欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2358-2370.doi: 10.3724/SP.J.1006.2024.34210

• 耕作栽培·生理生化 • 上一篇    下一篇

高密度直播对油菜冷榨菜籽油品质的影响

张琪祺1(), 陈杰昌1, 蒯婕2, 汪波2, 王晶2, 徐正华2, 赵杰2, 赵思明1, 贾才华1,*(), 周广生2   

  1. 1华中农业大学食品科学技术学院 / 教育部环境食品学重点实验室, 湖北武汉 430070
    2华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
  • 收稿日期:2023-12-12 接受日期:2024-04-01 出版日期:2024-09-12 网络出版日期:2024-05-27
  • 通讯作者: *贾才华, E-mail: chjia@mail.hzau.edu.cn
  • 作者简介:E-mail: qiqizhang@webmail.hzau.edu.cn
  • 基金资助:
    湖北省自然科学基金计划项目(2024AFB732);国家重点研发计划项目(2021YFD1600502)

Effect of high density planting on the quality of cold pressed rapeseed oil

ZHANG Qi-Qi1(), CHEN Jie-Chang1, KUAI Jie2, WANG Bo2, WANG Jing2, XU Zheng-Hua2, ZHAO Jie2, ZHAO Si-Ming1, JIA Cai-Hua1,*(), ZHOU Guang-Sheng2   

  1. 1College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environmental Food Science, Ministry of Education, Wuhan 430070, Hubei, China
    2College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2023-12-12 Accepted:2024-04-01 Published:2024-09-12 Published online:2024-05-27
  • Contact: *E-mail: chjia@mail.hzau.edu.cn
  • Supported by:
    Hubei Provincial Natural Science Foundation of China(2024AFB732);National Key Research and Development Program of China(2021YFD1600502)

摘要:

为明确高密植对冷榨菜籽油品质的影响, 本研究选用6个株型差异较大的油菜品种(系), 采用45万株 hm-2和75万株 hm-2 2个密度种植, 油菜成熟后收获籽粒冷榨, 分析菜籽油理化指标、脂肪酸组成和典型脂质伴随物的含量。结果表明, 与45万株 hm-2相比, 在75万株 hm-2密度条件下, 6个油菜品种(系)籽粒含油量、菜籽油叶绿素含量、红值、过氧化值和酸价增加, 均值分别为4.67%、65.28%、22.16%、30.36%和7.23%, 但均符合国标一级菜籽油质量标准; 不饱和脂肪酸含量增加幅度为0.02%~4.26%, 类胡萝卜素和极性总酚含量增加幅度分别为0.52~4.54 mg kg-1和1.18~12.06 mg 100 g-1; 川油20和华油杂62两品种冷榨菜籽油中的生育酚和植物甾醇含量均有提升。综合评价结果表明, 不同株型油菜冷榨食用油品质形成对不同种植密度的响应规律不同, 不同高度和叶型油菜在75万株 hm-2种植密度下的冷榨菜籽油品质优于45万株 hm-2, 其中川油20和华油杂62在75万株 hm-2密度下的综合品质较优。本研究结果可为油菜密植、优质菜籽油原料的品种选育及生产提供参考。

关键词: 油菜, 种植密度, 菜籽油, 脂质伴随物, 品质

Abstract:

In order to determine the effect of high density planting on the quality of cold-pressed rapeseed oil, six rapeseed varieties with significantly different plant architectures were selected and planted with 450,000 plants hm-2 and 750,000 plants hm-2. The mature seeds were harvested and cold-pressed, and the physicochemical indexes, fatty acid composition, and typical lipid concomitants contents of rapeseed oil were analyzed. The results showed that compared with 450,000 plants hm-2, the oil content, chlorophyll, red value, peroxide value, and acid value under the density of 750,000 plants hm-2 increased on average by 4.67%, 65.28%, 22.16%, 30.36%, and 7.23%, respectively. But all of them met the national standard grade Ⅰ rapeseed oil quality standard. Under the density of 750,000 plants hm-2, the contents of unsaturated fatty acids increased by 0.02%-4.26%, and the contents of carotenoid and polar total phenol increased by 0.52-4.54 mg kg-1 and 1.18-12.06 mg 100 g-1, respectively. At the same time, the contents of tocopherol and phytosterol of ‘Chuanyou 20’and ‘Huayouza 62’ were increased. Comprehensive evaluation results showed that the quality of cold-pressed oil obtained from different plant architectures of rapeseed was different in response to the two planting densities. The quality of cold-pressed oil obtained from different heights and leaf types of rapeseed was better than 450,000 plants hm-2 under the density of 750,000 plants hm-2, among which the comprehensive quality of “Chuanyou 20” and “Huayouza 62” was superior under the density of 750,000 plants hm-2. Thus, the results of this study can provide a reference for the density planting, variety breeding, and the production of high-quality rapeseed oil raw materials.

Key words: rapeseed, planting density, rapeseed oil, lipid concomitants, quality

表1

不同种植密度下油菜籽的千粒重和含油量"

品种
Variety
密度
Density
千粒重
1000-seed weight (g)
含油量
Oil content (%)
CY20 D1 4.15±0.00 dB 35.00±0.55 dB
D2 4.26±0.04 cA 37.44±1.11 dA
N91 D1 4.33±0.06 bA 39.73±0.10 cA
D2 4.05±0.05 dB 41.23±1.00 cA
ERAKE D1 4.23±0.05 cB 45.60±0.19 aA
D2 4.33±0.04 bA 46.14±1.13 aA
11-9-704 D1 5.83±0.02 aA 46.08±0.83 aA
D2 5.60±0.04 aB 46.85±0.29 aA
TLHY D1 4.21±0.04 cB 39.96±0.28 cB
D2 4.36±0.03 bA 43.92±0.21 bA
HZ62 D1 4.08±0.02 eA 42.69±0.29 bB
D2 3.99±0.03 dB 44.61±0.17 bA

表2

不同种植密度下菜籽油的罗维朋色泽值(红值、黄值)与叶绿素含量"

品种
Variety
密度
Density
红值
Red-value
黄值
Yellow-value
叶绿素
Chlorophyll (mg kg-1)
CY20 D1 3.35±0.07 bA 30.05±0.07 abA 0.43±0.03 eB
D2 3.10±0.14 cA 30.40±0.28 cdA 0.75±0.02 fA
N91 D1 2.95±0.07 cB 28.00±1.41 cB 0.51±0.02 dB
D2 4.00±0.00 aA 39.50±0.71 aA 1.25±0.01 eA
ERAKE D1 2.85±0.07 cB 28.20±1.27 bcB 0.98±0.02 cB
D2 4.15±0.07 aA 39.50±0.71 aA 1.40±0.00 dA
11-9-704 D1 3.60±0.14 aA 30.25±0.07 aB 1.19±0.00 bB
D2 3.50±0.14 bA 32.10±0.14 bA 1.56±0.00 cA
TLHY D1 2.05±0.07 dB 20.65±0.49 dB 0.26±0.00 fB
D2 3.00±0.14 cA 30.15±0.07 dA 2.10±0.00 aA
HZ62 D1 3.20±0.14 bB 30.10±0.14 abA 1.93±0.01 aA
D2 3.70±0.14 bA 31.50±0.71 bcA 1.70±0.00 bB

图1

不同种植密度下菜籽油的过氧化值(A)和酸价(B) 图中不同小写字母表示同一种植密度下不同品种间差异显著(P < 0.05), 大写字母表示同一品种不同种植密度间差异显著(P < 0.05)。缩写同表1。"

表3

不同种植密度下菜籽油脂肪酸组成分析"

品种
Variety
密度
Density
脂肪酸组成Fatty acids composition 不饱和脂肪酸
Unsaturated fatty acids (%)
ω-6/
ω-3
棕榈酸
Palmitic acid (%)
硬脂酸
Stearic acid (%)
油酸
Oleic acid (%)
亚油酸
Linoleic acid (%)
亚麻酸
Linolenic acid (%)
花生一烯酸
Eicosenoic acid (%)
芥酸
Erucic acid (%)
CY20 D1 3.85 dB 1.71 dA 65.10 bB 19.32 bA 8.72 dA 1.31 dA ND 94.44 aA 2.21
D2 3.86 dA 1.68 cA 65.36 aA 19.35 bA 8.46 eB 1.28 fB ND 94.46 aA 2.29
N91 D1 4.01 bB 1.60 eA 57.18 eB 19.54 aB 10.99 aB 2.02 bA 4.65 bA 89.73 eB 1.78
D2 4.15 cA 1.67 cA 58.43 eA 20.84 aA 11.44 aA 1.94 cB 1.52 B 92.66 eA 1.82
ERAKE D1 2.99 eA 2.06 bA 64.42 cA 19.02 cA 9.24 cB 1.24 fB ND 93.92 cA 2.06
D2 4.47 aA 1.83 bB 64.06 cB 16.96 eB 10.06 bA 2.62 bA ND 93.70 cA 1.69
11-9-704 D1 3.92 cA 1.87 cA 65.53 aA 17.78 eB 9.64 bB 1.26 eB ND 94.21 bB 1.84
D2 3.86 dB 1.83 bB 64.76 bB 18.00 dA 10.05 bA 1.49 dA ND 94.31 bA 1.79
TLHY D1 2.96 eB 0.97 fB 14.22 fB 13.32 fA 9.24 cA 7.40 aA 51.89 aA 44.18 fB 1.44
D2 2.99 eA 0.99 dA 19.81 fA 13.00 fB 9.00 dB 6.64 aB 47.58 B 48.44 fA 1.44
HZ62 D1 3.92 cB 2.25 aB 62.45 dB 18.69 dB 9.25 cA 1.79 cA 1.37 c 92.19 dB 2.02
D2 3.86 dA 2.31 aA 63.73 dA 19.20 cA 9.13 cB 1.31 eB ND 93.36 dA 2.10

表4

不同种植密度下菜籽油的类胡萝卜素和极性总酚含量"

品种
Variety
密度
Density
类胡萝卜素
Carotenoid (mg kg-1)
极性总酚
Polar total phenols (mg 100 g-1)
CY20
D1 4.77±0.16 bA 62.82±0.29 cB
D2 4.45±0.12 dA 70.47±0.29 bA
N91 D1 4.19±0.06 cB 46.65±1.18 dB
D2 5.76±0.15 bA 58.71±0.88 dA
ERAKE
D1 3.23±0.07 dB 62.53±2.35 cB
D2 7.77±0.15 aA 63.71±2.35 cA
11-9-704 D1 5.31±0.42 aB 66.35±0.29 bA
D2 5.83±0.29 bA 64.29±1.18 cA
TLHY D1 1.99±0.03 eB 33.12±1.76 eB
D2 4.72±0.29 cA 41.35±1.76 eA
HZ62
D1 4.94±0.09 abB 76.65±0.59 aB
D2 5.66±0.03 bA 79.59±1.18 aA

表5

不同种植密度下菜籽油中生育酚含量"

品种
Variety
密度
Density
α-生育酚
α-tocopherol
(mg kg-1)
γ-生育酚
γ-tocopherol
(mg kg-1)
总生育酚
Total tocopherol
(mg kg-1)
CY20
D1 147.12±2.95 bA 260.53±4.45 cB 407.65±7.40 bB
D2 143.90±0.06 bA 287.66±0.53 aA 431.56±0.58 bA
N91 D1 135.86±1.79 cA 241.22±1.05 dA 377.09±2.84 cA
D2 134.97±0.21 cA 231.70±1.15 dB 366.67±0.95 cB
ERAKE
D1 152.68±0.51 aA 270.31±0.05 bA 423.00±0.46 aA
D2 103.19±1.70 fB 179.51±0.00 fB 282.69±1.70 fB
11-9-704 D1 119.01±0.12 eA 263.47±2.09 cA 382.48±1.97 cA
D2 117.93±0.46 dA 241.11±1.27 cB 359.04±0.81 dB
TLHY D1 130.00±0.30 dA 283.07±0.01 aA 413.07±0.31 bA
D2 116.71±0.00 eB 200.57±0.54 eB 317.28±0.54 eB
HZ62
D1 134.85±0.39 cB 274.14±0.44 bB 408.99±0.05 bB
D2 150.76±0.76 aA 284.02±0.51 bA 434.78±0.25 aA

表6

不同种植密度下菜籽油中植物甾醇含量"

品种
Variety
密度
Density
菜籽甾醇
Brassicastero
(mg kg-1)
菜油甾醇
Campesterol
(mg kg-1)
β-谷甾醇
β-sitosterol
(mg kg-1)
植物甾醇
Phytosterol
(mg kg-1)
CY20
D1 685.69±4.34 bcB 1259.64±1.07 cB 2855.77±8.37 bcB 4801.10±13.77 bB
D2 755.52±11.28 bA 1327.25±14.25 bA 3071.87±35.36 bcA 5154.65±431.43 abA
N91 D1 633.87±61.99 cA 1005.86±105.39 dA 2580.01±264.05 cA 4219.74±8.58 cB
D2 862.25±66.21 aA 1320.33±104.25 bA 3326.59±266.72 cA 5509.17±111.93 aA
ERAKE
D1 757.56±12.97 aA 1885.68±34.66 aB 3441.89±64.30 aA 6085.14±60.89 aA
D2 243.04±16.37 dB 2458.14±145.17 aA 2754.71±159.90 aB 5455.89±437.18 aA
11-9-704 D1 712.87±41.51 abA 1617.89±95.83 bA 2919.94±191.64 bA 5250.70±160.07 bA
D2 716.13±7.20 bA 1451.86±4.68 bA 2773.96±28.93 bA 4941.95±321.44 bA
TLHY D1 432.17±0.51 dB 465.05±1.56 eB 1722.13±7.53 dB 2619.35±328.98 dB
D2 501.81±25.25 cA 786.85±34.14 cA 2090.09±100.68 dA 3378.75±230.33 cA
HZ62
D1 684.99±34.00 bcA 1334.91±61.42 cA 2878.39±134.91 bA 4898.29±40.81 bA
D2 728.86±30.60 bA 1419.67±56.89 bA 3099.74±114.54 bA 5248.27±202.04 abA

图2

种植密度与菜籽油品质的相关性分析 D: 密度; SW: 千粒重; OC: 含油量; R: 红值; Y: 黄值; CHL: 叶绿素; POV: 过氧化值; AV: 酸价; OA: 油酸; LA: 亚油酸; LNA: 亚麻酸; CAR: 类胡萝卜素; PTP: 极性总酚; TT: 总生育酚; TP: 总植物甾醇。*表示P < 0.05, **表示P < 0.01。"

图3

种植密度与菜籽油品质的主成分分析得分图(a)和载荷图(b) 缩写同图2。"

表7

不同种植密度下菜籽油的主成分值、隶属函数值与综合评价值"

品种
Variety
密度
Density
主成分Comprehensive index 隶属函数Membership function 综合评价值
Comprehensive
valuation value
排名
Rank
F1 F2 F3 F4 F5 R1 R2 R3 R4 R5
CY20 D1 -1.00 2.01 0.54 1.80 0.23 0.56 0.98 0.83 0.00 0.47 0.62 9
D2 -0.35 2.10 1.03 0.65 0.18 0.63 1.00 0.95 0.27 0.34 0.69 5
N91 D1 -1.15 0.29 1.38 1.26 1.01 0.55 0.68 0.36 0.13 0.71 0.52 10
D2 2.63 -0.05 2.87 0.32 0.75 0.95 0.62 0.00 0.35 0.17 0.63 8
ERAKE D1 -0.19 1.57 1.15 2.45 0.60 0.65 0.91 0.42 1.00 0.21 0.68 6
D2 3.12 -1.96 0.05 1.31 0.09 1.00 0.28 0.71 0.12 0.37 0.66 7
11-9-704 D1 1.26 -0.40 0.79 1.02 1.96 0.80 0.56 0.89 0.66 1.00 0.76 1
D2 1.50 -1.03 0.37 0.91 1.53 0.83 0.45 0.79 0.64 0.87 0.73 3
TLHY D1 -6.35 -0.70 0.59 0.22 0.18 0.00 0.51 0.56 0.48 0.45 0.26 12
D2 -1.49 -3.56 0.80 0.06 1.29 0.51 0.00 0.90 0.44 0.00 0.40 11
HZ62 D1 0.56 0.68 1.23 0.28 0.93 0.73 0.75 1.00 0.49 0.11 0.69 4
D2 1.47 1.06 1.17 0.41 1.05 0.83 0.82 0.99 0.52 0.07 0.75 2
[1] 马云倩, 李淞淋. 营养视角下中国近60年来居民食用植物油消费状况研究. 中国油脂, 2020, 45(2): 3-9.
Ma Y Q, Li S L. Consumption status of edible vegetable oil in China in the past six decades in the view of nutrition. China Oils Fats, 2020, 45(2): 3-9 (in Chinese with English abstract).
[2] Borg K. Physiopathological effects of rapeseed oil: a review. Acta Med Scand, 2009, 198: 5-13.
[3] 王瑞元. 2022年我国粮油产销和进出口情况. 中国油脂, 2023, 48(6): 1-7.
Wang R Y. Production, marketing, import and export of grain and oil in China in 2022. China Oils Fats, 2023, 48(6): 1-7 (in Chinese).
[4] 黄萌, 眭彬彬, 张建栋, 陈培峰, 宋英, 孙华. 移栽密度对高含油量双低油菜苏油5号产量、产油量及品质的影响. 江西农业学报, 2015, 27(10): 54-57.
Huang M, Sui B B, Zhang J D, Chen P F, Song Y, Sun H. Effects of transplanting density on rapeseed yield, oil yield and quality of high-oil double-low rape variety Suyou No. 5. Acta Agric Jiangxi, 2015, 27(10): 54-57 (in Chinese with English abstract).
[5] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕. 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018, 44: 278-287.
doi: 10.3724/SP.J.1006.2018.00278
Li X Y, Zhou M, Wang T, Zhang L, Zhou G S, Kuai J. Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agron Sin, 2018, 44: 278-287 (in Chinese with English abstract).
[6] Kuai J, Sun Y Y, Zhou M, Zhang P P, Zuo Q S, Wu J S, Zhou G S. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res, 2016, 199: 89-98.
[7] Li X Y, Zuo Q S, Chang H B, Bai G P, Kuai J, Zhou G S. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res, 2018, 218: 97-105.
[8] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51: 4625-4632 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.24.004
[9] Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric Ecol Env, 2006, 117: 80-108.
[10] Al-Barzinjy M, Stølen O, Christiansen J L, Jensen J E. Relationship between plant density and yield for two spring cultivars of oilseed rape (Brassica napus L.). Acta Agric Scand (Sect B), 1999, 49: 129-133.
[11] Zhang S, Liao X, Zhang C, Xu H. Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Ind Crops Prod, 2012, 40: 27-32.
[12] 宋小林, 刘强, 宋海星, 官春云, 荣湘民, 王纪玥, 王署娟. 不同处理条件下油菜茎叶可溶性糖和游离氨基酸总量及其对籽粒产量的影响. 西北农业学报, 2010, 19(6): 187-191.
Song X L, Liu Q, Song H X, Guan C Y, Rong X M, Wang J Y, Wang S J. Changes of soluble sugar and free amino acids in stem and leaf and their effects on yield of rapeseed. Acta Agric Boreali-Occident Sin, 2010, 19(6): 187-191 (in Chinese with English abstract).
[13] 张子龙, 王瑞, 李加纳, 唐章林, 谌利. 密度和氮素与甘蓝型黄籽油菜主要品质的关系. 西南农业大学学报(自然科学版), 2006, 28: 349-352.
Zhang Z L, Wang R, Li J N, Tang Z L, Chen L. Effects of planting density and fertilization on seed colour and related quality characters of yellow seeded rapeseed (Brassica napus L.). J Southwest Agric Univ (Nat Sci), 2006, 28: 349-352 (in Chinese with English abstract).
[14] 郑本川, 张锦芳, 李浩杰, 柴靓, 崔成, 蒋俊, 蒋梁材. 种植密度对不同甘蓝型油菜农艺性状和产量品质性状的影响. 安徽农业科学, 2018, 46(30): 38-40.
Zheng B C, Zhang J F, Li H J, Chai L, Cui C, Jiang J, Jiang J C. Effects of planting density on agronomic characters, yield and quality of different varieties of Brassica napus L. J Anhui Agric Sci, 2018, 46(30): 38-40 (in Chinese with English abstract).
[15] Shantha N C, Decker E A. Rapid, Sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J AOAC Int, 1994, 77: 421-424.
pmid: 8199478
[16] 杨万政, 曹秀君, 李金淑, 曾鸣, 周珊珊, 魏小刚. 紫外分光光度法测定沙棘油中总类胡萝卜素方法改进. 中央民族大学学报(自然科学版), 2009, 18(3): 5-8.
Yang W Z, Cao X J, Li J S, Zeng M, Zhou S S, Wei X G. Improvements on the method for determining total carotenoids in saffron oil by UV-spectrophotometry. J Minzu Univ China (Nat Sci Edn), 2009, 18(3): 5-8 (in Chinese).
[17] 于坤, 禹晓, 程晨, 陈鹏, 郑畅, 黄庆德, 邓乾春. 制油工艺对亚麻籽油品质及脂质伴随物含量的影响. 食品科学, 2020, 41(16): 233-243.
Yu K, Yu X, Cheng C, Chen P, Zheng C, Huang Q D, Deng Q C. Effects of processing techniques on the quality properties and lipid concomitants of flaxseed oil. Food Sci, 2020, 41(16): 233-243 (in Chinese with English abstract).
[18] Damirchi S A, Savage G P, Dutta P C. Sterol fractions in hazelnut and virgin olive oils and 4,4′-dimethylsterols as possible markers for detection of adulteration of virgin olive oil. J Am Oil Chem Soc, 2005, 82: 717-725.
[19] 纪龙, 申红芳, 徐春春, 陈中督, 方福平. 基于非线性主成分分析的绿色超级稻品种综合评价. 作物学报, 2019, 45: 982-992.
doi: 10.3724/SP.J.1006.2019.82057
Ji L, Shen H F, Xu C C, Chen Z D, Fang F P. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis. Acta Agron Sin, 2019, 45: 982-992 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.82057
[20] 李继军, 陈雅慧, 王艺瑾, 周志华, 郭子越, 张建, 涂金星, 姚璇, 郭亮. 甘蓝型油菜种质资源田间耐渍性评价和耐渍种质资源筛选. 作物学报, 2023, 49: 3162-3175.
doi: 10.3724/SP.J.1006.2023.34034
Li J J, Chen Y H, Wang Y J, Zhou Z H, Guo Z Y, Zhang J, Tu J X, Yao X, Guo L. Evaluation of field waterlogging tolerance and selection of waterlogging-resistant germplasm resources of Brassica napus L. Acta Agron Sin, 2023, 49: 3162-3175 (in Chinese with English abstract).
[21] 巩若琳, 宋波, 杨志叶, 路丽静, 董军刚. 迟播和密度对不同油菜品种抗倒伏及产量的影响. 作物学报, 2023, 49: 2777-2792.
Gong R L, Song B, Yang Z Y, Lu L J, Dong J G. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars. Acta Agron Sin, 2023, 49: 2777-2792 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24248
[22] 余新颖, 王春云, 李大双, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 周广生. 高产油菜品种稳产性形成机制. 作物学报, 2023, 49: 1601-1615.
doi: 10.3724/SP.J.1006.2023.24115
Yu X Y, Wang C Y, Li D S, Wang Z K, Kuai J, Wang B, Wang J, Xu Z H, Zhou G S. Formation mechanism of yield stability in high-yielding rapeseed varieties. Acta Agron Sin, 2023, 49: 1601-1615 (in Chinese with English abstract).
[23] 张海鹏, 刘强, 宋海星, 官春云, 杨艳菊. 种植密度和施肥量对‘湘杂油763’叶绿素、干物质积累和产量的影响. 中国农学通报, 2011, 27(21): 112-116.
Zhang H P, Liu Q, Song H X, Guan C Y, Yang Y J. The effects of different planting densities and fertilizer rates on chlorophyll, dry matter accumulation and yield of oilseed rape. Chin Agric Sci Bull, 2011, 27(21): 112-116 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2011-1050
[24] Kim T S, Decker E A, Lee J. Effects of chlorophyll photosensitisation on the oxidative stability in oil-in-water emulsions. Food Chem, 2012, 133: 1449-1455.
[25] Salami M, Heidari B, Tan H. Comparative profiling of polyphenols and antioxidants and analysis of antiglycation activities in rapeseed (Brassica napus L.) under different moisture regimes. Food Chem, 2023, 399: 133946.
[26] Yang M, Zheng C, Zhou Q, Huang F, Liu C, Wang H. Minor components and oxidative stability of cold-pressed oil from rapeseed cultivars in China. J Food Compost Anal, 2013, 29: 1-9.
[27] Yao Y, Xuan P, Xiong W, Zhao L, Xu X, Liang Q. Chlorophylls, lutein and β‐carotene play great but different roles in colour of rapeseed oil. Color Technol, 2022, 138: 660-673.
[28] Zhang Y, Zhu Y, Shi L, Guo Y, Wei L, Zhang H, Wang X, Jin Q. Physicochemical properties and health risk assessment of polycyclic aromatic hydrocarbons of fragrant rapeseed oils in China. J Sci Food Agric, 2020, 100: 3351-3359.
[29] 仲琴, 杨玲, 薛寒, 楼展展, 范国刚, 严成. 不同产地初榨菜籽油挥发性风味成分比较分析. 食品工业科技, 2021, 42(14): 70-78.
Zhong Q, Yang L, Xue H, Lou Z Z, Fan G G, Yan C. Comparative analysis of volatile flavor compounds in virgin rapeseed oil from different producing areas. Sci Technol Food Ind, 2021, 42(14): 70-78 (in Chinese with English abstract).
[30] 邱江, 黄秀芳, 戚存扣, 孙敬东, 陈新军, 韩桂琴. 移栽密度和施氮量对宁油14号油菜产量及品质的影响. 江苏农业科学, 2006, (4): 22-24.
Qiu J, Huang X X, Qi C K, Sun J D, Chen X J, Han G Q. Effects of transplanting density and nitrogen application on rapeseed yield and quality of Ningyou No. 14. Jiangsu Agric Sci, 2006, (4): 22-24 (in Chinese).
[31] 张欣, 袁春新, 王学军, 汪凯华, 王显生, 麻浩. 高低芥酸油菜品种发育籽粒脂肪酸积累模式的研究. 中国油料作物学报, 2009, 31: 127-131.
Zhang X, Yuan C X, Wang X J, Wang K H, Wang X S, Ma H. The study on the accumulation pattern of fatty acids during seed development of rape seed cultivars with high or low erucic acid content. Chin J Oil Crop Sci, 2009, 31: 127-131 (in Chinese with English abstract).
[32] 徐黎峰, 侯锡学, 李守国, 宋俊峰, 杨荣合, 张敏, 王强, 吴泽江, 胡言辉, 唐剑, 王得名, 赵婧霞, 贾茜茜, 张瑜, 邓孝全. 高芥酸甘蓝型杂交油菜绵油31高产制种技术. 中国种业, 2022, (1): 89-92.
Xu L F, Hou X X, Li S G, Song J F, Yang R H, Zhang M, Wang Q, Wu Z J, Hu Y H, Tang J, Wang D M, Zhao J X, Jia X X, Zhang Y, Deng X Q. High yield seed production technology of high erucic acid hybrid rapeseed Mianyou 31. Chin Seed Ind, 2022, (1): 89-92 (in Chinese).
[33] Patel A, Desai S S, Mane V K, Enman J, Rova U, Christakopoulos P, Matsakas L. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci Technol, 2022, 120: 140-153.
[34] Rathke G W, Christen O, Diepenbrock W. Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res, 2005, 94: 103-113.
[35] 刘念, 范其新, 蒙大庆, 汤天泽, 李芝凡, 李迎春, 谢卓霖. 油菜籽粒发育过程中脂肪酸累积模式及相关分析. 江苏农业学报, 2014, 30(1): 21-26.
Liu N, Fan Q X, Meng D Q, Tang T Z, Li Z F, Li Z F, Li Y C, Xie Z L. Accumulation pattern of fatty acids and their associations during development of rapeseed. Jiangsu J Agric Sci, 2014, 30(1): 21-26 (in Chinese with English abstract).
[36] Chew S C. Cold-pressed rapeseed (Brassica napus) oil: chemistry and functionality. Food Res Int, 2020, 131: 108997.
[37] McDevitt T M, Tchao R, Harrison E H, Morel D W. Carotenoids normally present in serum Inhibit proliferation and induce differentiation of a human monocyte/macrophage cell line (U937). J Nutr, 2005, 135: 160-164.
doi: 10.1093/jn/135.2.160 pmid: 15671207
[38] Maszewska M, Florowska A, Matysiak K, Marciniak-Łukasiak K, Dłużewska E. The study of palm and rapeseed oil stability during frying. J Appl Bot Food Qual, 2018, 91: 103-108.
[39] 刘国梅, 姚琳, 孙璇, 张高杨, 咸拴狮, 杜春芳. 油菜中类胡萝卜素组成与调控的研究进展. 食品科技, 2022, 47(12): 209-214.
Liu G M, Yao L, Sun X, Zhang G Y, Xian S S, Du C F. Research progress on carotenoid composition and regulation in rape. Food Sci Technol, 2022, 47(12): 209-214 (in Chinese with English abstract).
[40] Yang M, Huang F, Liu C, Zheng C, Zhou Q, Wang H. Influence of microwave treatment of rapeseed on minor components content and oxidative stability of oil. Food Bioproc Technol, 2013, 6: 3206-3216.
[41] 宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315-3327.
doi: 10.3724/SP.J.1006.2023.34017
Ning N, Mo J, Hu B, Li D S, Lou H X, Wang C Y, Bai C Y, Kuai J, Wang B, Wang J, Xu Z H, Li X H, Jia C H, Zhou G S. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315-3327 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.34017
[42] 华晓雨, 陶爽, 孙盛楠, 郭娜, 阎秀峰, 蔺吉祥. 植物次生代谢产物-酚类化合物的研究进展. 生物技术通报, 2017, 33(12): 22-29.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0546
Hua X Y, Tao S, Sun S N, Guo N, Yan X F, Lin J X. Research progress on phenolic compounds of plant secondary metabolites. Biotechnol Bull, 2017, 33(12): 22-29 (in Chinese with English abstract).
[43] 黄颖, 郑畅, 刘昌盛. 收割方式与微波预处理对压榨菜籽油品质的影响. 食品工业科技, 2019, 40(24): 8-13.
Huang Y, Zheng C, Liu C S. Effects of harvesting methods and microwave pretreatment on the quality of pressed rapeseed oil. Sci Technol Food Ind, 2019, 40(24): 8-13 (in Chinese with English abstract).
[44] Barja M V, Rodriguez-Concepcion M. Plant geranylgeranyl diphosphate synthases: every (gene) family has a story. aBIOTECH, 2021, 2: 289-298.
doi: 10.1007/s42994-021-00050-5 pmid: 36303884
[45] Wang J L, Tan S L, He M X, Huang W, Huang J C. Ketocarotenoids accumulation in the leaves of engineered Brassica napus restricts photosynthetic efficiency and plant growth. Environ Exp Bot, 2021, 186: 104461.
[46] Deng Q, Yu X, Ma F, Xu J, Huang F, Huang Q, Sheng F. Comparative analysis of the in-vitro antioxidant activity and bioactive compounds of flaxseed in China according to variety and geographical origin. Int J Food Prop, 2017, 20: S2708-S2722.
[47] Schaeffer A, Bronner R, Benveniste P, Schaller H. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1: Sterols and growth in transgenic SMT2;1 Arabidopsis. Plant J, 2001, 25: 605-615.
pmid: 11319028
[48] Amar S, Becker H C, Möllers C. Genetic variation and genotype × environment interactions of phytosterol content in three doubled haploid populations of winter rapeseed. Crop Sci, 2008, 48: 1000-1006.
[1] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[2] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[3] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[4] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[5] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[6] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[7] 闫子恒, 王先领, 邵东李, 郜耿东, 宁宁, 贾才华, 蒯婕, 汪波, 徐正华, 王晶, 赵杰, 周广生. 油菜籽粒叶绿素降解速率对菜籽油关键品质的影响[J]. 作物学报, 2024, 50(7): 1818-1828.
[8] 谢雄泽, 谢捷, 褚乾梅, 尹羽丰, 余小红, 王盾, 冯鹏. 长江流域冬油菜需水量及水分盈亏特征分析[J]. 作物学报, 2024, 50(7): 1829-1840.
[9] 马艳明, 娄鸿耀, 王威, 孙娜, 颜国荣, 张胜军, 刘杰, 倪中福, 徐麟. 新疆冬小麦籽粒品质性状遗传差异与关联分析[J]. 作物学报, 2024, 50(6): 1394-1405.
[10] 宁宁, 余新颖, 秦梦倩, 娄洪祥, 王宗铠, 王春云, 贾才华, 徐正华, 王晶, 蒯婕, 汪波, 赵杰, 周广生. 关键栽培措施对菜籽油综合品质的影响[J]. 作物学报, 2024, 50(6): 1554-1567.
[11] 王龙, 李静, 钱晨, 林国冰, 李亦扬, 杨光, 左青松. 盐胁迫对油菜生理特征和菜籽产量品质的影响[J]. 作物学报, 2024, 50(6): 1597-1607.
[12] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[13] 杨春菊, 唐道彬, 张凯, 杜康, 黄红, 乔欢欢, 王季春, 吕长文. 氮钾减量配施对甘薯产量和品质的影响[J]. 作物学报, 2024, 50(5): 1341-1350.
[14] 王先领, 姜岳, 雷贻忠, 肖胜男, 厍惠洁, 段圣省, 黄铭, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 外源物质浸种对迟播油菜越冬期抗寒性及产量的影响[J]. 作物学报, 2024, 50(5): 1271-1286.
[15] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!