200 14.03±0.76 h 31.17±0.30 a 44.19±2.89 f 57.92±3.00 e 147.31±2.52 g 5.85±0.09 a
L500 21.47±0.36 e 25.49±1.12 c 60.99±1.00 d 75.44±7.74 c 183.39±6.05 d 3.84±0.30 d
L800 25.89±0.53 c 20.93±1.50 e 81.97±0.53 a 95.09±3.02 a 223.89±1.38 a 3.44±0.06 e
S2 L200 24.67±0.85 d 29.12±0.35 b 43.63±1.80 f 45.41±0.58 f 142.83±1.84 g 4.10±0.10 c
L500 27.36±0.24 b 24.29±0.82 cd 59.33±0.48 d 64.83±0.23 d 175.81±1.59 e 3.80±0.08 d
L800 28.91±0.33 a 24.08±0.32 cd 76.77±0.09 b 82.29±3.53 b 212.05±3.59 b 3.03±0.11 f
S3 L200 16.77±0.96 g 23.68±0.07 d 42.28±0.74 f 73.91±0.88 c 156.64±2.46 f 5.02±0.08 b
L500 18.29±0.21 f 24.35±1.04 cd 56.68±1.83 e 83.61±3.97 b 182.93±4.18 d 3.56±0.04 e
L800 21.63±0.22 e 23.68±0.07 d 69.85±0.86 c 84.40±3.27 b 199.56±3.85 c 3.00±0.06 f
方差分析(F值) ANOVA (F-value)
品种Sweet potato cultivar (S) 776.75** 25.37** 75.60** 105.24** 40.43** 120.50**
光照强度Light intensity (L) 372.67** 82.84** 1482.52** 112.69** 577.78** 422.51**
品种×光照强度(S×L) 50.51** 30.24** 13.10** 11.55** 16.24** 33.64**

表3

不同处理基本光合参数和RUBP羧化酶活性的方差分析和多重比较"

品种
Sweet potato
cultivar
光照强度
Light
intensity
净光合速率
Pn
(μmol m-2 s-1)
胞间CO2浓度
Ci
(μmol mol-1)
蒸腾速率
Tr
(mmol m-2 s-1)
气孔导度
Gs
(mol m-2 s-1)
RUBP羧化酶活性
RUBP carboxylase activity
(IU g-1)
S1 L200 7.92±0.79 e 365.90±4.60 a 1.46±0.03 g 0.31±0.02 g 0.83±0.01 e
L500 16.74±0.45 c 323.33±0.79 c 1.88±0.05 e 0.42±0.00 d 1.13±0.00 c
L800 19.81±0.17 b 267.80±5.09 d 3.33±0.16 b 0.53±0.00 b 1.20±0.02 a
S2 L200 8.84±0.34 e 362.55±1.69 a 1.38±0.05 gh 0.35±0.01 f 1.02±0.00 d
L500 14.05±0.70 d 327.35±2.32 c 2.68±0.05 c 0.43±0.02 d 1.12±0.02 c
L800 21.33±1.81 a 244.92±3.98 f 3.54±0.07 a 0.62±0.01 a 1.17±0.02 b
S3 L200 8.13±0.29 e 342.95±2.99 b 1.28±0.07 h 0.33±0.01 fg 0.77±0.01 f
L500 12.78±0.56 d 255.99±0.03 e 1.63±0.02 f 0.37±0.00 e 1.03±0.02 d
L800 16.35±0.23 c 180.59±2.53 g 2.17±0.04 d 0.47±0.01 c 1.16±0.01 b
方差分析(F值) ANOVA (F-value)
品种 Sweet potato cultivar (S) 41.53** 965.31** 312.35** 81.04** 98.85**
光照强度 Light intensity (L) 382.36** 3708.55** 1168.95** 688.97** 1276.49**
品种×光照强度(S×L) 11.27** 106.51** 89.66** 22.75** 93.47**

表4

不同处理叶片光合色素的方差分析和多重比较"

品种
Sweet potato cultivar
光照强度
Light intensity
叶绿素a含量
Chlorophyll a content
(mg g-1)
叶绿素b含量
Chlorophyll b content
(mg g-1)
类胡萝卜素含量
Carotenoid content
(mg g-1)
叶绿素a/b
Chlorophyll a/b
S1 L200 2.54±0.06 d 0.51±0.11 cd 0.04±0.00 c 5.11±1.21 ab
L500 1.90±0.07 f 0.35±0.01 g 0.03±0.00 d 5.50±0.14 ab
L800 2.01±0.13 f 0.37±0.03 fg 0.04±0.00 d 5.37±0.17 ab
S2 L200 3.17±0.13 b 0.68±0.02 b 0.05±0.00 b 4.67±0.05 b
L500 2.41±0.10 de 0.46±0.02 de 0.04±0.00 c 5.28±0.04 ab
L800 2.31±0.04 e 0.42±0.01 efg 0.04±0.00 c 5.48±0.03 ab
S3 L200 3.93±0.18 a 0.81±0.05 a 0.07±0.00 a 4.87±0.13 b
L500 2.46±0.09 de 0.43±0.02 ef 0.04±0.00 c 5.71±0.09 a
L800 2.95±0.14 c 0.55±0.02 c 0.05±0.00 b 5.41±0.03 ab
方差分析(F值) ANOVA (F-value)
品种 Sweet potato cultivar (S) 743.09** 56.84** 348.63** 0.88
光照强度 Light intensity (L) 155.80** 79.58** 95.18** 5.04*
品种×光照强度(S×L) 11.69** 5.26* 10.37** 0.49

表5

不同处理结薯及块根干物质的方差分析和多重比较"

品种
Sweet potato cultivar
光照强度
Light intensity
单株结薯数
Storage root number
(lump plant-1)
单株薯重
Storage root weight
per plant (g plant-1)
块根干物质重
Storage root dry matter weight (g)
块根干率
Storage root drying rate (%)
S1 L200 3.00±0.00 cd 133.08±6.82 e 22.70±1.45 e 0.17±0.01 f
L500 3.67±0.58 bc 210.53±2.85 b 34.19±0.06 d 0.16±0.00 g
L800 5.33±0.58 a 232.65±3.32 a 37.07±0.58 c 0.16±0.00 g
S2 L200 3.67±0.58 bc 95.82±3.41 f 22.05±0.54 e 0.23±0.00 d
L500 4.33±0.58 b 149.27±6.41 d 33.14±1.23 d 0.22±0.01 e
L800 5.33±0.58 a 179.47±8.54 c 40.80±1.48 b 0.23±0.00 de
S3 L200 2.33±0.58 d 125.69±4.20 e 38.32±1.00 c 0.31±0.00 a
L500 3.00±0.00 cd 147.72±5.11 d 41.13±1.64 b 0.28±0.00 b
L800 4.33±0.58 b 184.48±0.69 c 48.30±0.85 a 0.26±0.00 c
方差分析(F值) ANOVA (F-value)
品种 Sweet potato cultivar (S) 15.50* 119.48** 215.39** 668.29**
光照强度 Light intensity (L) 31.50** 833.15** 373.68** 117.21**
品种×光照强度 (S×L) 0.38 34.71** 20.00** 45.66**

表6

不同处理叶片生理与根系指标因子分析表"

参数
Parameter
载荷系数Load factor 共同度
Commonality
主因子1
Principal component 1 (PC1)
主因子2
Principal component 2 (PC2)
主因子3
Principal component 3 (PC3)
上表皮厚度Upper epidermis thickness 0.959 -0.099 -0.053 0.932
单株结薯数Storage root number 0.858 0.054 -0.320 0.841
Tr 0.840 0.199 -0.355 0.871
Gs 0.840 0.344 -0.285 0.906
RUBP羧化酶活性RUBP carboxylase activity 0.788 0.239 -0.430 0.863
Pn 0.746 0.428 -0.462 0.954
栅栏组织厚度Palisade tissue thickness 0.735 0.474 -0.444 0.961
LAI -0.748 -0.500 0.104 0.821
块根干物质重Storage root dry matter weight 0.272 0.942 0.086 0.968
叶片厚度Blade thickness -0.220 0.910 0.319 0.979
海绵组织厚度Spongy tissue thickness 0.280 0.839 -0.288 0.865
Ci -0.432 -0.802 0.076 0.836
下表皮厚度Lower epidermis thickness -0.483 -0.712 -0.012 0.740
叶绿素a含量Chlorophyll a content -0.314 0.005 0.927 0.958
叶绿素b含量Chlorophyll b content -0.286 -0.180 0.911 0.944
类胡萝卜素含量Carotenoid content -0.300 0.116 0.910 0.932
块根干率Storage root drying rate -0.165 0.444 0.806 0.874
单株薯重Storage root weight per plant 0.405 0.489 -0.652 0.828
叶绿素a/b Chlorophyll a/b 0.013 0.534 -0.531 0.567
特征值Eigenvalue 10.572 4.195 1.875
方差贡献率Variance contribution rate (%) 55.642 22.081 9.867
累积方差贡献率Cumulative variance contribution (%) 55.642 77.722 87.589
旋转后方差贡献率Rotated variance contribution (%) 33.824 27.495 26.269
累积旋转后方差贡献率
Cumulative rotated variance contribution (%)
33.824 61.320 87.589

表7

不同处理因子分析的综合得分与排名"

品种
Sweet potato cultivar
光照强度
Light intensity
PC1得分
PC1 score
PC2得分
PC2 score
PC3得分
PC3 score
综合得分
Comprehensive score
综合得分排名
Composite score ranking
S1 L200 -1.54 -1.14 -0.81 -1.195 9
L500 -0.40 -0.07 -1.42 -0.602 8
L800 0.98 0.35 -0.96 0.200 4
S2 L200 0.34 -1.73 1.10 -0.082 7
L500 0.69 -0.66 0.03 0.068 5
L800 1.56 0.17 -0.03 0.647 2
S3 L200 -1.00 0.52 1.80 0.317 3
L500 -0.95 1.17 -0.24 -0.071 6
L800 0.32 1.39 0.54 0.722 1

图2

筛选后指标的相关性分析 * 和** 分别表示在0.05和0.01概率水平相关性显著。Gs: 气孔导度; Pn: 净光合速率。"

[1] Liu Q C. Improvement for agronomically important traits by gene engineering in sweet potato. Breed Sci, 2017, 67: 15-26.
[2] 王艺, 韦小丽. 不同光照对植物生长、生理生化和形态结构影响的研究进展. 山地农业生物学报, 2010, 29: 353-359.
Wang Y, Wei X L. Advance on the effects of different light environments on growth, physiological biochemistry and morpho- structure of plant. J Mount Agric Biol, 2010, 29: 353-359 (in Chinese with English abstract).
[3] 盛家廉, 袁宝忠, 朱崇文, 马代夫, 齐运田. 徐薯18产量形成的生理特点. 江苏农业科学, 1982, 10(9): 26-30.
Sheng J L, Yuan B Z, Zhu C W, Ma D F, Qi Y T. Physiological characteristics of yield formation of Xushu 18. Jiangsu Agric Sci, 1982, 10(9): 26-30 (in Chinese).
[4] 易九红, 张超凡, 刘爱玉, 黄艳岚, 周虹. 甘薯生长与环境、栽培因素及内源激素的关系. 作物研究, 2012, 26: 719-724.
Yi J H, Zhang C F, Liu A Y, Huang Y L, Zhou H. Relation between growth of sweet potato and environment, cultivation and endogenous hormones. Crop Res, 2012, 26: 719-724 (in Chinese with English abstract).
[5] Oswald A, Alkämper J, Midmore D J. Response of sweet potato (Ipomoea batatas Lam.) to shading at different growth stages. J Agron Crop Sci, 1995, 175: 99-107.
[6] Park W, Chung M N, Nam S S, Kim T H, Lee H U, Goh S, Lee I B, Shin W C. Evaluation of the growth and yield of sweetpotato (Ipomoea batatas L.) at different growth stages under low light intensity. Korean J Crop Sci, 2021, 66: 146-154.
[7] Asiimwe A, Tabu I M, Lemaga B, Tumwegamire S. Effect of maize intercrop plant densities on yield and β-carotene contents of orange-fleshed sweetpotatoes. Afr Crop Sci J, 2016, 24: 75.
[8] 徐明时, 朱金庆, 褚田芬. 麦/玉米/薯三熟间套种植的密度探讨. 浙江农业科学, 1992, 33(3): 103-106.
Xu M S, Zhu J Q, Chu T F. Discussion on the density of wheat/corn/potato intercropping. J Zhejiang Agric Sci, 1992, 33(3):103-106 (in Chinese with English abstract).
[9] 王秋媛. 不同株型玉米对套作甘薯光合生理特性及产量的影响. 西南大学硕士学位论文, 重庆, 2015.
Wang Q Y. Effects of Different Plant-type Maize on Photosynthetic Physiological Characteristics and Yield of Inter-cropping Sweet Potato. MS Thesis of Southwest University, Chongqing, China, 2015 (in Chinese with English abstract).
[10] Luo Y L, Wu X L, Tang D B, Liu X, Lei Y Y, Lyu C W, Wang J C. Effect of maize (Zea mays L.) plant-type on yield and photosynthetic characters of sweet potato (Ipomoea balatas L.) in intercropping system. Not Bot Hortic Agrobo, 2017, 45: 245-254.
[11] 覃凤飞, 崔棹茗, 魏明, 陶雪, 金显玲, 唐海洋. 越夏期遮阴对3个不同紫花苜蓿品种生长特性的影响. 草地学报, 2014, 22: 101-106.
doi: 10.11733/j.issn.1007-0435.2014.01.016
Qin F F, Cui Z M, Wei M, Tao X, Jin X L, Tang H Y. Effects of shading on the growth characteristics of three Alfalfa cultivars in summer. Acta Agrest Sin, 2014, 22: 101-106 (in Chinese with English abstract).
[12] 洪莉, 张雪影, 曹锦萍, 陈令会. 遮阴对不同砧穗组合甜樱桃光合和荧光特性的影响. 江苏农业科学, 2017, 45(21): 161-164.
Hong L, Zhang X Y, Cao J P, Chen L H. Effect of shading on photosynthetic and fluorescence characteristics of sweet cherry in different rootstock combinations. Jiangsu Agric Sci, 2017, 45(21): 161-164 (in Chinese).
[13] Onwueme I C, Johnston M. Influence of shade on stomatal density, leaf size and other leaf characteristics in the major tropical root crops, tannia, sweet potato, yam, cassava and taro. Exp Agric, 2000, 36: 509-516.
[14] Johnston M, Onwueme I C. Effect of shade on photosynthetic pigments in the tropical root crops: yam, taro, tannia, cassava and sweet potato. Exp Agric, 1998, 34: 301-312.
[15] Martin F W. Differences among sweet potatoes in response to shading. Trop Agric, 1985, 62: 161-165.
[16] Oswald A, Alkämper J, Midmore D J. The effect of different shade levels on growth and tuber yield of sweet potato: II. Tuber yield. J Agron Crop Sci, 1995, 175: 29-40.
[17] Wang Q M, Hou F Y, Dong S X, Xie B T, Li A X, Zhang H Y, Zhang L M. Effects of shading on the photosynthetic capacity, endogenous hormones and root yield in purple-fleshed sweetpotato (Ipomoea batatas (L.) Lam.). Plant Growth Regul, 2014, 72: 113-122.
[18] 唐颢, 唐劲驰, 黎健龙. 高温干旱季节茶园覆盖遮荫的综合效应研究. 广东农业科学, 2008, 35(8): 26-29.
Tang H, Tang J C, Li J L. Synthetical effects of shading on tea plantation during the high-temperature and drought season. Guangdong Agric Sci, 2008, 35(8): 26-29 (in Chinese with English abstract).
[19] 叶尚红. 植物生理生化实验教程. 昆明: 云南科技出版社, 2004. pp 116-120.
Ye S H. A Course in Plant Physiology and Biochemistry Experiments. Kunming: Yunnan Science and Technology Press, 2004. pp 116-120 (in Chinese).
[20] 杨捷频. 常规石蜡切片方法的改良. 生物学杂志, 2006, 23(1): 45-46.
Yang J P. Improvement of traditional paraffin section preparation methods. J Biol, 2006, 23(1): 45-46 (in Chinese with English abstract).
[21] Evans J R, Poorter H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ, 2001, 24: 755-767.
[22] 毛诗雅, 武佳丽, 高静, 何林平, 杨雪琴, 杨峰. 弱光对苗期大豆叶片形态结构和光合荧光特性的影响. 四川农业大学学报, 2020, 38: 409-415.
Mao S Y, Wu J L, Gao J, He L P, Yang X Q, Yang F. Effects of shading on morphological structure and photosynthetic fluorescence characteristics of seeding soybean leaves. J Sichuan Agric Univ, 2020, 38: 409-415 (in Chinese with English abstract).
[23] 吴晓颖, 高华军, 王晓琳, 吴元华, 张娟, 刘好宝, 马兴华. 光照强度对雪茄烟叶片组织结构及内源激素含量的影响. 中国烟草科学, 2021, 42(2): 37-42.
Wu X Y, Gao H J, Wang X L, Wu Y H, Zhang J, Liu H B, Ma X H. Effects of light intensity on growth and development and endogenous hormone content of cigar leaves. Chin Tob Sci, 2021, 42(2): 37-42 (in Chinese with English abstract).
[24] Oguchi R, Hikosaka K, Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ, 2003, 26: 505-512.
[25] Rôaçaas G, Scarano F R, Barros C F. Leaf anatomical variation in Alchornea triplinervia (Spreng) Müll. Arg. (Euphorbiaceae) under distinct light and soil water regimes. Bot J Linnean Soc, 2001, 136: 231-238.
[26] Castellanos A E. Photosynthesis and gas exchange of vines. In: Putz F E, Mooney H A, eds. The Biology of Vines. Cambridge: Cambridge University Press, 1992. pp 181-204.
[27] 杨文权, 褚继鹏, 寇建村, 赵娇, 韩明玉. 遮阴对白三叶叶片解剖结构和光合特性的影响. 草地学报, 2015, 23: 653-656.
doi: 10.11733/j.issn.1007-0435.2015.03.031
Yang W Q, Chu J P, Kou J C, Zhao J, Han M Y. Effects of shading on the leave anatomical structure and photosynthetic characteristics of white clover. Acta Agrest Sin, 2015, 23: 653-656 (in Chinese with English abstract).
[28] Sultan S E. Phenotypic plasticity and plant adaptation. Acta Bot Neerland, 1995, 44: 363-383.
[29] 战吉成, 王利军, 黄卫东. 弱光环境下葡萄叶片的生长及其在强光下的光合特性. 中国农业大学学报, 2002, 7(3): 75-78.
Zhan J C, Wang L J, Huang W D. Effects of low light environment on the growth and photosynthetic characteristics of grape leaves. J China Agric Univ, 2002, 7(3): 75-78 (in Chinese with English abstract).
[30] 刘悦秋, 孙向阳, 王勇, 刘音. 遮荫对异株荨麻光合特性和荧光参数的影响. 生态学报, 2007, 27: 3457-3464.
Liu Y Q, Sun X Y, Wang Y, Liu Y. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Urtica dioica. Acta Ecol Sin, 2007, 27: 3457-3464 (in Chinese with English abstract).
[31] 王建华, 任士福, 史宝胜, 刘炳响, 周玉丽. 遮荫对连翘光合特性和叶绿素荧光参数的影响. 生态学报, 2011, 31: 1811-1817.
Wang J H, Ren S F, Shi B S, Liu B X, Zhou Y L. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Forsythia suspensa. Acta Ecol Sin, 2011, 31: 1811-1817 (in Chinese with English abstract).
[32] Yao X Y, Liu X Y, Xu Z G, Jiao X L. Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs. J Integr Agric, 2017, 16: 97-105.
doi: 10.1016/S2095-3119(16)61393-X
[33] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982, 33: 317-345.
[34] 吴正锋, 孙学武, 王才斌, 郑亚萍, 万书波, 刘俊华, 郑永美, 吴菊香, 冯昊. 弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响. 植物生态学报, 2014, 38: 740-748.
doi: 10.3724/SP.J.1258.2014.00069
Wu Z F, Sun X W, Wang C B, Zheng Y P, Wan S B, Liu J H, Zheng Y M, Wu J X, Feng H. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut. Chin J Plant Ecol, 2014, 38: 740-748 (in Chinese with English abstract).
[35] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007, 33: 216-222.
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of nitrogen application regimes on yield, quality, and nitrogen use efficiency of super japonica hybrid rice. Acta Agron Sin, 2007, 33: 216-222 (in Chinese with English abstract).
[36] 王庆美, 侯夫云, 汪宝卿, 董顺旭, 王振林, 张海燕, 李爱贤, 解备涛, 张立明. 大田遮荫对紫心甘薯块根中酶活性的影响. 核农学报, 2012, 26: 960-966.
Wang Q M, Hou F Y, Wang B Q, Dong S X, Wang Z L, Zhang H Y, Li A X, Xie B T, Zhang L M. Enzymatic activity of root qualities in purple-fleshed sweet potato under flied shading stress. J Nucl Agric Sci, 2012, 26: 960-966 (in Chinese with English abstract).
[37] 眭晓蕾, 张振贤, 张宝玺, 毛胜利, 王立浩. 不同品种辣椒幼苗光合与呼吸对弱光的响应. 中国生态农业学报, 2007, 15: 88-91.
Sui X L, Zhang Z X, Zhang B X, Mao S L, Wang L H. Response of photosynthesis and respiration to weak light in seedlings of four capsicum cultivars. Chin J Eco-Agric, 2007, 15: 88-91 (in Chinese with English abstract).
[38] Won J Y, Lee C Y. Effects of shading treatments on photosynthetic rate and growth in Codonopsis lanceloata Trautv. Korean J Med Crop Sci, 2007, 15: 152-156.
[39] Pires M V, Almeida A A F, Figueiredo A L, Gomes F P, Souza M M. Photosynthetic characteristics of ornamental passion flowers grown under different light intensities. Photosynthetica, 2011, 49: 593-602.
[40] 孙小玲, 许岳飞, 马鲁沂, 周禾. 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 2010, 34: 989-999.
doi: 10.3773/j.issn.1005-264x.2010.08.012
Sun X L, Xu Y F, Ma L Y, Zhou H. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chin J Plant Ecol, 2010, 34: 989-999 (in Chinese with English abstract).
[41] Zhang S B, Hu H, Xu K, Li Z R, Yang Y P. Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum. J Plant Physiol, 2007, 164: 611-620.
[42] Chow W S, Melis A, Anderson J M. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci USA, 1990, 87: 7502-7506.
doi: 10.1073/pnas.87.19.7502 pmid: 11607105
[43] 吕伟伟, 田俊德, 郭郁娇, 于忠亮, 苑景淇, 王丽丽, 初艳, 孙勇. 不同光照强度下玫瑰光合生理特性. 北华大学学报(自然科学版), 2021, 22: 581-587.
Lyu W W, Tian J D, Guo Y J, Yu Z L, Yuan J Q, Wang L L, Chu Y, Sun Y. Photosynthetic physiological characteristics of Rosa rugosa Thunb. under different light intensities. J Beihua Univ (Nat Sci), 2021, 22: 581-587 (in Chinese with English abstract).
[44] 范元芳, 杨峰, 王锐, 黄山, 雍太文, 刘卫国, 杨文钰. 弱光对大豆生长、光合特性及产量的影响. 中国油料作物学报, 2016, 38: 71-76.
doi: 10.7505/j.issn.1007-9084.2016.01.012
Fan Y F, Yang F, Wang R, Huang S, Yong T W, Liu W G, Yang W Y. Effects of low light on growth, photosynthetic characteristics and yield of soybean. Chin J Oil Crop Sci, 2016, 38: 71-76 (in Chinese with English abstract).
[45] Kim J J. Studies on optimum shading for seedling cultivation of Cornus controversa and C. walteri. J Korean Soc For Sci, 2020, 89: 591-597.
[46] Lee K C, Han S K, Kwon Y H, Jeon S R, Lee C W, Seo D J, Park W G. Effects of shading treatments on growth and physiological characteristics of Aruncus dioicus var. kamtschaticus (Maxim.) H. Hara seedling. Korean J Med Crop Sci, 2019, 27: 30-37.
[47] 李韦柳, 唐秀桦, 韦民政, 熊军, 许娟, 闫海锋. 遮阴对淀粉型甘薯生长发育及生理特性的影响. 热带作物学报, 2017, 38: 258-263.
Li W L, Tang X H, Wei M Z, Xiong J, Xu J, Yan H F. Effects of shading on growth, development and physiological characteristics of starchy sweet potato. Chin J Trop Crops, 2017, 38: 258-263 (in Chinese with English abstract).
[48] 王庆美, 侯夫云, 汪宝卿, 王振林, 董顺旭, 张海燕, 李爱贤, 张立明, 解备涛. 遮阴处理对紫甘薯块根品质的影响. 中国农业科学, 2011, 44: 192-200.
Wang Q M, Hou F Y, Wang B Q, Wang Z L, Dong S X, Zhang H Y, Li A X, Zhang L M, Xie B T. Effects of shading stress on qualities of purple sweet potato storage roots. Sci Agric Sin, 2011, 44: 192-200 (in Chinese with English abstract).
[49] 赵文婷, 马谨, 雷纬沙, 赵亚特, 许森, 张玲, 张启堂, 傅玉凡. 遮荫对紫肉甘薯块根鲜质量、花色苷含量及产量的影响. 西南大学学报(自然科学版), 2011, 33(2): 6-11.
Zhao W T, Ma J, Lei W S, Zhao Y T, Xu S, Zhang L, Zhang Q T, Fu Y F. Influence of shading on fresh weight, anthocyanin content and root tuber yield of purple-fleshed sweet potato. J Southwest Univ (Nat Sci Edn), 2011, 33(2): 6-11 (in Chinese with English abstract).
[1] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[2] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[3] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[4] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[5] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[6] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[7] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[8] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[9] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[10] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[11] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[12] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[13] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[14] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[15] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!